
BSI Standards Publication

Information technology — Programming

languages, their environments and system software

interfaces — Programming language COBOL

BS ISO/IEC 1989:2023

National foreword

This British Standard is the UK implementation of ISO/IEC 1989:2023. It
supersedes BS ISO/IEC 1989:2014 (CD-ROM), which is withdrawn.

The UK participation in its preparation was entrusted to Technical
Committee IST/5, Programming languages, their environments and
system software interfaces.

A list of organizations represented on this committee can be obtained on
request to its committee manager.

 Contractual and legal considerations

This publication has been prepared in good faith, however no
representation, warranty, assurance or undertaking (express or
implied) is or will be made, and no responsibility or liability is or will be
accepted by BSI in relation to the adequacy, accuracy, completeness or
reasonableness of this publication. All and any such responsibility and
liability is expressly disclaimed to the full extent permitted by the law.

This publication is provided as is, and is to be used at the
recipient’s own risk.

The recipient is advised to consider seeking professional guidance with
respect to its use of this publication.

This publication is not intended to constitute a contract. Users are
responsible for its correct application.

© The British Standards Institution 2023
Published by BSI Standards Limited 2023

ISBN 978 0 539 02691 7

ICS 35.060

 Compliance with a British Standard cannot confer immunity from
legal obligations.

This British Standard was published under the authority of the
Standards Policy and Strategy Committee on 28 February 2023.

Amendments/corrigenda issued since publication

Date Text affected

BRITISH STANDARDBS ISO/IEC 1989:2023

Information technology —
Programming languages, their
environments and system software
interfaces — Programming language
COBOL

Technologies de l'information — Langages de programmation, leur
environnement et interfaces des logiciels de systèmes — Langage de
programmation COBOL

INTERNATIONAL
STANDARD

ISO/IEC
1989

Third edition
2023-01

Reference number
ISO/IEC 1989:2023(E)

© ISO/IEC 2023

BS ISO/IEC 1989:2023

ii

ISO/IEC 1989:2023(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2023All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.ISO copyright officeCP 401 • Ch. de Blandonnet 8CH-1214 Vernier, GenevaPhone: +41 22 749 01 11Email: copyright@iso.org
Website: www.iso.orgPublished in Switzerland

 © ISO/IEC 2023 – All rights reserved

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 iii

ContentsContents . iiiTables . xxivFigures .xxvForeword . xxviIntroduction .xxviii1 Scope .12 Normative references .23 Terms and definitions .34 Conformance to this Working Draft International Standard . 214.1 General . 214.2 A conforming implementation . 214.2.1 General . 214.2.2 Acceptance of standard language elements . 214.2.3 Interaction with non-COBOL runtime modules . 214.2.4 Interaction between COBOL implementations . 214.2.5 Implementor-defined language elements . 224.2.6 Processor-dependent language elements . 224.2.7 Optional language elements . 224.2.8 Reserved words . 234.2.9 Standard extensions . 234.2.10 Nonstandard extensions . 234.2.11 Substitute or additional language elements . 244.2.12 Archaic language elements . 244.2.13 Obsolete language elements . 244.2.14 Externally-provided functionality . 244.2.15 Limits . 244.2.16 User documentation . 254.2.17 Character substitution . 254.3 A conforming compilation group . 254.4 A conforming run unit . 254.5 Relationship of a conforming compilation group to a conforming implementation 264.6 Relationship of a conforming run unit to a conforming implementation . 265 Description techniques . 275.1 General . 275.2 General formats . 27

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

iv ©ISO/IEC 2023

5.2.1 General .275.2.2 Keywords .275.2.3 Optional words . 285.2.4 Operands .285.2.5 Level numbers .285.2.6 Options .295.2.7 Ellipses .295.2.8 Punctuation .295.2.9 Special characters . 305.2.10 Meta-terms .305.3 Rules .305.3.1 General .305.3.2 Syntax rules .305.3.3 General rules .305.3.4 Argument rules . 305.3.5 Returned value rules .305.4 Arithmetic expressions .315.4.1 General .315.4.2 Textually subscripted operands .315.4.3 Ellipses .315.5 Integer operands . 315.6 Informal description .325.7 Hyphens in text .326 Reference format . 336.1 General .336.2 Indicators .336.2.1 General .336.2.2 Fixed indicators . 346.2.3 Floating indicators .346.3 Fixed-form reference format . 366.3.1 General .366.3.2 Sequence number area .366.3.3 Indicator area .366.3.4 Program-text area . 376.3.5 Continuation of lines .376.3.6 Blank lines .386.3.7 Comments .386.4 Free-form reference format .386.4.1 General .386.4.2 Continuation of lines .396.4.3 Blank lines .396.4.4 Comments .396.5 Logical conversion .407 Compiler directing facility .42

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 v

7.1 General . 427.2 Text manipulation . 437.2.1 General . 437.2.2 Text manipulation elements . 447.2.3 COPY statement . 467.2.4 REPLACE statement . 507.3 Compiler directives . 547.3.1 General . 547.3.2 General format . 547.3.3 Syntax rules . 547.3.4 General rules . 557.3.5 Conditional compilation . 557.3.6 Compile-time arithmetic expressions . 557.3.7 Compile-time boolean expressions . 567.3.8 Constant conditional expression . 577.3.9 CALL-CONVENTION directive . 597.3.10 COBOL-WORDS directive . 607.3.11 DEFINE directive . 627.3.12 DISPLAY directive . 647.3.13 EVALUATE directive . 667.3.14 FLAG-02 directive . 707.3.15 FLAG-14 directive . 727.3.16 IF directive . 757.3.17 LEAP-SECOND directive . 767.3.18 LISTING directive . 787.3.19 PAGE directive . 797.3.20 POP directive . 807.3.21 PROPAGATE directive . 817.3.22 PUSH directive . 827.3.23 REF-MOD-ZERO-LENGTH directive . 837.3.24 SOURCE FORMAT directive . 847.3.25 TURN directive . 858 Language fundamentals . 878.1 Character sets . 878.1.1 General . 878.1.2 Computer's coded character set . 878.1.3 COBOL character repertoire . 908.1.4 Alphabets . 938.1.5 Collating sequences . 938.2 Locales . 948.2.1 General . 948.2.2 Locale field names . 958.3 Lexical elements . 978.3.1 General . 978.3.2 COBOL words . 97

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

vi ©ISO/IEC 2023

8.3.2.1 General .978.3.2.2 User-defined words .978.3.2.3 System-names . 1038.3.2.3.1 General . 1038.3.2.4 Reserved words . 1058.3.2.4.1 General . 1058.3.2.5 Context-sensitive words . 1068.3.2.6 Intrinsic-function-names . 1068.3.2.7 Exception-names . 1068.3.3 Literals . 1068.3.3.1 General . 1068.3.3.2 Alphanumeric literals . 1078.3.3.2.1 General . 1078.3.3.2.2 General format . 1078.3.3.2.3 Syntax rules . 1078.3.3.2.4 General rules . 1088.3.3.3 Numeric literals . 1098.3.3.4 Boolean literals . 1108.3.3.5 National literals . 1118.3.3.6 Figurative constant values . 1138.3.4 Picture character-strings . 1178.3.5 Separators . 1178.4 References . 1198.4.1 General . 1198.4.2 Uniqueness of reference . 1198.4.2.1 General . 1198.4.2.2 Qualification . 1198.4.2.3 Subscripts . 1228.4.2.3.1 General . 1228.4.2.3.2 General format . 1228.4.2.3.3 Syntax rules . 1238.4.2.3.4 General rules . 1248.4.3 Identifiers . 1248.4.3.1 Identifier . 1248.4.3.2 Function-identifier . 1278.4.3.3 Reference-modification . 1318.4.3.4 Inline method invocation . 1338.4.3.5 Object-view . 1348.4.3.6 EXCEPTION-OBJECT . 1358.4.3.7 NULL object reference . 1368.4.3.8 SELF and SUPER . 1368.4.3.9 Object property . 1378.4.3.10 NULL address pointer and message tag content . 1398.4.3.11 Data-address-identifier . 1398.4.3.12 Function-address-identifier . 1408.4.3.13 Program-address-identifier . 141

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 vii

8.4.3.14 LINAGE-COUNTER . 1428.4.3.15 Report counters . 1438.4.4 Condition-name . 1448.4.5 Explicit and implicit data item references . 1458.4.6 Scope of names . 1468.4.6.1 General . 1468.4.6.2 Local and global names . 1478.4.6.3 Scope of program-names . 1498.4.6.4 Scope of object-class-names and interface-names . 1498.4.6.5 Scope of method-names . 1498.4.6.6 Scope of function-prototype-names . 1508.4.6.7 Scope of user-function-names . 1508.4.6.8 Scope of program-prototype-names . 1508.4.6.9 Scope of compilation-variable-names . 1508.4.6.10 Scope of parameter-names . 1508.4.6.11 Scope of property-names . 1508.5 Data description and representation . 1518.5.1 Computer independent data description . 1518.5.1.1 General . 1518.5.1.2 Files and records . 1518.5.1.3 Levels . 1518.5.1.3.1 General . 1518.5.1.3.2 Level-numbers . 1528.5.1.3.3 Tables . 1528.5.1.4 Limitations of character handling . 1538.5.1.5 Algebraic signs . 1538.5.1.6 Alignment of data items in storage . 1548.5.1.6.3 Alignment of data items of usage bit . 1548.5.1.6.4 Item alignment for increased object-code efficiency . 1558.5.1.6.5 Alignment of strongly-typed group items . 1558.5.1.7 Fixed-capacity tables . 1568.5.1.9 Dynamic-capacity tables . 1568.5.1.10 Dynamic-length elementary items . 1588.5.1.10.1 General . 1588.5.1.10.2 Structure of a dynamic-length elementary item . 1588.5.1.10.3 Location of dynamic-length elementary items . 1588.5.1.10.4 Operations on dynamic-length elementary items . 1598.5.1.11 Variable-length data items . 1598.5.1.11.2 Contiguity of data items . 1598.5.1.11.3 Availability and persistence of variable-length data items . 1598.5.1.12 Variable-length groups . 1608.5.1.12.1 General . 1608.5.1.12.2 Positional correspondence . 1618.5.1.12.3 Matching . 1618.5.2 Class and category of data items and literals . 1618.5.2.1 General . 161

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

viii ©ISO/IEC 2023

8.5.2.2 Alphabetic category . 1628.5.2.3 Alphanumeric category . 1628.5.2.4 Alphanumeric-edited category . 1638.5.2.5 Boolean category . 1638.5.2.6 Data-pointer category . 1638.5.2.7 Function-pointer category . 1638.5.2.8 Index category . 1638.5.2.9 Message-tag category . 1648.5.2.10 National category . 1648.5.2.11 National-edited category . 1648.5.2.12 Numeric category . 1648.5.2.13 Numeric-edited category . 1658.5.2.14 Object-reference category . 1658.5.2.15 Program-pointer category . 1658.5.3 Types . 1658.5.3.1 General . 1658.5.3.2 Weakly-typed items . 1668.5.3.3 Strongly-typed group items . 1678.5.4 Zero-length items . 1678.6 Scope and life cycle of data . 1678.6.1 General . 1678.6.2 Global names and local names . 1678.6.3 External and internal items . 1688.6.4 Automatic, initial, and static internal items . 1688.6.5 Based entries and based data items . 1708.6.6 Common, initial, and recursive attributes . 1708.6.7 Sharing data items . 1718.7 Operators . 1728.7.1 Arithmetic operators . 1728.7.2 Boolean operators . 1728.7.3 Concatenation operator . 1738.7.4 Invocation operator . 1738.7.5 Relational operators . 1738.7.6 Logical operators . 1748.8 Expressions . 1758.8.1 Arithmetic expressions . 1758.8.2 Boolean expressions . 1828.8.3 Concatenation expressions . 1858.8.4 Conditional expressions . 1868.8.4.1 General . 1868.8.4.2 Simple relation conditions . 1868.8.4.5 Simple condition-name condition (conditional variable) . 1978.8.4.6 Simple switch-status condition . 1978.8.4.7 Simple sign condition . 1988.8.4.8 Simple omitted argument condition . 1998.8.4.9 Complex conditions . 200

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 ix

8.8.4.10 Complex negated conditions . 2008.8.4.11 Complex Combined conditions . 2018.8.4.12 Abbreviated combined relation conditions . 2028.8.4.13 Order of evaluation of conditions . 2048.9 Reserved words . 2058.10 Context-sensitive words . 2098.11 Intrinsic function names . 2138.12 Compiler-directive words . 2158.13 External repository . 2169 I-O, objects, and user-defined functions . 2179.1 Files . 2179.1.1 Physical and logical files . 2179.1.2 Record area . 2179.1.3 File connector . 2189.1.4 Open mode . 2189.1.5 Sharing file connectors . 2199.1.6 Fixed file attributes . 2199.1.7 Organization . 2199.1.7.1 General . 2199.1.7.2 Sequential . 2199.1.7.3 Relative . 2209.1.7.4 Indexed . 2209.1.8 Access modes . 2209.1.8.1 General . 2209.1.8.2 Sequential access mode . 2219.1.8.3 Random access mode . 2219.1.8.4 Dynamic access mode . 2219.1.9 Reel and unit . 2219.1.10 Current volume pointer . 2229.1.11 File position indicator . 2229.1.12 Input-output exception processing . 2229.1.13 I-O status . 2239.1.13.1 General . 2239.1.13.2 Successful completion . 2249.1.13.3 Implementor-defined successful completion . 2259.1.13.4 At end condition with unsuccessful completion . 2259.1.13.5 Invalid key condition with unsuccessful completion . 2269.1.13.6 Permanent error condition with unsuccessful completion . 2269.1.13.7 Logic error condition with unsuccessful completion . 2279.1.13.8 Record operation conflict condition with unsuccessful completion . 2289.1.13.9 File sharing conflict condition with unsuccessful completion . 2299.1.13.10 Record with invalid content with unsuccessful completion . 2299.1.13.11 Implementor-defined condition with unsuccessful completion . 2299.1.14 Invalid key condition . 2309.1.15 Sharing mode . 230

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

x ©ISO/IEC 2023

9.1.16 Record locking . 2329.1.17 Logical unit of work . 2329.1.18 Commit and Rollback . 2339.1.19 Sort file . 2349.1.20 Merge file . 2349.1.21 Dynamic file assignment . 2359.1.22 Report file . 2359.2 Screens . 2369.2.1 Terminal screen . 2369.2.2 Function keys . 2369.2.3 CRT status . 2369.2.4 Cursor . 2379.2.5 Cursor locator . 2389.2.6 Current screen item . 2389.2.7 Color number . 2389.3 Objects . 2409.3.1 Objects and classes . 2409.3.2 Object references . 2409.3.3 Predefined object references . 2409.3.4 Methods . 2409.3.5 Polymorphism . 2409.3.5.1 General . 2409.3.5.2 Class polymorphism . 2419.3.5.3 Parametric polymorphism . 2419.3.6 Method invocation . 2429.3.7 Method prototypes . 2469.3.8 Conformance and interfaces . 2469.3.8.1 General . 2469.3.8.2 Conformance for object orientation . 2479.3.8.2.1 General . 2479.3.8.2.2 Interfaces . 2479.3.8.2.3 Conformance between interfaces . 2479.3.8.2.4 Conformance for parameterized classes and parameterized interfaces 2509.3.9 Class inheritance . 2509.3.10 Interface inheritance . 2519.3.11 Interface implementation . 2519.3.12 Parameterized classes . 2519.3.13 Parameterized interfaces . 2529.3.14 Object life cycle . 2529.3.14.1 General . 2529.3.14.2 Life cycle for factory objects . 2529.3.14.3 Life cycle for instance objects . 2529.4 User-defined functions . 25210 Structured compilation group . 25410.1 General . 254

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 xi

10.2 Compilation units . 25410.3 Source units . 25410.4 Contained source units . 25510.5 Source elements and runtime elements . 25510.6 COBOL compilation group . 25610.6.1 General format . 25610.6.2 Syntax rules . 25910.6.3 General rule . 26010.7 End markers . 26110.7.1 General . 26110.7.2 General format . 26110.7.3 Syntax rules . 26110.7.4 General rule . 26211 Identification division . 26311.1 General . 26311.2 Identification division structure . 26311.3 CLASS-ID paragraph . 26411.3.1 General . 26411.3.2 General format . 26411.3.3 Syntax rules . 26411.3.4 General rules . 26411.4 FACTORY paragraph . 26611.4.1 General . 26611.4.2 General format . 26611.4.3 Syntax rules . 26611.4.4 General rules . 26611.5 FUNCTION-ID paragraph . 26711.5.1 General . 26711.5.2 General format . 26711.5.3 Syntax rule . 26711.5.4 General rules . 26711.6 INTERFACE-ID paragraph . 26811.6.1 General . 26811.6.2 General format . 26811.6.3 Syntax rules . 26811.6.4 General rules . 26811.7 METHOD-ID paragraph . 26911.7.1 General . 26911.7.2 General format . 26911.7.3 Syntax rules . 26911.7.4 General rules . 27011.8 OBJECT paragraph . 27111.8.1 General . 27111.8.2 General format . 27111.8.3 Syntax rules . 271

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

xii ©ISO/IEC 2023

11.8.4 General rules . 27111.9 OPTIONS paragraph . 27211.9.1 General . 27211.9.2 General format . 27211.9.3 Syntax rule . 27211.9.4 General rule . 27211.9.5 ARITHMETIC clause . 27211.9.6 DEFAULT ROUNDED clause . 27311.9.7 ENTRY-CONVENTION clause . 27411.9.8 FLOAT-BINARY clause . 27511.9.9 FLOAT-DECIMAL clause . 27511.9.10 INITIALIZE clause . 27611.9.11 INTERMEDIATE ROUNDING clause . 27811.10 PROGRAM-ID paragraph . 28011.10.1 General . 28011.10.2 General format . 28011.10.3 Syntax rules . 28011.10.4 General rules . 28112 Environment division . 28212.1 General . 28212.2 Environment division structure . 28212.3 Configuration section . 28312.3.1 General . 28312.3.2 General format . 28312.3.3 Syntax rules . 28312.3.4 General rule . 28312.3.5 SOURCE-COMPUTER paragraph . 28412.3.6 OBJECT-COMPUTER paragraph . 28512.3.7 SPECIAL-NAMES paragraph . 28912.3.8 REPOSITORY paragraph . 30412.4 Input-output section . 31012.4.1 General . 31012.4.2 General format . 31012.4.3 Syntax rule . 31012.4.4 FILE-CONTROL paragraph . 31112.4.5 File control entry . 31112.4.5.4 ACCESS MODE clause . 31912.4.5.6 ALTERNATE RECORD KEY clause . 32012.4.5.7 COLLATING SEQUENCE clause . 32212.4.5.8 FILE STATUS clause . 32412.4.5.9 LOCK MODE clause . 32512.4.5.10 ORGANIZATION clause . 32712.4.5.11 RECORD DELIMITER clause . 32812.4.5.12 RECORD KEY clause . 32912.4.5.13 RELATIVE KEY clause . 330

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 xiii

12.4.5.14 RESERVE clause . 33112.4.5.15 SHARING clause . 33212.4.6 I-O-CONTROL paragraph . 33313 Data division . 33813.1 General . 33813.2 Data division structure . 33913.2.1 General format . 33913.3 Explicit and implicit attributes . 33913.4 File section . 34113.4.1 General . 34113.4.2 General format . 34113.4.3 Syntax rule . 34113.4.4 General rule . 34113.4.5 File description entry . 34213.4.6 Sort-merge file description entry . 34613.5 Working-storage section . 34713.5.1 General . 34713.5.2 General format . 34713.5.3 Syntax rule . 34713.5.4 General rules . 34713.6 Local-storage section . 34813.6.1 General . 34813.6.2 General format . 34813.6.3 Syntax rule . 34813.6.4 General rules . 34813.7 Linkage section . 34913.7.1 General . 34913.7.2 General format . 34913.7.3 Syntax rules . 34913.7.4 General rules . 35013.8 Report section . 35113.8.1 General . 35113.8.2 General format . 35113.8.3 Syntax rule . 35113.8.4 Report description entry . 35113.8.5 Report group description entry . 35113.8.6 Report subdivisions . 35213.8.6.2 Physical subdivisions of a report . 35213.8.6.2.1 Pages . 35213.8.6.2.2 Lines . 35213.8.6.2.3 Report Items . 35213.8.6.3 Logical Subdivisions of a Report . 35213.9 Screen section . 35413.9.1 General . 35413.9.2 General format . 354

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

xiv ©ISO/IEC 2023

13.9.3 Syntax rule . 35413.9.4 General rule . 35413.10 Constant entry . 35513.10.1 General . 35513.10.2 General format . 35513.10.3 Syntax rules . 35513.10.4 General rules . 35613.11 Record description entry . 35713.11.1 General . 35713.12 Type declaration entry . 35713.13 77-level data description entry . 35713.14 Report description entry . 35813.14.1 General . 35813.14.2 General format . 35813.14.3 Syntax rules . 35813.14.4 General rule . 35813.15 Report group description entry . 35913.15.1 General . 35913.15.2 General format . 35913.15.3 Syntax rules . 36013.15.4 General rules . 36113.16 Data description entry . 36213.16.1 General . 36213.16.2 General formats . 36313.16.3 Syntax rules . 36513.16.4 General rules . 36713.17 Screen description entry . 36813.17.1 General . 36813.17.2 General formats . 36813.17.3 Syntax rules . 37013.17.4 General rules . 37113.18 Data division clauses . 37213.18.1 ALIGNED clause . 37213.18.2 ANY LENGTH clause . 37313.18.3 AUTO clause . 37413.18.4 BACKGROUND-COLOR clause . 37513.18.5 BASED clause . 37613.18.6 BELL clause . 37713.18.7 BLANK clause . 37813.18.8 BLANK WHEN ZERO clause . 37913.18.9 BLINK clause . 38013.18.10 BLOCK CONTAINS clause . 38113.18.11 CLASS clause . 38213.18.12 CODE clause . 38313.18.13 CODE-SET clause . 38413.18.14 COLUMN clause . 386

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 xv

13.18.15 CONSTANT RECORD clause . 39113.18.16 CONTROL clause . 39213.18.17 DEFAULT clause . 39413.18.18 DESTINATION clause . 39613.18.19 DYNAMIC LENGTH clause . 39713.18.20 Entry-name clause . 39813.18.21 ERASE clause . 39913.18.22 EXTERNAL clause . 40013.18.23 FOREGROUND-COLOR clause . 40213.18.24 FORMAT clause . 40313.18.25 FROM clause . 40613.18.26 FULL clause . 40713.18.27 GLOBAL clause . 40813.18.28 GROUP INDICATE clause . 40913.18.29 GROUP-USAGE clause . 41013.18.30 HIGHLIGHT clause . 41213.18.31 INVALID clause . 41313.18.32 JUSTIFIED clause . 41413.18.33 Level-number . 41513.18.34 LINAGE clause . 41713.18.35 LINE clause . 42013.18.36 LOWLIGHT clause . 42613.18.37 NEXT GROUP clause . 42713.18.38 OCCURS clause . 43013.18.39 PAGE clause . 43813.18.40 PICTURE clause . 44113.18.41 PRESENT WHEN clause . 46113.18.42 PROPERTY clause . 46413.18.43 RECORD clause . 46713.18.44 REDEFINES clause . 47113.18.45 RENAMES clause . 47313.18.46 REPORT clause . 47513.18.47 REQUIRED clause . 47613.18.48 REVERSE-VIDEO clause . 47713.18.49 SAME AS clause . 47813.18.50 SECURE clause . 48013.18.51 SELECT WHEN clause . 48113.18.52 SIGN clause . 48313.18.54 SUM clause . 48713.18.55 SYNCHRONIZED clause . 49113.18.56 TO clause . 49313.18.57 TYPE clause . 49413.18.58 TYPEDEF clause . 50013.18.59 UNDERLINE clause . 50113.18.60 USAGE clause . 50213.18.61 USING clause . 512

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

xvi ©ISO/IEC 2023

13.18.62 VALIDATE-STATUS clause . 51313.18.63 VALUE clause . 51613.18.64 VARYING clause . 52514 Procedure division . 52714.1 General . 52714.2 Procedure division structure . 52714.2.1 General formats . 52714.2.2 Syntax rules . 52814.2.3 General rules . 52914.3 Declaratives . 53214.4 Procedures . 53214.4.1 General . 53214.4.2 Sections . 53214.4.3 Paragraphs . 53214.5 Procedural statements and sentences . 53214.5.1 General . 53214.5.2 Conditional phrase . 53514.5.3 Scope of statements . 53514.5.3.1 General . 53514.5.3.2 Explicit scope termination . 53514.5.3.3 Implicit scope termination . 53514.6 Execution . 53614.6.1 Run unit organization . 53614.6.2 State of a function, method, object, or program . 53714.6.2.1 General . 53714.6.2.2 Active state . 53714.6.2.3 Initial and last-used states of data . 53714.6.2.3.1 General . 53714.6.2.3.2 Initial state . 53814.6.2.3.3 Last-used state . 53814.6.2.4 Initial state of object data . 53914.6.3 Explicit and implicit transfers of control . 53914.6.4 Item identification . 54014.6.5 Results of runtime element execution . 54114.6.6 Locale identification . 54114.6.7 Sending and receiving operands . 54214.6.8 Alignment and transfer of data into data items . 54214.6.8.1 General . 54214.6.8.2 Fixed-point numeric and fixed-point numeric-edited receiving data items 54214.6.8.3 Floating-point numeric receiving data items . 54314.6.8.4 Floating-point numeric-edited receiving data items . 54314.6.8.5 Receiving data items of categories alphabetic, alphanumeric, alphanumeric-edited, national, and national edited . 54314.6.8.6 Receiving data items of category boolean . 54314.6.9 Operations on dynamic-capacity tables . 544

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 xvii

14.6.10 Overlapping operands . 54514.6.11 Normal run unit termination . 54514.6.12 Abnormal run unit termination . 54614.6.13 Exception condition handling . 54614.6.13.1 Exception conditions . 54614.6.13.1.1 General . 54614.6.13.1.2 Normal completion of a declarative procedure . 54814.6.13.1.3 Fatal exception conditions . 54914.6.13.1.4 Nonfatal exception conditions . 55014.6.13.1.5 Exception objects . 55014.6.13.1.6 Exception-names and exception conditions . 55114.6.13.2 Incompatible data . 55814.7 Common phrases and features for statements . 55914.7.1 General . 55914.7.2 At end condition . 56014.7.3 Invalid key condition . 56014.7.4 ROUNDED phrase . 56014.7.5 SIZE ERROR phrase and size error condition . 56114.7.6 CORRESPONDING phrase . 56314.7.7 Arithmetic statements . 56414.7.8 THROUGH phrase . 56614.7.9 RETRY phrase . 56714.8 Conformance for parameters, returning items and external items . 56814.8.1 General . 56814.8.2 Parameters . 56814.8.2.1 General . 56814.8.2.2 Group items . 56914.8.2.3 Elementary items . 56914.8.2.3.1 General . 56914.8.2.3.2 Elementary items passed by reference . 56914.8.2.3.3 Elementary items passed by content or by value . 57114.8.3 Returning items . 57214.8.3.1 General . 57214.8.3.2 Group items . 57214.8.3.3 Elementary items . 57314.8.4 External items . 57414.9 Statements . 57614.9.1 ACCEPT statement . 57614.9.2 ADD statement . 58314.9.3 ALLOCATE statement . 58614.9.4 CALL statement . 58814.9.5 CANCEL statement . 59514.9.6 CLOSE statement . 59714.9.7 COMMIT statement . 60114.9.8 COMPUTE statement . 60214.9.9 CONTINUE statement . 604

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

xviii ©ISO/IEC 2023

14.9.10 DELETE statement . 60514.9.11 DISPLAY statement . 61014.9.12 DIVIDE statement . 61414.9.13 EVALUATE statement . 61814.9.14 EXIT statement . 62314.9.15 FREE statement . 62714.9.16 GENERATE statement . 62814.9.17 GO TO statement . 63014.9.18 GOBACK statement . 63114.9.19 IF statement . 63514.9.20 INITIALIZE statement . 63714.9.21 INITIATE statement . 64214.9.22 INSPECT statement . 64314.9.23 INVOKE statement . 65114.9.24 MERGE statement . 65714.9.25 MOVE statement . 66414.9.26 MULTIPLY statement . 67314.9.27 OPEN statement . 67514.9.28 PERFORM statement . 68214.9.29 RAISE statement . 69114.9.30 READ statement . 69214.9.31 RECEIVE statement . 70214.9.32 RELEASE statement . 70414.9.33 RESUME statement . 70614.9.34 RETURN statement . 70814.9.35 REWRITE statement . 71014.9.36 ROLLBACK statement . 71814.9.37 SEARCH statement . 72014.9.38 SEND statement . 72614.9.39 SET statement . 72914.9.40 SORT statement . 74514.9.41 START statement . 75414.9.42 STOP statement . 75814.9.43 STRING statement . 75914.9.44 SUBTRACT statement . 76214.9.45 SUPPRESS statement . 76514.9.46 TERMINATE statement . 76614.9.47 UNLOCK statement . 76814.9.48 UNSTRING statement . 76914.9.49 USE statement . 77414.9.50 VALIDATE statement . 78014.9.51 WRITE statement . 78515 Intrinsic functions . 79615.1 General . 79615.2 Types of functions . 796

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 xix

15.3 Arguments . 79615.3.1 Format arguments to international date and time functions . 79915.3.1.1 General . 79915.3.1.2 Calendar date formats . 79915.3.1.3 Permissible values for data associated with calendar date formats . 79915.3.1.4 Ordinal date formats . 79915.3.1.5 Permissible values for data associated with ordinal date formats . 80015.3.1.6 Week date formats . 80015.3.1.7 Permissible values for data associated with week date formats . 80015.3.2 Time formats . 80015.3.3 Common time formats . 80115.3.3.1 Common time formats with integer seconds representation . 80115.3.3.2 Common time formats with fractional seconds representation . 80115.3.3.3 Permissible values for data associated with common time formats . 80215.3.3.4 Local time formats . 80215.3.3.5 UTC time formats . 80215.3.3.6 Offset time formats . 80215.3.3.7 Combined date and time formats . 80315.4 Returned values . 80415.4.1 Numeric and integer functions . 80415.5 Date and time conversion functions . 80515.5.1 General . 80515.5.2 Integer date form . 80515.5.3 Standard date form . 80615.5.4 Julian date form . 80615.5.5 Standard numeric time form . 80615.6 Summary of functions . 80615.7 ABS function . 81615.8 ACOS function . 81715.9 ANNUITY function . 81815.10 ASIN function . 81915.11 ATAN function . 82015.12 BASECONVERT function . 82115.12.2 General format . 82115.13 BOOLEAN-OF-INTEGER function . 82215.14 BYTE-LENGTH function . 82315.15 CHAR function . 82515.16 CHAR-NATIONAL function . 82615.17 COMBINED-DATETIME function . 82715.18 CONCAT function . 82815.19 CONVERT function . 82915.20 COS function . 83315.21 CURRENT-DATE function . 83415.22 DATE-OF-INTEGER function . 83615.23 DATE-TO-YYYYMMDD function . 83715.24 DAY-OF-INTEGER function . 839

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

xx ©ISO/IEC 2023

15.25 DAY-TO-YYYYDDD function . 84015.26 DISPLAY-OF function . 84215.27 E function . 84315.28 EXCEPTION-FILE function . 84415.29 EXCEPTION-FILE-N function . 84615.30 EXCEPTION-LOCATION function . 84815.31 EXCEPTION-LOCATION-N function . 85015.32 EXCEPTION-STATEMENT function . 85215.33 EXCEPTION-STATUS function . 85315.34 EXP function . 85415.35 EXP10 function . 85515.36 FACTORIAL function . 85615.37 FIND-STRING function . 85715.38 FORMATTED-CURRENT-DATE function . 85815.39 FORMATTED-DATE function . 85915.40 FORMATTED-DATETIME function . 86015.41 FORMATTED-TIME function . 86215.42 FRACTION-PART function . 86415.43 HIGHEST-ALGEBRAIC function . 86515.44 INTEGER function . 86715.45 INTEGER-OF-BOOLEAN function . 86815.46 INTEGER-OF-DATE function . 86915.47 INTEGER-OF-DAY function . 87015.48 INTEGER-OF-FORMATTED-DATE function . 87115.49 INTEGER-PART function . 87215.50 LENGTH function . 87315.51 LOCALE-COMPARE function . 87515.52 LOCALE-DATE function . 87615.53 LOCALE-TIME function . 87715.54 LOCALE-TIME-FROM-SECONDS function . 87815.55 LOG function . 87915.56 LOG10 function . 88015.57 LOWER-CASE function . 88115.58 LOWEST-ALGEBRAIC function . 88215.59 MAX function . 88415.60 MEAN function . 88515.61 MEDIAN function . 88615.62 MIDRANGE function . 88715.63 MIN function . 88815.64 MOD function . 88915.65 MODULE-NAME function . 89015.66 NATIONAL-OF function . 89215.67 NUMVAL function . 89315.68 NUMVAL-C function . 89515.69 NUMVAL-F function . 89815.70 ORD function . 900

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 xxi

15.71 ORD-MAX function . 90115.72 ORD-MIN function . 90215.73 PI function . 90315.74 PRESENT-VALUE function . 90415.75 RANDOM function . 90515.75.2 General format . 90515.76 RANGE function . 90615.77 REM function . 90715.78 REVERSE function . 90815.79 SECONDS-FROM-FORMATTED-TIME function . 90915.80 SECONDS-PAST-MIDNIGHT function . 91015.81 SIGN function . 91115.82 SIN function . 91215.83 SMALLEST-ALGEBRAIC function . 91315.84 SQRT function . 91515.85 STANDARD-COMPARE function . 91615.86 STANDARD-DEVIATION function . 91815.87 SUBSTITUTE function . 91915.88 SUM function . 92115.89 TAN function . 92215.90 TEST-DATE-YYYYMMDD function . 92315.91 TEST-DAY-YYYYDDD function . 92415.92 TEST-FORMATTED-DATETIME function . 92515.93 TEST-NUMVAL function . 92615.94 TEST-NUMVAL-C function . 92815.95 TEST-NUMVAL-F function . 93015.96 TRIM function . 93215.97 UPPER-CASE function . 93415.98 VARIANCE function . 93615.99 WHEN-COMPILED function . 93715.100 YEAR-TO-YYYY function . 93916 Standard classes . 94116.1 General . 94116.2 BASE class . 94116.2.1 New method . 94116.2.2 FactoryObject method . 942A Language element lists . 943A.1 Implementor-defined language element list . 943A.2 Undefined language element list . 963A.3 Processor-dependent language element list . 969A.4 Optional language element list . 974B Characters permitted in user-defined words . 980B.1 General . 980

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

xxii ©ISO/IEC 2023

B.2 Notation . 980B.3 Repertoire of characters permitted in user-defined words . 980C Mapping of uppercase letters to lowercase letters in the COBOL character repertoire . 998C.1 Notations . 998C.2 General case mappings . 998D Concepts . 1005D.1 General . 1005D.2 Files . 1005D.3 Tables and dynamic-length elementary items . 1027D.4 Shared memory area . 1038D.5 Sharing of storage among data items . 1038D.6 Compilation group and run unit organization and communication . 1041D.7 Intrinsic function facility . 1059D.8 Types . 1061D.9 Addresses and pointers . 1065D.10 Boolean support and bit manipulation . 1067D.11 Character sets . 1072D.12 COBOL-WORDS directive . 1075D.13 Collating sequences . 1077D.14 Culturally-specific, culturally-adaptable, and multilingual applications . 1082D.15 External switches . 1090D.16 Common exception processing . 1091D.17 Rounding . 1095D.18 Forms of arithmetic . 1099D.19 Object oriented concepts . 1104D.20 Report writer . 1130D.21 Structured constant . 1140D.22 Validate facility . 1141D.23 Conditional expressions . 1146D.24 Examples of the use of the EDITING phrase . 1150D.25 Examples of the execution of the INSPECT statement . 1151D.26 Examples of the execution of the PERFORM statement with the VARYING phrase specified . 1155D.27 Example of free-form reference format . 1159D.28 Conditional compilation . 1160D.29 CALL-CONVENTION directive . 1162D.30 ENTRY-CONVENTION clause . 1162D.31 Date and time handling . 1162D.32 Alternatives to HIGHEST-ALGEBRAIC, LOWEST-ALGEBRAIC and SMALLEST-ALGEBRAIC FUNC-TIONS . 1169E Substantive changes list . 1172E.1 General . 1172E.2 Substantive changes potentially affecting existing programs . 1172

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 xxiii

E.3 Substantive changes probably not affecting existing programs . 1181F Archaic and obsolete language element lists . 1199F.1 Archaic language elements . 1199F.2 Obsolete language elements . 1199G Known errors . 1201G.1 Rationale . 1201G.2 List of errors . 1201BIBLIOGRAPHY . 1203Index . 1204

BS ISO/IEC 1989:2023

ISO/IEC 2023

xxiv ©ISO/IEC 2023

Tables

1 COBOL character repertoire . 902 Class and category relationships for elementary data items . 1623 Combinations of symbols in arithmetic expressions . 1754 Combination of symbols in boolean expressions . 1835 Combinations of conditions, logical operators, and parentheses . 2026 Relationship of alphabet-name to coded character set and collating sequence 2977 Category and type of editing . 4538 Results of fixed insertion editing . 4549 Results of floating insertion editing . 45510 Format 1 picture symbol order of precedence . 45911 Format 2 picture symbol order of precedence . 46012 Procedural statements . 53313 Exception-names and exception conditions . 55214 Relationship of categories of physical files and the format of the CLOSE statement 59815 Combination of operands in the EVALUATE statement . 62016 Validity of types of MOVE statements . 66617 Category of figurative constants used in the MOVE statement . 67118 Opening available and unavailable files (file not currently open) . 67619 Opening available shared files that are currently open by another file connector 67720 Permissible I-O statements by access mode and open mode . 67921 Table of functions . 807A.1 Summary of record lock acquisition and release . 1017A.2 Examples of boolean operations . 1069A.3 ROUNDED MODE examples . 1096

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 xxv

Figures

1 Fixed-form reference format . 36D.1 Format 1 SEARCH statement having two WHEN phrases . 1033D.2 Compilation group sample structure example . 1042D.3 Compilation group and run unit structures . 1044D.4 Manager class . 1112D.5 Banking hierarchy . 1113D.6 Example of page layout . 1131D.7 Evaluation of the condition-1 AND condition-2 AND ... condition-n . 1146D.8 Evaluation of the condition-1 OR condition-2 OR ... condition-n . 1146D.9 Evaluation of condition-1 OR condition-2 AND condition-3 . 1147D.10 Evaluation of (condition-1 OR NOT condition-2) AND condition-3 AND condition-4 1148D.11 The VARYING phrase of a PERFORM statement with the TEST BEFORE phrase having one condition 1155D.12 The VARYING phrase of a PERFORM statement with the TEST BEFORE phrase having two condi-tions . 1155D.13 The VARYING phrase of a PERFORM statement with the TEST AFTER phrase having one condition 1156D.14 The VARYING phrase of a PERFORM statement with the TEST AFTER phrase having two conditions 1157

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

xxvi ©ISO/IEC 2023

ForewordISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or www.iec.ch/members_experts/refdocs).Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such copyrights or patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents) or the IEC list of patent declarations received (see https://patents.iec.ch).Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments and system software interfaces.This third edition cancels and replaces the second edition (ISO/IEC 1989:2014), which has been technically revised.The main changes are as follows: — The following were general enhancements:— An asynchronous messaging facility using the SEND statement and RECEIVE statement— Boolean exclusive or operators— Boolean shifting operators— COBOL words may now be 63 characters long— The PERFORM statement has been enhanced to specify a time period for pausing the program— A DELETE FILE statement— A nonfatal EC-I-O-WARNING exception condition to handle warnings for successful input-output statements— EXTERNAL attributes checking between programs— Infinite loop for the PERFORM statement using the UNTIL EXIT phrase

BS ISO/IEC 1989:2023

https://www.iso.org/directives-and-policies.html
https://www.iso.org/directives-and-policies.html
https://www.iso.org/directives-and-policies.html
https://www.iso.org/directives-and-policies.html
https://www.iec.ch/members_experts/refdocs
https://www.iec.ch/members_experts/refdocs
https://www.iso.org/iso-standards-and-patents.html
https://www.iso.org/iso/foreword.html
https://www.iso.org/iso/foreword.html
https://www.iso.org/iso/foreword.html
https://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 xxvii

— Inline exception handling using the exception-checking format of the PERFORM statement— An Enhanced INSPECT statement to inspect backwards— Line Sequential file organization— The SET statement has been enhanced to allow the setting of the length of a dynamic length elementary item— Alternate key suppression on indexed files using the SUPPRESS WHEN phrase of the ALTERNATE RECORD KEY clause— An optional Commit and rollback processing facility using the COMMIT statement and ROLLBACK statement— Unsigned Packed-Decimal items defined by the NO SIGN phrase of the USAGE clause— User-defined PICTURE clause editing using the EDITING phrase of the PICTURE clause— VALUE clause enhancements and changes for numeric-edited items— Type declarations may now be external items — The following intrinsic functions were added or enhanced:— BASECONVERT function— CONCAT function— CONVERT function— EXCEPTION-FILE function and EXCEPTION-FILE-N function— FIND-STRING function— MODULE-NAME function— SMALLEST-ALGEBRAIC function— SUBSTITUTE function— TRIM function — Additional compiler directives were added:— COBOL-WORDS directive— DISPLAY directive— FLAG-14 directive— POP directive— PUSH directive— REF-MOD-ZERO-LENGTH directiveAny feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html and www.iec.ch/national-committees.

BS ISO/IEC 1989:2023

https://www.iso.org/members.html
https://www.iso.org/members.html
https://www.iso.org/members.html
https://www.iec.ch/national-committees
https://www.iec.ch/national-committees

ISO/IEC 1989:2023 (E)

xxviii ©ISO/IEC 2023

IntroductionCOBOL began as a business programming language, but its present use has spread well beyond that to a general purpose programming language.Any organization interested in reproducing the COBOL standard and specifications in whole or in part, using ideas from this document as the basis for an instruction manual or for any other purpose, is free to do so. However, all such organizations are requested to reproduce the following acknowledgment paragraphs in their entirety as part of the preface to any such publication (any organization using a short passage from this document, such as in a book review, is requested to mention "COBOL" in acknowledgment of the source, but need not quote the acknowledgment): COBOL is an industry language and is not the property of any company or group of companies, or of any organization or group of organizations. No warranty, expressed or implied, is made by any contributor or by the CODASYL COBOL Committee as to the accuracy and functioning of the programming system and language. Moreover, no responsibility is assumed by any contributor, or by the committee, in connection therewith. The authors and copyright holders of the copyrighted materials used herein: — FLOW-MATIC™1; — IBM®2 Commercial Translator Form No F 28-8013, copyrighted 1959 by IBM; — FACT©, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell have specifically authorized the use of this material in whole or in part, in the COBOL specifications. Such authorization extends to the reproduction and use of COBOL specifications in programming manuals or similar publications.For more details and additional changes, see E.2, Substantive changes potentially affecting existing programs and E.3, Substantive changes probably not affecting existing programs.Further development of the COBOL language is a continuing process to provide facilities to satisfy user demand for the improved usability of the language and the adoption of relevant advances in techniques developed in the computer industry as a whole, including the desirability of interoperability with a wide variety of operating systems and other programming languages to enable developers to take advantage of their facilities, including pre-existing task solutions that then don't need to be repeated. Annexes A, Language element lists B, Characters permitted in user-defined words, and C, Mapping of uppercase letters to lowercase letters in the COBOL character repertoire form a normative part of this document. Annexes D through G are for information only.
1.FLOW-MATIC™ is the trademark of a product supplied by Sperry Rand Corporation. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO or IEC of the product named.2.IBM is the trademark of International Business Machines Corporation. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO or IEC of the product named.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 xxix

Annex D, Concepts, includes an explanation of major features as well as the more complicated prior features and is the suggested starting point for the reading of this document.A complete list of technical changes is given in Annex E, Substantive changes list.The previous COBOL standard was published in 2014. Implementors have provided language extensions in response to the demands of their users. Several changes and extensions have, therefore, been made in this document to prevent further divergence, and to ensure consistency among, and coherence within, various implementations.Development of the COBOL language began before the invention of formal techniques for specification of programming languages. Hence, the COBOL standard uses its own description techniques, which are described in Clause 5, Description techniques. These techniques involve general formats, which describe the syntax, and natural language.During the development of this document, great care was taken to minimize changes that would affect existing programs. Most substantive changes that potentially affect existing programs were introduced to resolve ambiguities in the previous COBOL standard. Details of the substantive changes are given in Annex E, Substantive changes list.In this document, the following verbal forms are used:— ‘shall’ indicates a requirement;— ‘should’ indicates a recommendation;— ‘can’ indicates a possibility or a capability;— ‘may’ indicates a permission.Information marked as ‘NOTE’ is intended to assist the understanding or use of the document. ‘Notes to entry’ used in Clause 3 provide additional information that supplements the terminological data and can contain requirements relating to the use of a term.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

xxx ©ISO/IEC 2023

BS ISO/IEC 1989:2023

©ISO/IEC 2023 1

INTERNATIONAL STANDARD ISO/IEC 1989:2023 (E)

Information technology — Programming languages,
their environments and system software interfaces —
Programming language COBOL

1 ScopeThis document specifies the syntax and semantics of COBOL. Its purpose is to promote a high degree of machine independence to permit the use of COBOL on a variety of data processing systems. This document specifies:— The form of a compilation group written in COBOL.— The effect of compiling a compilation group.— The effect of executing run units.— The elements of the language for which a conforming implementation is required to supply a definition.— The elements of the language for which meaning is explicitly undefined.— The elements of the language that are dependent on the capabilities of the processor. This document does not specify:— The means whereby a compilation group written in COBOL is compiled into code executable by a processor.— The time at which method, function, or program runtime modules are linked or bound to an activating statement, except that runtime binding occurs of necessity when the identification of the appropriate program or method is not known at compile time.— The time at which parameterized classes and interfaces are expanded.— The mechanism by which locales are defined and made available on a processor.— The form or content of error, flagging, or warning messages.— The form and content of listings produced during compilation, if any.— The form of documentation produced by an implementor of products conforming to this document.— The sharing of objects and resources other than files among run units.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

2 ©ISO/IEC 2023

2 Normative referencesThe following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.ISO/IEC 60559:2020, Information technology — Microprocessor systems — Floating-Point ArithmeticISO/IEC 646, Information technology — ISO 7-bit coded character set for information interchangeISO/IEC 1001:2012, Information technology — File structure and labelling of magnetic tapes for
information interchangeISO 8601-1:2019, Date and time — Representations for information interchange — Part 1: Basic rulesISO/IEC/IEEE 9945:2009, Information technology — Portable Operating System Interface (POSIX®) Base
Specifications, Issue 7ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS)ISO/IEC 14651:2020, Information technology — International string ordering and comparison — Method
for comparing character strings and description of the common template tailorable ordering

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 3

3 Terms and definitionsFor the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminology databases for use in standardization at the following addresses:— ISO Online browsing platform: available at https://www.iso.org/obp— IEC Electropedia: available at https://www.electropedia.org/
3.1
absolute itemitem in a report that has a fixed position on a page
3.2
activated runtime elementfunction, method, or program placed into the active state
3.3
activating statementstatement that causes the execution of a function, method, or program
3.4
activating runtime elementfunction, method, or program that executed a given activating statement
3.5
active statestate of a function, method, or program that has been activated but has not yet returned control to the activating runtime element
3.6
alphabetic character basic letter or a space character in the COBOL character repertoire
3.7
alphanumeric charactercoded character in an alphanumeric coded character set, whether or not there is an assigned graphic symbol for that coded character
3.8
alphanumeric character position<storage required> amount of physical storage required to store, or presentation space required to print or display, a single character of an alphanumeric character set
3.9
alphanumeric character position<location within an item> location within an alphanumeric data item of an alphanumeric character

BS ISO/IEC 1989:2023

https://www.iso.org/obp/ui
https://www.electropedia.org/

ISO/IEC 1989:2023 (E)

4 ©ISO/IEC 2023

3.10
alphanumeric character set
alphanumeric coded character setcoded character set that the implementor has designated for representation of data items of usage display and alphanumeric literals
3.11
alphanumeric group itemgroup item except for a bit group item, a national group item, a strongly-typed group item, or a variable-length group item
3.12
argument operand specified in an activating statement that specifies the data to be passed
3.13
assumed decimal point decimal point position that does not involve the existence of an actual character in a data item and has logical meaning with no physical representation
3.14
based data item data item established by association of a based entry with an actual data item or allocated storage
3.15
based entry data description entry that serves as a template that is dynamically associated with data items or allocated storage
3.16
basic letter uppercase letter 'A' through 'Z' or lowercase letter 'a' through 'z' in the COBOL character repertoire
3.17
big-endian characterized by the arrangement of data within a data item such that its most significant component occupies the lowest (leftmost) component memory address within the item
3.18
bit smallest unit in a computer's storage structure capable of representing two distinct alternatives
3.19
bit data item elementary data item of category boolean and usage bit or a bit group item

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 5

3.20
block
physical record physical unit of data that is normally composed of one or more logical records
3.21
boolean character unit of information that consists of the value zero or one
3.22
boolean data item data item capable of containing a boolean value
3.23
boolean expression expression consisting of one or more boolean operands separated by boolean operator
3.24
boolean position <storage required> amount of physical storage required to store, or presentation space required to print or display, a single boolean character
3.25
boolean position <location within an item> the location within a boolean data item of a boolean character
3.26
boolean value value consisting of a sequence of one or more boolean characters
3.27
byte sequence of bits representing the smallest addressable character unit in the memory of a given computer
3.28
character boundary leftmost bit of an addressing boundary in the storage of the computer
3.29
character position <storage required> amount of physical storage required to store, or presentation space required to print or display, a single character – either an alphanumeric character or a national characterNote 1 to entry: As an example, each element of a combining sequence in the UCS occupies one character position. A UTF-16 surrogate pair occupies two character positions.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

6 ©ISO/IEC 2023

3.30
character position <location within an item> location within an alphanumeric or national data item of a corresponding alphanumeric or national character
3.31
character-string sequence of contiguous characters that form a COBOL word, a literal, or a picture character-string
3.32
class <in object orientation> entity that defines common behavior and implementation for zero, one, or more objects
3.33
class <of a data item> set of data items having common attributes or a common range of values, defined by the specific clauses in a data description entry; by the definition of a predefined identifier; or by the definition of an intrinsic functionNote 1 to entry: These common attributes or a common range of values are defined by the PICTURE clause (see 13.18.40, PICTURE clause), the USAGE clause, (see 13.18.60, USAGE clause) or the PICTURE and USAGE clauses.
3.34
class <of data values> set of data values that are permissible in the content of a data item
3.35
class definition compilation unit that defines a class of objects
3.36
clause ordered set of consecutive COBOL character-strings whose purpose is to specify an attribute of an entry
3.37
COBOL character repertoire repertoire of characters used in writing the syntax of a COBOL compilation group, except for comments and the content of non-hexadecimal alphanumeric and national literals
3.38
combining character member of the Universal Coded Character Set that is intended for combination with the preceding non-combining graphic character or with a sequence of combining characters preceded by a non-combining character[SOURCE: ISO/IEC 10646:2020, 3.44, modified — wording changes to COBOL usage]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 7

3.39
common program program that, despite being directly contained within another program, can be called from any program directly or indirectly contained in that other program
3.40
compilation group sequence of one or more compilation units submitted together for compilation
3.41
compilation unit source unit that is not nested within another source unit
3.42
composite sequence sequence of graphic characters consisting of a base character followed by one or more combining characters[SOURCE: ISO/IEC 10646:2020, 3.16, modified — wording changes to COBOL usage]
3.43
conditional statement statement for which the truth value of a specified condition is evaluated and used to determine subsequent flow of control
3.44
conformance <for object orientation> unidirectional relation that allows an object to be used according to an interface other than the interface of its own class
3.45
conformance <for parameters> requirements for the relationship between arguments and formal parameters and between returning items in activating and activated runtime elements
3.46
control function action that affects the recording, processing, transmission, or interpretation of data, and that has a coded representation consisting of one or more bytes[SOURCE: ISO/IEC 10646:2020, 3.18, modified — wording changes to COBOL usage]
3.47
cultural element element of data for computer use that can vary dependent on language, geographical territory, or other cultural circumstances

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

8 ©ISO/IEC 2023

3.48
currency sign COBOL character '$', used as the default currency symbol in a picture character-string and as the default currency string that appears in the edited format of data itemsNote 1 to entry: Features exist for selection of other currency strings and currency symbols.
3.49
currency string set of characters to be placed into numeric-edited data items as a result of editing operations when the item includes a currency symbol in its picture character-string
3.50
currency symbol character used in a picture character-string to represent the presence of a currency string
3.51
current record record that is available in the record area associated with a file
3.52
current volume pointer conceptual entity that points to the current volume of a sequential file
3.53
data item unit of data defined by a data description entry or resulting from the evaluation of an identifier
3.54
decimal point
decimal separator character used to represent the radix point
3.55
declarative statement USE statement that defines the conditions under which the procedures that follow the statement will be executed
3.56
de-editing logical removal of all editing characters from a numeric-edited data item in order to determine that item's numeric value
3.57
delete file statement FILE format of the DELETE statement

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 9

3.58
delete record statement RECORD format of the DELETE statement
3.59
delimited scope statement statement that is terminated by its explicit scope terminator
3.60
digit position <storage required> amount of physical storage required to store, or presentation space required to print or display, a single digit
3.61
digit position <location within an item> location within a numeric data item of a digit
3.62
dynamic access access mode in which specific logical records can be obtained from or placed into a mass storage file in a nonsequential manner and obtained from a file in a sequential manner
3.63
dynamic storage storage that is allocated and released on request during runtime
3.64
end marker marker for the end of a source unit
3.65
endianness ordering of individually addressable components of a given size within a data item of a larger size
3.66
entry descriptive set of consecutive clauses terminated by a separator period
3.67
entry convention information required to interact successfully with a function, method, or program
3.68
exception condition condition detected at runtime that indicates that an error or exception to normal processing has occurred

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

10 ©ISO/IEC 2023

3.69
exception object object that acts as an exception condition
3.70
exception processing procedures procedures within WHEN phrases within an exception-checking PERFORM statement or within a USE declarative
3.71
exception status indicator conceptual entity that exists for each exception-name
3.72
EXIT PARAGRAPH statement EXIT statement with the PARAGRAPH phrase
3.73
EXIT PERFORM statement EXIT statement with the PERFORM phrase
3.74
EXIT PROGRAM statement EXIT statement with the PROGRAM phraseNote 1 to entry: The EXIT PROGRAM statement is an archaic feature. For details see F.1, Archaic language elements.
3.75
EXIT SECTION statement EXIT statement with the SECTION phrase
3.76
explicit scope terminator statement-dependent word that, by its presence, terminates the scope of that statement
3.77
extend mode mode of file processing in which records can be added at the end of a sequential file, but no records can be deleted, read, or updated
3.78
extended letter letter, other than the basic letters, in the set of characters defined for the COBOL character repertoire
3.79
external data data that belongs to the run unit and can be accessed by any runtime element in which it is described

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 11

3.80
external media format form of data suitable for presentation or printing, including any control functions necessary for representation as readable text
3.81
external switch hardware or software device, defined and named by the implementor, that is used to indicate that one of two alternate states exists
3.82
factory object single object associated with a class, defined by the factory definition of that class, typically used to create the instance objects of the class
3.83
file logical entity that represents a collection of logical records
3.84
file connector storage area that contains information about a file and is used as the linkage between a file-name and a physical file and between a file-name and its associated record area
3.85
file organization permanent logical file structure established at the time that a file is created
3.86
file position indicator conceptual entity that either is used to facilitate exact specification of the next record to be accessed, or indicates why such a reference cannot be established
3.87
file sharing cooperative environment that controls concurrent access to the same physical file
3.88
fixed file attribute attribute of a physical file that is established when the physical file is created and is never changed during the existence of the physical file
3.89
formal parameter data-name specified in the USING phrase of the procedure division header that gives the name used in the function, method, or program for a parameter

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

12 ©ISO/IEC 2023

3.90
format character character whose primary function is to affect the layout or processing of characters around itNote 1 to entry: A format character generally does not have a visible representation of its own.
3.91
function intrinsic or user-defined procedural entity that returns a value based upon the arguments
3.92
function prototype definition definition that specifies the rules governing the arguments needed for the evaluation of a particular function, the data item resulting from the evaluation of the function, and all other requirements needed for the evaluation of that function
3.93
graphic character character, other than a control function or a format character, that has a visual representation normally handwritten, printed, or displayed[SOURCE: ISO/IEC 10646:2020, 3.28]
3.94
graphic symbol visual representation of a graphic character or of a composite sequence[SOURCE: ISO/IEC 10646:2020, 3.29]
3.95
grouping separation of digits into groups in number and currency formatting
3.96
grouping separator character used to separate digits in numbers for ease of reading
3.97
high-order end leftmost position of a string of characters or a string of bits
3.98
hexadecimal digit character from the set 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F used in the representation of hexadecimal values, where the letters A-F are equivalent to the letters a-f
3.99
i-o mode mode of file processing in which records can be read, updated, added, and deleted

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 13

3.100
i-o status conceptual entity that exists for a file, that contains a value indicating the result of the execution of an input-output operation for that file
3.101
imperative statement statement that specifies an unconditional action or that is a delimited scope statement
3.102
index conceptual data item, the content of which refers to a particular element in a table
3.103
inheritance <for classes> mechanism for using the interface and implementation of one or more classes as the basis for another class
3.104
inheritance <for interfaces> mechanism for using the specification of one or more interfaces as the basis for another interface
3.105
initial state state of a function, method, or program when it is first activated in a run unit
3.106
inline exception handling facility to use PERFORM statements with the ability to trap and handle exception conditions within those statements using a WHEN phrase instead of declaratives
3.107
input mode mode of file processing in which records can only be read
3.108
instance object single instance of an object defined by a class and created by a factory object
3.109
interface <of an object> names of all the methods defined for the object, including inherited methods; for each of the methods the ordered list of its formal parameters and the description and passing technique associated with each, any returned value and its description, and exceptions that can be raised
3.110
interface <the language construct> grouping of method prototypes

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

14 ©ISO/IEC 2023

3.111
internal data all data described in a source unit except external data and external file connectors
3.112
key of reference key, either prime or alternate, currently being used to access records within an indexed file
3.113
line delimiter sequence of one or more bytes which terminates a record in a line sequential fileNote 1 to entry: The line delimiter is implementor-defined.
3.114
little-endian characterized by the arrangement of data within a data item such that its most significant component occupies the highest (rightmost) component memory address within the item
3.115
locale facility in the user's information technology environment that specifies language and cultural conventions
3.116
lock mode state of a file for which record locking is in effect that indicates whether record locking is manual or automatic
3.117
low-order end rightmost position of a string of characters or a string of bits
3.118
message control system
MCS implementor-defined system that sends and receives messages exchanged between run units
3.119
message-server run unit that receives a request via a RECEIVE statement from a requestor and returns information to that requestor
3.120
message-tag implementor-defined unit of data that specifies the requestor or sender of a message and any additional information about the message

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 15

3.121
method invocation
invocation request to execute a named method on a given object
3.122
method prototype source element that specifies the information needed for invocation of a method and for conformance checking
3.123
national character position <storage required> amount of physical storage required to store, or presentation space required to print or display, a single national character
3.124
national character position <location within an item> location within a national data item of a national character
3.125
national character set
national coded character set coded character set that the implementor has designated for representation of data items described as usage national and for national literals
3.126
national data item elementary data item of class national or a national group item
3.127
native arithmetic mode of arithmetic in which the techniques used in handling arithmetic are specified by the implementor
3.128
native character set implementor-defined character set, either alphanumeric or national or both, that is used for internal processing of a COBOL runtime module
3.129
native collating sequence implementor-defined collating sequence, either an alphanumeric collating sequence or a national collating sequence, that is associated with the computer on which a runtime module is executed
3.130
next record record that logically follows the current record of a file

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

16 ©ISO/IEC 2023

3.131
null <message tag> state of a message-tag that it contains no valid message tag
3.132
null <object reference> state of an object reference indicating that it contains no valid reference
3.133
null <address pointer> state of an address pointer that it contains no valid address
3.134
numeric character <in the rules of COBOL> character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
3.135
object unit consisting of data and the methods that act upon that data
3.136
object data data defined in the factory definition, except for the data defined in its methods, or in the instance definition, except for the data defined in its methods
3.137
object property
property name that can be used to qualify an object reference to get a value from or pass a value to an object
3.138
open mode state of a file connector indicating input-output operations that are permitted for the associated file
3.139
optional file file declared as being not necessarily present each time the runtime module is executed
3.140
outermost program program, together with its contained programs, that is not contained in any other program
3.141
output file file that is opened such that it can only be written or extended
3.142
output mode mode of file processing in which a file is created and records can only be added to the file

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 17

3.143
physical file physical collection of physical records
3.144
previous record record that logically precedes the current record of a file
3.145
procedure paragraph, section, or one or more successive paragraphs or sections that include the executable code
3.146
procedure branching statement statement that causes the explicit transfer of control to a statement other than the next executable statement in the sequence in which the statements are written
3.147
processor computing system, both hardware and software, used for compilation of source code or execution of run units, or both
3.148
program prototype definition definition that specifies the rules governing the class of the parameters expected to be received by a particular called program, and any other requirements needed to transfer control to and get control and return information from that called program
3.149
random access access mode in which the value of a key data item identifies the logical record that is obtained from, deleted from, or placed into a relative or indexed file
3.150
record key data item within a record used to identify that record within an indexed file
3.151
record lock conceptual entity that is used to control concurrent access to a given record within a shared physical file
3.152
record locking facility for controlling concurrent access to records in a shared physical file
3.153
relative item item in a report whose position is specified relative to the previous item

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

18 ©ISO/IEC 2023

3.154
relative key data item that contains a relative record number
3.155
relative record number ordinal number of a record in a file whose organization is relative
3.156
report writer comprehensive set of data clauses and statements that enable a print layout to be described according to its general appearance rather than through of a series of procedural steps
3.157
requestor run unit that makes a request to a message server via a SEND statement to receive information back from that message server
3.158
run unit runtime entity consisting of one or more runtime modules that interact and that function at execution time as an independent entity
3.159
runtime element element consisting of code and data produced by the compilation of a source element
3.160
runtime module runtime element consisting of one or more runtime elements that result from the compilation of a compilation unit
3.161
sequential access access method in which logical records are either placed into a file in the order of execution of the statements writing the records or obtained from a file in the sequence in which the records were written to the file
3.162
sequential file file that is opened such that it can only be written or read sequentially
3.163
sequential organization permanent logical file structure in which a record is identified by a predecessor-successor relationship established when the record is placed into the file

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 19

3.164
source element source unit excluding any contained source units
3.165
source unit sequence of statements beginning with an identification division and finishing with an end marker or the end of the compilationNote 1 to entry: Any source units contained within a source unit are part of the containing source unit.
3.166
standard binary floating-point usages usages float-binary-32, float-binary-64, and float-binary-128
3.167
standard decimal floating-point usages usages float-decimal-16 and float-decimal-34
3.168
static data data that has its last-used state when a runtime element is re-entered
3.169
subject of the entry data item that is being defined by a data description entry
3.170
subscript number used to refer to a specific element of a table, or in the case of the value 'ALL', to all elements of a table
3.171
superclass class that is inherited by another class
3.172
surrogate pair coded character representation for a single abstract character of the UTF-16 format of the UCS where the representation consists of a sequence of two two-octet values where the first value of the pair is a high-surrogate and the second is a low-surrogate
3.173
tape drive real or virtual device that records data sequentially and once the data is written it cannot be changedNote 1 to entry: This includes magnetic tape drives, ribbon drives, write only devices, virtual files that behave like magnetic tape drives, and similar devices.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

20 ©ISO/IEC 2023

3.174
type template that contains all the characteristics of a data item and its subordinates
3.175

universal object reference object reference that is not restricted to a specific class or interface
3.176
unsuccessful execution attempted execution of a statement that does not result in the execution of all the operations specified by that statement
3.177
zero-length item element of data whose minimum permitted length is zero and whose length at runtime is zero
3.178
zero-length literal alphanumeric, boolean, or national literal that contains zero characters

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 21

4 Conformance to this Working Draft International Standard

4.1 GeneralClause 4 specifies requirements that an implementation shall fulfill in order to conform to this Working Draft International Standard and defines the conditions under which a compilation group or run unit conforms in its use of standard features.
4.2 A conforming implementation

4.2.1 GeneralTo conform to this Working Draft International Standard, an implementation of standard COBOL shall provide the required normative elements specified in Clause 6, Reference format through Clause 16, Standard classes and optionally meet the normative elements identified in A.4, Optional language element list, and meet the criteria of 4.2.2 through 4.2.17.
4.2.2 Acceptance of standard language elementsAn implementation shall accept the syntax and provide the functionality for all standard language elements required by this Working Draft International Standard and the optional or processor-dependent language elements for which support is claimed.An implementation shall provide a warning mechanism that optionally may be invoked by the user at compile time to indicate violations of the general formats and the explicit syntax rules of standard COBOL. This warning mechanism shall provide a suboption for selection or suppression of checking for violations of the set of conformance rules specified in 14.8.2, Parameters and 14.8.3, Returning items, and in 9.3.8.2.3, Conformance between interfaces.There are rules in standard COBOL that are not identified as general formats or syntax rules, but nevertheless specify elements that are syntactically distinguishable. This warning mechanism shall indicate violations of such rules. For elements not specified in general formats or in explicit syntax rules, it is left to the implementor's discretion to determine what is syntactically distinguishable.There are general rules in standard COBOL that could have been classified as syntax rules. These rules are classified as general rules for the purpose of avoiding syntax checking, and do not reflect errors in standard COBOL. An implementation may, but is not required to, flag violations of such rules.
4.2.3 Interaction with non-COBOL runtime modulesFacilities are provided in this specification that enable transfer of control and sharing of external items between COBOL runtime modules and non-COBOL runtime modules. No requirement is placed on an implementation to support this interaction. When supported, an implementor shall document the languages and the implementations supported.
4.2.4 Interaction between COBOL implementationsFacilities are provided in this specification that enhance the capability of transferring control and sharing external items between COBOL runtime elements translated on COBOL implementations

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

22 ©ISO/IEC 2023

produced by different implementors. No requirement is placed on an implementation to support this interaction. When supported, an implementor shall document the implementations supported.
4.2.5 Implementor-defined language elementsThe provisions of this clause apply to required normative elements of this Working Draft International Standard and to optional language elements for which an implementor claims support.Language elements that depend on implementor definition to complete the specification of the syntax rules or general rules are listed in A.1, Implementor-defined language element list. To meet the requirements of standard COBOL, the implementor shall specify, at a minimum, the implementor-defined language elements that are identified as required. Each implementor-defined language element specified by the implementor shall be documented if the implementor-defined language element is identified as requiring user documentation.An implementor shall not require the inclusion of nonstandard language elements in a compilation group as part of the definition of an implementor-defined language element.
4.2.6 Processor-dependent language elementsProcessor refers to the entire computing system that is used to translate compilation groups and execute run units, consisting of both hardware and relevant software. Language elements that depend on specific devices or on a specific processor capability, functionality, or architecture are listed in A.3, Processor-dependent language element list. To meet the requirements of standard COBOL, the implementor shall document the processor-dependent language elements for which the implementation claims support. Language elements that pertain to specific processor-dependent elements for which support is not claimed need not be implemented. The decision of whether to claim support for a processor-dependent language element is within an implementor's discretion. Factors that may be considered include, but are not limited to, hardware capability, software capability, and market positioning of the processor.When standard-conforming support is claimed for a specific processor-dependent language element, all associated syntax and functionality required for that language element shall be implemented; when a subset of the syntax or functionality is implemented, that subset shall be identified as a standard extension in the implementor's user documentation. The absence of processor-dependent elements from an implementation shall be specified in the implementor's user documentation.An implementation shall provide a warning mechanism at compile time to indicate use of syntactically-detectable processor-dependent language elements not supported by that implementation. Although this warning mechanism shall identify processor-dependent elements that are not supported, it is not required to diagnose syntax errors within this unsupported syntax. The implementor is not required to produce executable code when unsupported processor-dependent language elements are used.
4.2.7 Optional language elementsLanguage elements that an implementor may, but need not, implement are listed in A.4, Optional language element list. An implementor shall identify in user documentation the optional language elements for which that implementor claims support. If an implementor provides support for parts of an optional feature, user documentation shall identify the elements that are supported and those that are

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 23

not supported. The provisions of 4.2.5, Implementor-defined language elements, apply for each optional language element for which support is claimed.
4.2.8 Reserved wordsAn implementation shall recognize as reserved words all the COBOL reserved words specified in 8.9, Reserved words, including the intrinsic function names when so specified in the repository; shall recognize in context all the context-sensitive words specified in 8.10, Context-sensitive words; and shall recognize in compiler directives all the compiler-directive words specified in 8.12, Compiler-directive words.
4.2.9 Standard extensionsAn implementor may claim support for all or a subset of the syntax and associated functionality of optional or processor-dependent elements. When an implementor claims support for a subset of the syntax, that syntax is a 'standard extension', provided that the associated functionality is that specified in this Working Draft International Standard. If different functionality is provided, that syntax is a nonstandard extension.
4.2.10 Nonstandard extensionsNonstandard extensions are language elements or functionality in an implementation that consist of any of the following:1) documented language elements not defined in this Working Draft International Standard;2) language elements defined in this Working Draft International Standard for which different functionality is implemented, where that language element is not required for conformance to this Working Draft International Standard, and standard support for that element is not claimed by the implementor;3) language elements defined in this Working Draft International Standard for which different functionality is implemented, where that language element is required for conformance to this Working Draft International Standard, provided that standard-conforming behavior is also implemented and that an implementor-defined mechanism exists for selection of the nonstandard behavior.An implementation that introduces additional reserved words as nonstandard extensions conforms to this Working Draft International Standard, even though the additional reserved words may prevent translation of some conforming compilation groups.Documentation associated with an implementation shall identify nonstandard extensions for which support is claimed and shall specify any reserved words added for nonstandard extensions.An implementation shall provide a warning mechanism that optionally may be invoked by the user at compile time to indicate use of a nonstandard extension in a compilation group. This warning mechanism shall flag only extensions that are syntactically distinguishable.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

24 ©ISO/IEC 2023

4.2.11 Substitute or additional language elementsAn implementation shall not require the inclusion of substitute or additional language elements in the compilation group in order to accomplish functionality specified for a standard language element.
4.2.12 Archaic language elementsArchaic language elements are those identified in F.1, Archaic language elements. Archaic language elements should not be used in new compilation groups because better programming practices exist. There is no schedule for deleting archaic elements from standard COBOL; however, this may be reevaluated for any future editions of standard COBOL.An implementation shall support archaic language elements of the facilities for which support is claimed. Documentation associated with an implementation shall identify archaic language elements in the implementation.An implementation shall provide a warning mechanism that optionally may be invoked by the user at compile time to indicate use of an archaic language element in a compilation group.
4.2.13 Obsolete language elementsObsolete language elements are identified in F.2, Obsolete language elements. Unless otherwise specified, obsolete language elements will be removed from the next edition of standard COBOL.An implementation shall support obsolete language elements of the facilities for which support is claimed. Documentation associated with an implementation shall identify all obsolete language elements in the implementation.An implementation shall provide a warning mechanism that optionally may be invoked by the user at compile time to indicate use of an obsolete element in a compilation group.
4.2.14 Externally-provided functionalityAn implementation may require specifications outside the compilation group to interface with the operating environment to support functionality specified in a compilation group.An implementation may require the presence in the operating environment of runtime modules or products in addition to the COBOL implementation to support syntax or functionality specified in a compilation group.NOTE This permits an implementation to require components outside the COBOL implementation, such as precompilers, file systems, and sort products.
4.2.15 LimitsIn general, standard COBOL specifies no upper limit on such things as the number of statements in a compilation group or the number of operands permitted in certain statements. A conforming implementation may place such limits. It is recognized that these limits will vary from one implementation of standard COBOL to another and may prevent the successful translation by a

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 25

conforming implementation of some compilation groups that meet the requirements of standard COBOL.
4.2.16 User documentationAn implementation shall satisfy the user documentation requirements specified in 4.2.3, 4.2.4, 4.2.5, 4.2.6, 4.2.10, 4.2.12, and 4.2.13 by specification in at least one form of documentation. This may include, but is not limited to, hard copy manuals, on-line documentation, and user help screens.Documentation requirements may be met by reference to other documents, including those of the operating environment and other COBOL implementations.
4.2.17 Character substitutionThe definition of the COBOL character repertoire in 8.1.3, COBOL character repertoire, presents the complete COBOL character repertoire for standard COBOL. When an implementation does not provide a graphic representation for all the basic characters of the COBOL character repertoire, substitute graphics may be specified by the implementor to replace the characters not represented.
4.3 A conforming compilation groupA conforming compilation group is one that does not violate the explicitly stated syntactic provisions and specifications of standard COBOL. In order for a compilation group to conform to standard COBOL, it shall not include any language elements not specified in this Working Draft International Standard. A compilation group that uses elements that are optional, processor-dependent, or implementor-defined in this Working Draft International Standard is a conforming compilation group, even on implementations where it does not compile successfully due to the use of those elements.The compilation units contained in a conforming compilation group are conforming compilation units
4.4 A conforming run unitA conforming run unit is one that:1) is composed of one or more runtime modules, each resulting from a successful compilation of a conforming compilation unit, and2) complies with the explicitly stated provisions and specifications of standard COBOL with respect to the runtime behavior of that run unit. It is possible that two conforming implementations may produce successful but differing results due to such factors as rounding.NOTE The inclusion of non-COBOL components in the run unit does not affect the conformance of the run unit.The processing of a conforming run unit is predictable only to the extent defined in standard COBOL. The results of violating the formats or rules of standard COBOL are undefined unless otherwise specified in this Working Draft International Standard.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

26 ©ISO/IEC 2023

Situations in which the results of executing a statement are explicitly undefined or unpredictable are identified in A.2, Undefined language element list. A COBOL run unit that allows these situations to happen is a conforming run unit, although the resultant execution is not defined by standard COBOL.
4.5 Relationship of a conforming compilation group to a conforming implementationThe translation of a conforming compilation group by a conforming implementation is defined only to the extent specified in standard COBOL. It is possible that a conforming compilation group will not be translated successfully. Translation may be unsuccessful due to factors other than lack of conformance of a compilation group.NOTE These factors can include the use of optional, processor-dependent, or implementor-defined language elements and the limits of an implementation.
4.6 Relationship of a conforming run unit to a conforming implementationThe execution of a run unit composed of runtime modules resulting from translation of conforming compilation units is defined only to the extent specified in standard COBOL. It is possible that a conforming run unit will not execute successfully. Execution may be unsuccessful due to factors other than lack of conformance of a run unit.NOTE These factors can include the logical incorrectness of the compilation units, errors in the data upon which the run unit operates, and the limits of an implementation.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 27

5 Description techniques

5.1 GeneralThe techniques used to describe standard COBOL are:— General formats— Rules— Arithmetic expressions— Informal description
5.2 General formats

5.2.1 GeneralGeneral formats specify the syntax of the elements of standard COBOL and the sequence of arrangement of those elements.The words, phrases, clauses, punctuation, and operands in each general format shall be written in the compilation group in the sequence given in the general format, unless otherwise specified by the rules of that format.When more than one arrangement exists for a specific language construct, the general format is separated into multiple formats that are numbered and named.Elements used in depicting general formats are:— Keywords— Optional words— Operands— Level numbers— Options— Brackets— Braces— Choice indicators— Ellipses— Punctuation— Special characters— Meta-terms that refer to other formats
5.2.2 KeywordsKeywords are reserved words or context-sensitive words. They are shown in uppercase and underlined in general formats. They are required in order to select the functionality associated with that keyword, subject to the conventions specified in 5.2.6, Options, and syntax rules specified for the general format.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

28 ©ISO/IEC 2023

5.2.3 Optional wordsOptional words are reserved words or context-sensitive words. They are shown in uppercase and not underlined in general formats. They may be written to add clarity when the clause or phrase in which they are defined is written in the source unit.
5.2.4 OperandsAn operand is an expression, a literal, or a reference to data or an exception condition. Operands are shown in lowercase and represent values or identification of items, conditions, or objects that the programmer supplies when writing the source unit.Any term listed below refers to an instance of the corresponding element as described in the text referenced under the column labeled 'described in'. Such instances of the term are represented in lower-case and suffixed with a number (n = 1, 2, ...) for unique reference.

NOTE When the term data-name-n is used in a general format or syntax rule, then reference-modification is not permitted, while it is permitted when the term identifier-n is used.
5.2.5 Level numbersSpecific level numbers appearing in general formats are required to be specified when the formats in which they appear are written in the source unit. Level number forms 1, 2, ..., and 9, may be written as 01, 02, ..., 09, respectively.

Operand type Described in Term (n = 1, 2, 3, ...)Argument 15.3, Arguments argument-nExpression 8.8, Expressions arithmetic-expression-n boolean-expression-n conditional-expression-nInteger 5.5, Integer operands integer-nLiteral 8.3.3, Literals literal-nReference 8.4, ReferencesUser-defined word, including qualification and subscripting if needed 8.3.2.2, User-defined words 8.4.2.2, Qualification 8.4.2.3, Subscripts Any of the types listed in 8.3.2.2 suffixed by -n
Identifier 8.4.3.1, Identifier identifier-nException name 14.6.13.1.6, Exception-names and exception conditions exception-name-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 29

5.2.6 Options

5.2.6.1 GeneralOptions are indicated in a general format by vertically stacking alternative possibilities within brackets, braces, or choice indicators. An option is selected by specifying one of the possibilities from a stack of alternative possibilities or by specifying a unique combination of possibilities from a series of brackets, braces, or choice indicators.
5.2.6.2 BracketsBrackets, [], enclosing a portion of a general format indicate that the syntax element contained within the brackets or one of the alternatives contained within the brackets may be explicitly specified or that portion of the general format may be omitted. No default is implied for the omitted element.
5.2.6.3 BracesBraces, { }, enclosing a portion of a general format indicate that the syntax element contained within the braces or one of the alternatives contained within the braces shall be explicitly specified or is implicitly selected. If one of the alternatives contains only optional words, that alternative is the default and is selected unless another alternative is explicitly specified.
5.2.6.4 Choice indicatorsChoice indicators are a pair of bars, |, that enclose a portion of a general format. When enclosed by braces, one or more of the alternatives contained within the choice indicators shall be specified, but any single alternative shall be specified only once. When enclosed by brackets, zero or more of the alternatives contained within the choice indicators shall be specified, but any single alternative may be specified only once. The pair of bars comprising the choice indicator shall be enclosed either by brackets or braces. The alternatives may be specified in any order.
5.2.7 EllipsesIn the general formats, the ellipsis represents the position at which the user elects repetition of a portion of a format. The portion of the format that may be repeated is determined as follows: given an ellipsis in a format, scanning right to left, determine the right bracket or right brace delimiter immediately to the left of the ellipsis; continue scanning right to left and determine the logically matching left bracket or left brace delimiter; the ellipsis applies to the portion of the format between the determined pair of delimiters.NOTE In text other than general formats, the ellipsis (...) shows omission of a word or words when such omission does not impair comprehension. This is the conventional meaning of the ellipsis, and the use becomes apparent in context.
5.2.8 PunctuationThe separators comma and semicolon may be used anywhere the separator space is used in general formats and other syntactic specifications. In the compilation group, these separators are interchangeable.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

30 ©ISO/IEC 2023

The separator period, when specified in a general format, is required when that format is used.
5.2.9 Special characters Special character words and separators that appear in formats, although not underlined, are required when such portions of the formats are used.
5.2.10 Meta-termsMeta-terms appear in lowercase in general formats and are the names of subsections of general formats. Subsections are specified below the main format and are introduced by the phrase 'where x is:', with x replaced by the meta-term.
5.3 Rules

5.3.1 GeneralExcept for intrinsic functions, rules are categorized as syntax rules and general rules. Intrinsic functions have argument rules and returned value rules instead.
5.3.2 Syntax rulesSyntax rules supplement general formats, identify equivalent words, and define or clarify the order in which words or elements may be written to form larger elements such as phrases, clauses, or statements. Syntax rules may also impose restrictions on individual words or elements, relax restrictions implied by words or elements, or define a term that may be used in the remaining syntax rules.The rules of the PICTURE clause specified in 13.18.40.6, Precedence rules, are syntax rules.When syntax rules specify that a word is synonymous with, an abbreviation for, or equivalent to another word (or words), those words may be written interchangeably and have the same meaning.
5.3.3 General rulesA general rule defines or clarifies the meaning or relationship of meanings of an element or set of elements. It is used to define or clarify the semantics of the statement and the effect that it has on either execution or compilation, and it may define a term that may be used in the remaining general rules.The rules of the PICTURE clause specified in 13.18.40.5, Editing rules, are General rules.
5.3.4 Argument rulesArgument rules specify requirements, constraints, or defaults associated with arguments to intrinsic functions.
5.3.5 Returned value rulesReturned value rules define how the arguments are used to derive the result of an intrinsic function.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 31

5.4 Arithmetic expressions

5.4.1 GeneralSome rules contain arithmetic expressions that specify part or all of the results of the COBOL syntax. In presenting the arithmetic expressions, the following additional notation, or different meaning for notation, is used.
5.4.2 Textually subscripted operandsWhen an operand is textually subscripted, as operand-jn, the term 'operand-j' identifies a specific operand and 'n' refers to the nth position or occurrence of operand-j.NOTE An example is in the returned value rules for 15.74, PRESENT-VALUE function.
5.4.3 EllipsesEllipses show that the number of terms and operators is variable.
5.5 Integer operands1) When the term 'integer-n' (n = 1, 2, ...) is used in a general format and associated rules, it refers to a fixed-point integer literal that shall be unsigned and nonzero unless otherwise specified in the associated rules.2) When the term 'integer' is used as a constraint for an operand in a syntax rule, thena) if that operand is a literal, it shall be an integer literal, as defined in 8.3.3.3.2, Fixed-point numeric literals;b) if that operand is a data-name or an identifier, it shall reference one of the following:1. an integer intrinsic function,2. a fixed-point numeric data item, other than an intrinsic function, whose description does not include any digit positions to the right of the radix point.3) When the term 'integer' is used as a constraint for an operand in a general rule, that operand shall evaluate at runtime as follows:a) If native arithmetic is in effect, the implementor shall define when the operand represents an integer.b) If any mode of standard arithmetic is in effect, the operand shall be equal to a standard intermediate data item whose form corresponds to the form of arithmetic that is in effect and whose content has the unique value zero or whose decimal fixed-point representation contains only zeros to the right of the decimal point.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

32 ©ISO/IEC 2023

5.6 Informal descriptionSubstantial parts of the COBOL specification are described informally in text, tables, and diagrams other than general format diagrams. These parts normally specify semantics as described in 5.3.3, General rules, but may also include syntactical requirements in addition to those described in 5.2, General formats, and 5.3.1, General. Syntactical requirements are distinguished from semantics by their characteristic of specifying rules for writing source code, as opposed to behavior.
5.7 Hyphens in textA hyphen appearing at the end of a line of text is part of the character-string or word it divides. Hyphens are not added to divide character-strings or words across lines.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 33

6 Reference format

6.1 GeneralReference format specifies the conventions for writing COBOL source text and library text. COBOL provides two reference formats: free-form reference format and fixed-form reference format. The two types of reference format may be mixed within and between source text and library text by use of SOURCE FORMAT compiler directives. The default reference format of a compilation group is fixed-form.The following rules apply to the indicated reference formats:1) Fixed-form and free-forma) Reference format is described in terms of character positions on a line on an input-output medium.b) A COBOL compiler shall accept source text and library text written in reference format.c) The implementor shall specify the meaning of lines and character positions.d) For purposes of analyzing the text of a compilation group, the first character-string of a compilation group is treated as though it were preceded by a separator space and the last character-string of a compilation group is treated as though it were followed by a separator space.2) Fixed-forma) A COBOL compiler shall process fixed-form reference format lines as though the lines had been logically converted from fixed form to free form as described in 6.5, Logical conversion.b) After logical conversion, the equivalent free-form lines shall meet the requirements of free-form reference format, except that lines may be longer and all characters of the computer's coded character set shall be retained in alphanumeric and national literals. (See rule 3b.)3) Free-forma) The number of character positions on a line may vary from line to line, ranging from a minimum of 0 to a maximum of 255.b) The implementor shall specify any control characters that terminate a free-form line, and whether such control characters may be specified in comments and in the content of alphanumeric and national literals.
6.2 Indicators

6.2.1 GeneralIndicators are instructions to the compiler for interpreting reference format. Each indicator is classified as either a fixed indicator or a floating indicator.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

34 ©ISO/IEC 2023

6.2.2 Fixed indicatorsFixed indicators may be specified in the indicator area of fixed-form reference format as described in 6.3, Fixed-form reference format. The following are fixed indicators:Character Indicator name Indicates* comment indicator a comment line/ comment indicator a comment line with page ejection- (hyphen) continuation indicator a continuation linespace source indicator any line that is not a comment line or a continuation lineNOTE 1 Use of the hyphen as a fixed continuation indicator is an obsolete feature.Fixed indicators are characters in the implementor-defined coded character set or sets used for fixed-form reference format, and are not COBOL characters from the COBOL character repertoire.NOTE 2 This is significant in that equivalence of alphanumeric and national characters is not required for fixed indicators, nor is it precluded.
6.2.3 Floating indicators

6.2.3.1 GeneralFloating indicators may be used in fixed-form or free-form reference format. The following COBOL character-strings are floating indicators:Character-string Indicator name Indicates*> comment indicator 1) a comment line when specified as the first character-string in the program-text area; 2) an inline comment when specified following one or more character-strings in the program-text area, subject to the additional rules in 6.2.3.2, Syntax rules.>> compiler directive a compiler-directive line when followed by a compiler- directive indicator word - with or without an intervening space, subject to additional rules in 7.3, Compiler directives."- literal continuation continuation of a literal when specified in an unterminated '- indicator literal with the same quotation symbol in its opening delimiter, subject to additional rules in 6.2.3.2, Syntax rules.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 35

6.2.3.2 Syntax rules1) For purposes of analyzing the text of a compilation group, a space is implied immediately following a floating comment indicator.2) The floating comment indicator of an inline comment shall be preceded by a separator space, and may be specified wherever a separator space may be specified, except:a) as the separator space preceding a floating comment indicatorb) following a floating literal continuation indicator.3) All the characters forming a multiple-character floating indicator shall be specified on the same line.4) A floating literal continuation indicator shall be specified only for an alphanumeric, boolean, or national literal. A given literal shall not be continued with more than one form of continuation.5) A floating literal continuation indicator shall not be specified on a line that contains a fixed literal continuation indicator.6) For a continued alphanumeric, boolean, or national literal, the first nonblank character of each continuation line shall be the quotation symbol used in the opening delimiter of the literal.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

36 ©ISO/IEC 2023

6.3 Fixed-form reference format

6.3.1 GeneralThe format of a fixed-form reference format line is depicted in Figure 1 — Fixed-form reference format.
Figure 1 — Fixed-form reference format

Margin L is immediately to the left of the leftmost character position of a line.Margin C is between the 6th and 7th character positions of a line.Margin A is between the 7th and 8th character positions of a line.Margin R is immediately to the right of the rightmost character position of the program-text area. The rightmost character position of the program-text area is a fixed position defined by the implementor.The sequence number occupies six character positions (1-6), and is between margin L and margin C.The indicator area is the 7th character position of a line.The program-text area begins in character position 8 and terminates with the character position immediately to the left of margin R.
6.3.2 Sequence number areaThe sequence number area may be used to label a line of source text or library text. The content of the sequence number area is defined by the user and may consist of any character in the computer's coded character set. There is no requirement that the content of the sequence number area appear in any particular sequence or be unique.
6.3.3 Indicator areaThe indicator area identifies the type of a source line in accordance with the indicators specified in 6.2.2, Fixed indicators.

Sequence Number Program-text AreaIndicator Area

MarginL MarginC MarginA MarginR1 2 3 4 5 6 7 8 9 10 11 ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 37

6.3.4 Program-text areaThe program-text area may contain:1) Comment-text of a comment line when the indicator area contains a fixed comment indicator.2) Any of the following or combinations of the following, subject to further syntax specifications, when the indicator area contains a continuation indicator or a source indicator: — character-strings (COBOL words)— separators— comments— floating indicators.3) All spaces.
6.3.5 Continuation of linesAny entry, sentence, statement, clause, phrase, or pseudo-text consisting of more than one character-string may be continued by starting subsequent COBOL words, literals, or picture character-strings in the program-text area of a subsequent line.Continuation of an alphanumeric, boolean, or national literal is indicated when either:1) A line terminates within an alphanumeric or boolean literal without a closing delimiter and the next line that is not a comment line or a blank line contains a fixed continuation indicator; NOTE continuation of literals using the fixed continuation indicator is an obsolete feature.2) Or a line terminates within an alphanumeric, boolean, or national literal that ends with a floating literal continuation indicator.In the case of continuation with a fixed continuation indicator, any spaces at the end of the fixed-form continued line are part of the literal.In the case of continuation with either a fixed or floating literal continuation indicator, the next line that is not a comment line or a blank line is the continuation line. The first non-space character in the program-text area of the continuation line shall be a quotation symbol matching the quotation symbol used in the opening delimiter. The continuation starts with the character immediately after the quotation symbol in the continuation line.National literals may be continued only with a floating literal continuation indicator.All characters composing any multiple-character separator or multiple-character indicator shall be specified on the same line. All characters forming an invocation operator shall be specified on the same line.Comment lines and blank lines may be interspersed among lines containing the parts of a literal.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

38 ©ISO/IEC 2023

If there is no fixed continuation indicator in a line, a space is implied before the first nonblank character in the line for purposes of analyzing the text of the compilation group.
6.3.6 Blank linesA blank line is one that contains only space characters between margin C and margin R. A blank line may be written as any line of a compilation group.
6.3.7 Comments

6.3.7.1 GeneralA comment consists of a comment indicator followed by comment-text. Any combination of characters from the compile-time computer's coded character set may be included in comment-text.Comments serve only as documentation and have no effect on the meaning of the compilation group.A comment may be a comment line or an inline comment.
6.3.7.2 Comment linesA comment line is identified by either a fixed comment indicator or a floating comment indicator. All characters following the comment indicator up to margin R are comment-text. A comment line may be written as any line of a compilation group.If a source listing is being produced, a comment line identified by the fixed comment indicator slant (/) causes page ejection followed by printing of the comment line; comments identified by the fixed comment indicator asterisk (*) are printed at the next available line position of the listing.
6.3.7.3 Inline commentsA floating comment indicator preceded by one or more character-strings in the program-text area identifies an inline comment. All characters following the floating comment indicator up to margin R are comment-text. An inline comment may be written on any line of a compilation group except on a line that contains a floating literal continuation indicator.
6.4 Free-form reference format

6.4.1 GeneralIn free-form reference format, the source or library text may be written anywhere on a line, except that there are specific rules for comments and continuation.The indicators specified in 6.2.3, Floating indicators, identify specific elements of a compilation group. The entire free-form line constitutes the program-text area of the line.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 39

6.4.2 Continuation of linesAny entry, sentence, statement, clause, phrase, or pseudo-text consisting of more than one character-string may be continued by writing some of the character-strings and separators that constitute it on successive lines. The last nonblank character of each line is treated as if it were followed by a space.Alphanumeric literals, boolean literals, and national literals may be continued across lines. The line being continued is called the continued line; subsequent lines are called continuation lines. When such a literal is incomplete at the end of a line, the incomplete portion of the literal shall be terminated by a floating continuation indicator, as defined in 6.2.3, Floating indicators. The continuation indicator may optionally be followed by one or more spaces. The first nonblank character on the continuation line shall be a quotation symbol matching the quotation symbol used in the opening delimiter; the first character after the quotation symbol is the beginning character of the continuation of the literal. At least one alphanumeric character, national character, or hexadecimal digit of the literal content shall be specified on the continued line and on each continuation line.All characters composing any multiple-character separator or multiple-character indicator shall be specified on the same line. A pair of quotation symbols indicating a single quotation symbol within a literal shall be specified on the same line.Comment lines and blank lines may be interspersed among lines containing the parts of a literal.
6.4.3 Blank linesA blank line is one that contains nothing but space characters or is a line with zero character positions. A blank line may appear anywhere in a compilation group.
6.4.4 Comments

6.4.4.1 GeneralA comment consists of a comment indicator followed by comment-text. All characters following the comment indicator up to the end of the line are comment-text.Any combination of characters from the compile-time computer's coded character set may be included in comment-text, except as indicated in Clause 6, Reference format, rule 3b.Comments serve only as documentation and have no effect on the meaning of the compilation group. A comment may be a comment line or an inline comment.
6.4.4.2 Comment linesA comment line is identified by a floating comment indicator as the first character-string on a line. A comment line may be written as any line in a compilation group.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

40 ©ISO/IEC 2023

6.4.4.3 Inline commentsA floating comment indicator preceded by one or more character-strings on a line identifies an inline comment. An inline comment may be written on any line of a compilation group except on a line that contains a floating literal continuation indicator.
6.5 Logical conversionSource text and library text in fixed-form reference format are logically converted to free-form reference format before the application of replacing and conditional compilation actions. Continued and continuation lines in fixed format and in free format are concatenated to remove continuation indicators, and comments and blank lines are removed from both formats. There is no restriction on the maximum line length of the free-format text resulting from logical conversion.NOTE Fixed-form reference format is logically converted during compilation to free-form to simplify understanding of other rules of the language; for example, the COPY statement with the REPLACING phrase and the REPLACE statement. An implementor does not have to perform an actual conversion as long as the effect is as though it were performed. The rules of reference format and text manipulation apply regardless of whether there is or is not an actual conversion.The rules of logical conversion are applied to each line of a compilation group in the order that lines of source text and library text are obtained by the compiler. Lines are examined sequentially beginning with the first line of the compilation group and continuing until the end of the compilation group is reached. The resultant logically-converted compilation group is created in free-form reference format as follows:1) If the line is a SOURCE FORMAT directive, the reference format mode is determined and the SOURCE FORMAT directive line is logically discarded.2) If the line is a comment line or a blank line, that line is logically discarded.3) If the line contains an inline comment, the inline comment is replaced by spaces and processing of that line continues.4) If the line is a fixed-form or free-form line that contains a floating literal continuation indicator, the end of the program text area is set to immediately follow the character preceding the continuation indicator. The continuation indicator and any following characters are logically discarded, and processing of that line continues.5) If the line is a fixed-form line, contains a source indicator, and is not a continuation line, the program text area of that line is copied to the resultant compilation group.6) If the line is a fixed-form continuation line identified by a fixed continuation indicator:a) if the continued string is an alphanumeric or boolean literal, the content of the program-text area, beginning with the first character after the initial quotation symbol, is appended immediately to the right of the last character in the latest logical line of the resultant compilation group.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 41

b) otherwise, the content of the program-text area, beginning with the first non-space character, is appended immediately to the right of the last character in the latest logical line of the resultant compilation group.7) If the line is a free-form line and is not a continuation line, that line is copied to the resultant compilation group.8) If the line is a fixed-form or free-form continuation line that follows a line continued with a floating literal continuation indicator, the content of the program-text area, beginning with the first character after the initial quotation symbol, is appended immediately to the right of the last character in the latest logical line of the resultant compilation group.9) The next input line is obtained and processing iterates at step 1.At the end of the compilation group, processing continues with the resultant logically-converted compilation group. The implementor shall define the effect on the source listing, if any, of logical conversion.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

42 ©ISO/IEC 2023

7 Compiler directing facility

7.1 GeneralThe compiler directing facility consists of compiler directing statements for text manipulation, compiler directives for text manipulation, and compiler directives for specifying compilation options.The actions of compiler directing statements and compiler directives occur in two logical stages of compilation group processing — the text manipulation stage and the compilation stage.The text manipulation stage accepts an initial compilation group, performs modifications specified by COPY and REPLACE statements and conditional compilation directives, and substitutes compilation variables into constant entries. The result is a structured compilation group for processing by the compilation stage.The compilation stage completes the compilation process utilizing the structured compilation group.The following are the compiler directing statements and compiler directives and the stage during which their actions take place:Compiler directing statements StageCOPY statement Text manipulationSUPPRESS phrase Implementor-definedREPLACE statement Text manipulationCompiler directives Stage CALL-CONVENTION CompilationCOBOL-WORDS Text-manipulationDEFINE Text-manipulationDISPLAY Implementor definedEVALUATE Text-manipulationFLAG-02 CompilationFLAG-14 CompilationIF Text-manipulationIMP Implementor-definedLEAP-SECOND CompilationLISTING Implementor-definedPAGE Implementor-definedPOP Text-manipulationPROPAGATE CompilationPUSH Text-manipulationREF-MOD-ZERO-LENGTH CompilationSOURCE FORMAT Text-manipulationTURN CompilationThe implementor defines the stage during which actions associated with listings, if any, take place.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 43

The substitution of compilation-variable values into constant entries occurs in the text manipulation stage. The manner and time of expansion of parameterized classes and parameterized interfaces is defined by the implementor, except that it occurs after the text manipulation stage of processing.
7.2 Text manipulation

7.2.1 GeneralThe text manipulation stage of compilation group processing accepts source lines from source text and library text, selectively includes source lines through conditional compilation, and modifies text to produce a structured compilation group.The following elements and the separators required to distinguish them shall be syntactically correct in the initial source text and library text:— COPY statements— compiler directives— alphanumeric, boolean, and national literals— fixed and floating indicators— constant entries specifying a FROM phraseREPLACE statements shall be syntactically correct after the action of the replacing phrase of the COPY statement. Other indicators, language elements, and separators need not be syntactically correct until the completion of the text manipulation stage.Text manipulation consists of processes acting on the lines of source text and library text such that the processes take effect in a specific order. An implementor may optimize the actual processing and interactions in any manner as long as the final result is the same. The following processes are applied in order:Step 1: An expanded compilation group is created in logical free-form reference format — input lines are accepted sequentially; logically converted to free-form reference format as specified in 6.5, Logical conversion; and placed in the expanded compilation group. Library text identified in COPY statements is incorporated; replacing actions associated with the REPLACING phrase of the COPY statement are deferred to processes associated with step 2. COPY statements and their incorporated text shall be identifiable in the expanded compilation group for purposes of any logically subsequent processing associated with a REPLACING phrase.Lines that appear in the false path of an IF or EVALUATE directive, including library text identified in COPY statements, may be omitted from the expanded compilation group. SOURCE FORMAT directives in the false path shall be processed to correctly interpret input lines.NOTE Recognition of true and false paths during logical conversion is neither required nor precluded.The resulting lines constitute an expanded compilation group.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

44 ©ISO/IEC 2023

Step 2: A conditionally-processed compilation group is created — the expanded compilation group is read and the following compiler directives and substitutions are processed in the order encountered in the expanded compilation group:a) DEFINE, IF, and EVALUATE directivesb) substitution of compilation-variable values into constant entriesc) Saving and restoring directives with PUSH and POP directivesd) the replacing actions of COPY statements.The resulting lines constitute a conditionally-processed compilation group.Step 3: The conditionally-processed compilation group is read and the replacing actions of REPLACE statements are applied in order.Step 4: The results of Step 3 are read, and the actions of the COBOL-WORDS directive are applied in order.The resulting lines constitute a structured compilation group.References to a compilation group after text manipulation processing are to the structured compilation group, which contains the lines to be used in the compilation stage.
7.2.2 Text manipulation elements

7.2.2.1 GeneralLanguage elements referenced and not defined in Clause 7, Compiler directing facility, have the meaning defined in Clause 8, Language fundamentals.
7.2.2.2 Compiler directing statementsThe compiler directing statements are the COPY statement and the REPLACE statement.
7.2.2.3 Source text and library textSource text is the primary input to the compiler for a single compilation group. Library text is secondary input to the compiler as a result of processing a COPY statement.The source text and library text processed by text manipulation consists of indicators, character-strings, comments, and separators. A character-string is either a text-word or the word 'COPY'.
7.2.2.4 Pseudo-textPseudo-text is an operand in the REPLACE statement and in the REPLACING phrase of the COPY statement. Pseudo-text may be any sequence of zero or more text-words, comments, and the separator space bounded by, but not including, pseudo-text delimiters.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 45

The opening pseudo-text delimiter and the closing pseudo-text delimiter consist of the two contiguous COBOL characters '=='.
7.2.2.5 Text-wordsA text-word is a character-string, other than a comment or the COBOL word 'COPY', in source text or in library text that constitutes an element processed by text manipulation. A text-word may be one of the following:1) a separator, except for: a space; a pseudo-text delimiter; and the opening and closing delimiters for alphanumeric, boolean, and national literals. In determining which character sequences form text-words, the colon, the right parenthesis, and the left parenthesis characters, in any context except within alphanumeric or national literals, are treated as separators;2) an alphanumeric, boolean, or national literal including the opening and closing delimiters that bound the literal;3) any other character or sequence of contiguous characters from the compile-time coded character set, bounded by separators. The implementor may prohibit the use of one or more characters from outside the COBOL character repertoire in, or as, text-words.NOTE The contexts in which characters from outside the COBOL character repertoire can be used in elements of COBOL syntax are very limited. Because the syntactic validity of elements or constructs is determined after the completion of all text manipulation, the introduction of non-COBOL characters into such elements or constructs through the action of COPY and REPLACE can have unexpected or undesirable results.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

46 ©ISO/IEC 2023

7.2.3 COPY statement

7.2.3.1 GeneralThe COPY statement incorporates library text into a COBOL compilation group.
7.2.3.2 General format

7.2.3.3 Syntax rules1) A COPY statement may be specified anywhere in source text or in library text that a character-string or a separator, other than the closing delimiter of a literal, may appear except that a COPY statement shall not appear within a COPY statement.2) A COPY statement shall be preceded by a space except when it is the first statement in a compilation group.3) Within one COBOL library, each text-name shall be unique.4) A concatenation expression or figurative constant shall not be specified for literal-1, or literal-2.5) Literal-1 and literal-2 shall be alphanumeric literals. The allowable value of literal-1 and literal-2 is defined by the implementor.6) Pseudo-text-1 shall contain one or more text-words, at least one of which shall be neither a separator comma nor a separator semicolon.7) Pseudo-text-2 shall contain zero, one, or more text-words.8) Character-strings within pseudo-text-1 and pseudo-text-2 may be continued in accordance with the rules of reference format. NOTE If a text word within Pseudo-text is a literal, then it can be continued using the rules for literal continuation.

COPY literal-1text-name-1

 OFIN

 literal-2library-name-1

 [SUPPRESS PRINTING]

 REPLACING == pseudo-text-1 == BY == pseudo-text-2 ==
LEADINGTRAILING

 == partial-word-1 == BY == partial-word-2 ==

 .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 47

9) The length of a text-word within pseudo-text and within library text shall be from 1 through 65,535 character positions.10) Compiler directive lines shall not be specified within pseudo-text-1, pseudo-text-2, partial-word-1, or partial-word-2.11) Partial-word-1 shall consist of one text-word.12) Partial-word-2 shall consist of zero or one text-word.13) An alphanumeric, boolean, or national literal shall not be specified as partial-word-1 or partial-word-2.
7.2.3.4 General rules1) Text-name-1 or literal-1 identifies the library text to be processed by the COPY statement.2) Library-name-1 names a resource that shall be available to the compiler and shall provide access to the library text referenced by text name-1.3) The implementor shall define the rules for locating the library text referenced by text-name-1 or literal-1. When neither library-name-1 nor literal-2 is specified, a default COBOL library is used. The implementor defines the mechanism for identifying the default COBOL library.4) If the SUPPRESS phrase is specified, library text incorporated as a result of COPY statement processing is not listed. If a listing is being produced, the COPY statement itself is listed.5) At the completion of copying the library text into the compilation group, the LISTING directive that is in effect for the COPY statement itself is considered to be in effect, regardless of any LISTING directives in the library text.6) The effect of processing a COPY statement is that the library text associated with text-name-1 or the value of literal-1 is copied into the compilation group, logically replacing the entire COPY statement beginning with the reserved word COPY and ending with the separator period, inclusive.7) If the REPLACING phrase is not specified, the library text is included in the resultant text unchanged.8) If the REPLACING phrase is specified, library text is modified during creation of the structured compilation group that is described in 7.2, Text manipulation. Each matched occurrence of pseudo-text-1 or partial-word-1 in the library text is replaced by the corresponding pseudo-text-2 or partial-word-2 in accordance with subsequent rules of the COPY statement.9) The comparison operation to determine text replacement occurs in the following manner:a) The leftmost library text-word that is not a separator comma or a separator semicolon is the first text-word used for comparison. Any text-word or space preceding this text-word is copied into the resultant text. Starting with the first text-word for comparison and first pseudo-text-1 or partial-word-1 that was specified in the REPLACING phrase, the entire REPLACING phrase

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

48 ©ISO/IEC 2023

operand that precedes the reserved word BY is compared to an equivalent number of contiguous library text-words.b) Pseudo-text-1 matches the library text only if the ordered sequence of text-words that forms pseudo-text-1 is equal, character for character, to the ordered sequence of library text-words. When the LEADING phrase is specified, partial-word-1 matches the library text only if the contiguous sequence of characters that forms partial-word-1 is equal, character for character, to an equal number of contiguous characters starting with the leftmost character position of a library text-word. When the TRAILING phrase is specified, partial-word-1 matches the library text only if the contiguous sequence of characters that forms partial-word-1 is equal, character for character, to an equal number of contiguous characters ending with the rightmost character position of a library text-word.c) The following rules apply for the purpose of matching:1. Each occurrence of a separator comma, semicolon, or space in pseudo-text-1 or in the library text is considered to be a single space. Each sequence of one or more space separators is considered to be a single space.2. Each operand and operator of a concatenation expression is a separate text-word.3. Except when used in the non-hexadecimal formats of alphanumeric and national literals, each alphanumeric character is equivalent to its corresponding national character and each lowercase letter is equivalent to its corresponding uppercase letter, as specified for the COBOL character repertoire in 8.1.3, COBOL character repertoire.4. For alphanumeric, boolean and national literals:a. The two representations of the quotation symbol match when specified in the opening and closing delimiters of the literal, and those delimiters shall be in the same representation.b. In the content of the literal, two contiguous occurrences of the character used as the quotation symbol in the opening delimiter are treated as a single occurrence of that character.5. Each occurrence of a compiler directive line is treated as a single space.6. Comments, if any, are treated as a single space.NOTE Because comments are removed during logical conversion, none are expected.d) If no match occurs, the comparison is repeated with each next successive pseudo-text-1 or partial-word-1, if any, in the REPLACING phrase until either a match is found or there is no next successive REPLACING operand.e) When all the REPLACING phrase operands have been compared and no match has occurred, the leftmost library text-word is copied into the resultant text. The next successive library text-word

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 49

is then considered as the leftmost library text-word, and the comparison cycle starts again with the first pseudo-text-1 or partial-word-1 specified in the REPLACING phrase.f) When a match occurs between pseudo-text-1 and the library text, the corresponding pseudo-text-2, text-2, word-2, or literal-4 is placed into the resultant text. When a match occurs between partial-word-1 and the library text-word, the library text-word is placed into the resultant text with the matched characters either replaced by partial-word-2 or deleted when partial-word-2 consists of zero text-words. The library text-word immediately following the rightmost text-word that participated in the match is then considered as the leftmost text-word. The comparison cycle starts again with the first pseudo-text-1 or partial-word-1 specified in the REPLACING phrase.g) The comparison operation continues until the rightmost text-word in the library text has either participated in a match or been considered as a leftmost library text-word and participated in a complete comparison cycle.10) If the REPLACING phrase is specified, the library text shall not contain a COPY statement.11) The resultant text after replacement shall be in logical free-form reference format. When copying text-words into the resultant text, additional spaces may be introduced only between text-words where there already exists a space or at the end of a source line.12) If the REPLACING phrase is not specified, the library text may contain a COPY statement that does not include a REPLACING phrase. The implementation shall support nesting of at least 5 levels, including the first COPY statement in the sequence. The library text being copied shall not cause the processing of a COPY statement that directly or indirectly copies itself.13) The replacing action of a COPY statement shall not introduce a COPY statement, a SOURCE FORMAT directive, a comment, or a blank line.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

50 ©ISO/IEC 2023

7.2.4 REPLACE statement

7.2.4.1 GeneralThe REPLACE statement modifies text in a compilation group.
7.2.4.2 General formatFormat 1 (replacing):

Format 2 (off):
7.2.4.3 Syntax rules1) A REPLACE statement may be specified anywhere in source text or in library text that a character-string or a separator, other than the closing delimiter of a literal, may appear.2) A REPLACE statement shall be preceded by a space except when it is the first statement in a compilation group.3) Pseudo-text-1 shall contain one or more text-words, at least one of which shall be neither a separator comma nor a separator semicolon.4) Pseudo-text-2 shall contain zero, one, or more text-words.5) Partial-word-1 shall consist of one text-word.6) Partial-word-2 shall consist of zero or one text-word.7) An alphanumeric, boolean, or national literal shall not be specified as partial-word-1 or partial-word-2.8) Character-strings within pseudo-text-1 and pseudo-text-2 may be continued in accordance with the rules of reference format.9) The length of a text-word within pseudo-text shall be from 1 through 65,535 characters.

REPLACE [ALSO] == pseudo-text-1 == BY == pseudo-text-2 ==LEADINGTRAILING

 == partial-word-1 == BY == partial-word-2 ==

 .

REPLACE [LAST] OFF .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 51

10) Compiler directive lines shall not be specified within pseudo-text-1, pseudo-text-2, partial-word-1, or partial-word-2.
7.2.4.4 General rules1) In subsequent general rules of the REPLACE statement, 'source text' refers to the conditionally-processed compilation group.2) Pseudo-text-1 specifies the text to be replaced by pseudo-text-2.3) Partial-word-1 specifies the text to be replaced by partial-word-2.4) Once encountered, a format 1 REPLACE statement has one of three states:a) active, meaning it is the current statement in use for replace processing for the compilation group;b) inactive, meaning it is not currently in use for replace processing but is held in a last-in first-out queue, from which it may be popped and made active or canceled in accordance with the rules for subsequent REPLACE statements encountered in the compilation group; c) canceled, meaning it is removed from use for replace processing for the remainder of the compilation group or, if inactive, it is removed from the queue of inactive statements for the remainder of the compilation group.5) A REPLACE statement that is placed in the active state remains active until it is placed in the inactive state, it is canceled, or the end of the compilation group is reached, whichever occurs first.6) When there is no REPLACE statement in the active state:a) A format 1 REPLACE statement is placed in the active state at the point at which it is encountered in the compilation group. The ALSO phrase, if specified, has no effect.b) A format 2 REPLACE statement has no effect.7) When there is a REPLACE statement in the active state:a) A format 1 REPLACE statement with the ALSO phrase results in the following:1. the active REPLACE statement is made inactive and is pushed into the queue of inactive REPLACE statements. 2. The current REPLACE statement is expanded into a single REPLACE statement, without the ALSO phrase, having as its operands all the operands of the current statement followed by the operands of the most recent statement pushed into the queue of inactive REPLACE statements. The expanded REPLACE statement is placed in the active state.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

52 ©ISO/IEC 2023

b) A format 1 REPLACE statement without the ALSO phrase cancels the active REPLACE statement and cancels any REPLACE statements in the queue of inactive REPLACE statements. Then the current REPLACE statement is placed in the active state.c) A format 2 REPLACE statement with the LAST phrase cancels the active REPLACE statement and pops the last statement that was pushed into the queue of inactive REPLACE statements, if any. The popped statement, if any, is placed in the active state.d) A format 2 REPLACE statement without the LAST phrase cancels the active REPLACE statement and cancels all REPLACE statements in the queue of inactive REPLACE statements, if any.8) The comparison operation to determine text replacement begins with the text immediately following the REPLACE statement and occurs in the following manner:a) Starting with the leftmost source text-word and the first pseudo-text-1 or partial-word-1, pseudo-text-1 or partial-word-1 is compared to an equivalent number of contiguous source text-words.b) Pseudo-text-1 matches the source text if, and only if, the ordered sequence of text-words that forms pseudo-text-1 is equal, character for character, to the ordered sequence of source text-words. When the LEADING phrase is specified, partial-word-1 matches the source text-word only if the contiguous sequence of characters that forms partial-word-1 is equal, character for character, to an equal number of contiguous characters starting with the leftmost character position of that source text-word. When the TRAILING phrase is specified, partial-word-1 matches the source text-word only if the contiguous sequence of characters that forms partial-word-1 is equal, character for character, to an equal number of contiguous characters ending with the rightmost character position of that source text-word.c) The following rules apply for the purpose of matching:1. Each occurrence of a separator comma, semicolon, or space in pseudo-text-1 or in the source text is considered to be a single space. Each sequence of one or more space separators is considered to be a single space.2. Each operand and operator of a concatenation expression is a separate text-word.3. Except when used in the non-hexadecimal formats of alphanumeric and national literals, each alphanumeric character is equivalent to its corresponding national character and each lowercase letter is equivalent to its corresponding uppercase letter, as specified for the COBOL character repertoire in 8.1.3, COBOL character repertoire.4. For alphanumeric, boolean, and national literals:a. The two representations of the quotation symbol match when specified in the opening and closing delimiters of the literal and those delimiters shall be in the same representation.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 53

b. In the content of the literal, two contiguous occurrences of the character used as the quotation symbol in the opening delimiter are treated as a single occurrence of that character.5. Each occurrence of a compiler directive line is treated as a single space.6. Comments, if any, are treated as a single space.NOTE 1 Because comments are removed during logical conversion, none are expected.d) If no match occurs, the comparison is repeated with each next successive occurrence of pseudo-text-1 or partial-word-1, until either a match is found or there is no next successive occurrence of pseudo-text-1 or partial-word-1.e) When all occurrences of pseudo-text-1 or partial-word-1 have been compared and no match has occurred, the next successive source text-word is then considered as the leftmost source text-word, and the comparison cycle starts again with the first occurrence of pseudo-text-1 or partial-word-1.f) When a match occurs between pseudo-text-1 and the source text, the corresponding pseudo-text-2 replaces the matched text in the source text. When a match occurs between partial-word-1 and the source text-word, the matched characters of that source text-word are either replaced by partial-word-2 or deleted when partial-word-2 consists of zero text-words. The source text-word immediately following the rightmost text-word that participated in the match is then considered as the leftmost source text-word. The comparison cycle starts again with the first occurrence of pseudo-text-1 or partial-word-1.g) The comparison operation continues until the rightmost text-word in the source text that is within the scope of the REPLACE statement has either participated in a match or been considered as a leftmost source text-word and participated in a complete comparison cycle.9) The text produced as a result of processing a REPLACE statement shall not contain a COPY statement, a REPLACE statement, a SOURCE FORMAT directive, a comment, or a blank line.10) The text that results from the processing of a REPLACE statement shall be in logical free-form reference format. Text-words inserted into the resultant text as a result of processing a REPLACE statement are placed in accordance with the rules of free-form reference format. When inserting text-words of pseudo-text-2 into the resultant text, additional spaces may be introduced only between text-words where there already exists a space or a space is assumed.NOTE 2 A space is assumed at the end of a source line.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

54 ©ISO/IEC 2023

7.3 Compiler directives

7.3.1 GeneralCompiler directives specify options for use by the compiler, define compilation-variables, and control conditional compilation.
7.3.2 General format

7.3.3 Syntax rules1) A compiler directive shall be specified on one line, except for the EVALUATE and the IF directives for which specific rules are specified.2) A compiler directive shall be preceded only by zero, one, or more space characters.3) When the reference format is fixed-form, a compiler directive shall be written in the program-text area and may be followed only by space characters and an optional inline comment.4) When the reference format is free-form, a compiler directive may be followed only by space characters and an optional inline comment.5) A compiler directive is composed of the compiler directive indicator, optionally followed by the COBOL character space, followed by compiler-instruction. The compiler directive indicator shall be treated as though it were followed by a space if no space is specified after the indicator.6) Compiler-instruction is composed of compiler-directive words, system-names, and user-defined words as specified in the syntax of each directive. Compiler-directive words are identified in 8.12, Compiler-directive words.7) When a compiler-directive word is specified in the general format of a compiler directive, that compiler-directive word is reserved within the context of that directive.8) A compiler directive may be specified anywhere in a compilation group, in source text or in library text, excepta) as restricted by the rules for the specific compiler directive,b) within a source text manipulation statement,c) between the lines of a continued character-string.9) The compiler-directive word 'IMP' is reserved for use by the implementor. If the implementor defines the IMP directive, the syntax rules for that directive shall be implementor-defined.

>>compiler-instruction

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 55

NOTE >>IMP provides an optional place holder for all current and future implementor-defined directives. In this way the implementor can optionally support the use of >>IMP to indicate the start of one or more implementor-defined directives.10) A literal in a compiler directive shall not be specified as a concatenation expression, a figurative constant, or a floating-point numeric literal.
7.3.4 General rules1) A compiler directive line is not affected by the replacing action of a COPY statement or a REPLACE statement.2) Compiler directives are processed either in the text manipulation stage or the compilation stage of processing, as specified in 7.2, Text manipulation. The order of processing during the text manipulation stage is specified in 7.2, Text manipulation. During the compilation stage, compiler directives are processed in the order encountered in the structured compilation group.3) The state of compiler directives may be saved and restored with PUSH and POP directives. A ‘stack’ is maintained that the state of a directive may be pushed on to. A subsequent POP directive removes the item from the stack and restores the state of the directive to that when it was pushed.NOTE The PUSH/POP sequence is especially useful when using COPY to introduce text that contains directives that can already be specified earlier. Changes to them in the added text can be overridden by a subsequent POP directive so the remaining source text behaves as if the changes were not made.4) If the implementor defines the IMP directive, the general rules for that directive shall be implementor-defined.5) A compiler directive applies to all of the source text and library text that follows and is independent of execution flow.
7.3.5 Conditional compilationThe use of certain compiler directives provides a means of including or omitting selected lines of source code. This is called conditional compilation. The compiler directives that are used for conditional compilation are the DEFINE directive, the EVALUATE directive, and the IF directive. The DEFINE directive is used to define compilation variables, which may be referenced in the EVALUATE and IF directives in order to select lines of code that are to be compiled or are to be omitted during compilation. Compilation variables may be referenced in constant entries as specified in 13.10, Constant entry.
7.3.6 Compile-time arithmetic expressions

7.3.6.1 GeneralA compile-time arithmetic expression may be specified in the DEFINE and EVALUATE directives, in a constant conditional expression, and in a constant entry.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

56 ©ISO/IEC 2023

7.3.6.2 Syntax rules1) Compile-time arithmetic expressions shall be formed in accordance with 8.8.1, Arithmetic expressions, with the following exceptions:a) The exponentiation operator shall not be specified.b) All operands shall be fixed-point numeric literals or arithmetic expressions in which all operands are fixed-point numeric literals.c) The expression shall be specified in such a way that a division by zero cannot occur.2) The implementor shall define and document any rules restricting the precision and/or magnitude and/or range of permissible values for the intermediate results needed to evaluate the arithmetic expression. They shall also document which intermediate rounding method is used, if applicable
7.3.6.3 General rules1) The order of precedence and the rules for evaluation of compile-time arithmetic expressions are shown in 8.8.1, Arithmetic expressions. 2) The implementor shall define and document which mode of arithmetic is to be used when evaluating compile-time arithmetic. This may be their native mode of arithmetic or a standard mode of arithmetic or a mode unique for processing compile-time arithmetic expressions.NOTE If portability is desired, then it is recommended that one of the standard modes of arithmetic is used. If consistency with evaluating runtime arithmetic expressions is desired, then native or the default runtime arithmetic mode should be used. In some cases, the resources available at compile-time may lead the implementor to use another mode of arithmetic3) The final result of the arithmetic expression shall be truncated to the integer part of the value as specified in 15.49, INTEGER-PART function, and the resultant value shall be considered to be an integer numeric literal.
7.3.7 Compile-time boolean expressions

7.3.7.1 GeneralA compile-time boolean expression may be specified where allowed by the general format of an expression.
7.3.7.2 Syntax rule1) Compile-time boolean expressions shall be formed in accordance with 8.8.2, Boolean expressions, except that all operands shall be boolean literals or boolean expressions in which all operands are boolean literals.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 57

7.3.7.3 General rule1) The order of precedence and the rules for evaluation of compile-time boolean expressions are shown in 8.8.2, Boolean expressions.
7.3.8 Constant conditional expression

7.3.8.1 GeneralA constant conditional expression is a conditional expression in which the operands are a defined condition, a literal, or an arithmetic or boolean expression containing only literal terms. A defined condition tests whether a compilation-variable has a defined value.
7.3.8.2 Syntax rules1) A constant conditional expression shall be one of the following:a) A relation condition in which both operands are literals, arithmetic expressions containing only literal terms, or boolean expressions containing only literal terms. The condition shall be formed according to the rules in 8.8.4.2, Simple relation conditions. The following rules also apply:1. The operands shall be of the same category. An arithmetic expression is of the category numeric. A boolean expression is of the category boolean.2. If literals are specified and they are not numeric literals, the relational operator shall be 'IS EQUAL TO', 'IS NOT EQUAL TO', 'IS =', 'IS NOT =', or 'IS <>'.b) A boolean condition as specified in 8.8.4.3, Simple boolean condition, in which all operands are boolean literals.c) A defined condition.d) A complex condition as specified in 8.8.4.9, Complex conditions, formed by combining the above forms of simple conditions into complex conditions. Abbreviated combined relation conditions shall not be specified.2) An arithmetic expression in a constant conditional expression shall be formed in accordance with 7.3.6, Compile-time arithmetic expressions.3) A boolean expression in a constant conditional expression shall be formed in accordance with 7.3.7, Compile-time boolean expressions.
7.3.8.3 General rules1) Complex conditions are evaluated according to the rules in 8.8.4.9, Complex conditions.2) For a simple relation condition where the operands are not numeric or boolean, no collating sequence is used for the comparison. A character by character comparison for equality based on the

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

58 ©ISO/IEC 2023

binary value of each character's encoding is used. If the literals are of unequal length they are not equal.NOTE This means that uppercase and lowercase letters are not equivalent.
7.3.8.4 Defined condition

7.3.8.4.1 GeneralA defined condition tests whether a given compilation-variable is defined.
7.3.8.4.2 General format

7.3.8.4.3 Syntax rule1) Compilation-variable-name-1 shall not be the same as a compiler-directive word.
7.3.8.4.4 General rule1) A defined condition using the IS DEFINED syntax evaluates TRUE if compilation-variable-name-1 is currently defined.2) A defined condition using the IS NOT DEFINED syntax evaluates TRUE if compilation-variable-name-1 is not currently defined.

compilation-variable-name-1 IS [NOT] DEFINED

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 59

7.3.9 CALL-CONVENTION directive

7.3.9.1 GeneralThe CALL-CONVENTION directive instructs the compiler how to treat references to program-names and method-names and may be used to determine other details for interacting with a function, method, or program. This directive is processed during the compilation stage of processing.
7.3.9.2 General format

7.3.9.3 General rules1) The default for the CALL-CONVENTION directive is '>>CALL-CONVENTION COBOL'.2) The CALL-CONVENTION directive determines how program-names and method-names specified in subsequent INVOKE statements, inline method invocations, CALL statements, CANCEL statements, and program-address-identifiers are processed by the compiler. This directive applies when a program-name or method-name is referenced in those language constructs.a) When COBOL is specified, that program-name or method-name is treated as a COBOL word that maps to the externalized name of the method to be invoked or the program to be called, canceled, or referenced in the program-address-identifier, respectively, applying the same implementor-defined mapping rules as for a method-name or program-name for which no AS phrase is specified.b) When call-convention-name-1 is specified, that program-name or method-name is treated as a literal that maps to the externalized name of the method to be invoked or the program to be called, canceled, or referenced in the program-address-identifier, respectively, in a manner defined by the implementor.3) The CALL-CONVENTION directive may also be used by the implementor to determine other details needed to interact with a function, method, or program.

>>CALL-CONVENTION COBOLcall-convention-name-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

60 ©ISO/IEC 2023

7.3.10 COBOL-WORDS directive

7.3.10.1 GeneralThe COBOL-WORDS directive provides the facility to modify which words may and may not be used as reserved words, context-sensitive words, and function names. In addition, it allows the program to prohibit the use of specified user-defined names. This directive is processed during the text manipulation stage of processing.
7.3.10.2 General format

7.3.10.3 Syntax rules1) The COBOL-WORDS directive may be specified only before the first IDENTIFICATION DIVISION within a compilation group. There is no limit to the number of COBOL-WORDS directives that may be specified within a single compilation group.2) Each literal shall be an alphanumeric literal, shall not be specified in hexadecimal-alphanumeric format, shall not contain a space character, and shall be evaluated as case-insensitive.3) The content of literal-1, literal-3, and literal-4 shall be a reserved word, a context-sensitive word, or an intrinsic function name. The content of these literals shall not be a special-character word.4) The content of literal-2, literal-5, and literal-6 shall not be a reserved word, a context-sensitive word, nor an intrinsic function-name. The content of each of these literals shall be a COBOL word that meets the requirements for a user-defined data-name as specified in 8.3.2.2, User-defined words. 5) The same COBOL word shall not be contained in a literal in more than one COBOL-WORDS directive within a single compilation group.
7.3.10.4 General rules1) The content of each literal shall be processed as case-insensitive whenever the COBOL-WORDS directive is applied within a compilation group. Any use of an equated or substituted literal shall be case-insensitive when used syntactically as a COBOL word.2) When the EQUATE option is specified, the COBOL word that is the content of literal-2 shall be treated as a synonym for the COBOL word that is the content of literal-1, and may be used in any syntax requiring the use of the reserved word, context-sensitive word, or intrinsic function name that is the content of literal-1.

>>COBOL-WORDS EQUATE literal-1 WITH literal-2UNDEFINE literal-3SUBSTITUTE literal-4 BY literal-5RESERVE literal-6

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 61

3) When the UNDEFINE option is specified, the COBOL word that is the content of literal-3 shall no longer be reserved or restricted in any way, and may be used as a user-defined intrinsic name, data-name or any other user-defined word, and any syntax requiring the use of the COBOL word that is the content of literal-3 shall not be available for use in this compilation group.4) When the SUBSTITUTE option is specified, the COBOL word that is the content of literal-5 shall be used in any syntax where the COBOL word that is the content of literal-4 is documented as required or optional. The COBOL word that is the content of literal-4 may then be used as a user-defined word within this compilation group but the content of literal-4 shall no longer be a reserved word, a context-sensitive word, nor an intrinsic function name within this compilation group.5) When the RESERVE option is used, then the content of literal-6 shall not be used as a user-defined word within this compilation group.6) A COBOL-WORDS directive does not affect any Compiler directing statements or Compiler directives.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

62 ©ISO/IEC 2023

7.3.11 DEFINE directive

7.3.11.1 GeneralThe DEFINE directive specifies a symbolic name, called a compilation variable, for a particular literal value. This name may then be used in a constant conditional expression, an EVALUATE directive, or a constant entry. A compilation variable may be set to a value obtained by the compiler from the operating environment. This directive is processed during the text manipulation stage of processing.
7.3.11.2 General format

7.3.11.3 Syntax rules1) Compilation-variable-name-1 shall not be the same as a compiler-directive word.2) If a DEFINE directive specifies neither the OFF nor the OVERRIDE phrase, then either— compilation-variable-name-1 shall not have been declared previously within the same compilation group; or— the last previous DEFINE directive referring to compilation-variable-name-1 shall have been specified with the OFF phrase; or— the last previous DEFINE directive referring to compilation-variable-name-1 shall have specified the same value.3) Arithmetic-expression-1 shall be formed in accordance with 7.3.6, Compile-time arithmetic expressions.4) Boolean-expression-1 shall be formed in accordance with 7.3.7, Compile-time boolean expressions.
7.3.11.4 General rules1) In text that follows a DEFINE directive specifying compilation-variable-name-1 without the OFF phrase, compilation-variable-name-1 may be used in the compilation group in any compiler directive where a literal of the category associated with the name is permitted, in a defined condition, or in a constant entry where the FROM phrase is specified.

>> DEFINE compilation-variable-name-1 AS arithmetic-expression-1boolean-expression-1literal-1PARAMETER

 OVERRIDE

OFF

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 63

2) Following a DEFINE directive in which the OFF phrase is specified, compilation-variable-name-1 shall not be used except in a defined condition unless it is redefined in a subsequent DEFINE directive.3) If the OVERRIDE phrase is specified, compilation-variable-name-1 is unconditionally set to reference the value of the specified operand.4) If the PARAMETER phrase is specified, the value referenced by compilation-variable-name-1 is obtained from the operating environment by an implementor-defined method when the DEFINE directive is processed. If no value is made available from the operating environment, compilation-variable-name-1 is not defined.5) If the operand of the DEFINE directive consists of a single numeric literal, that operand is treated as a literal, not as an arithmetic-expression.6) If arithmetic-expression-1 is specified, arithmetic-expression-1 is evaluated according to 7.3.6, Compile-time arithmetic expressions, and compilation-variable-name-1 references the resultant value.7) If boolean-expression-1 is specified, boolean-expression-1 is evaluated according to 7.3.7, Compile-time boolean expressions, and compilation-variable-name-1 references the resultant value.8) If literal-1 is specified, compilation-variable-name-1 references literal-1.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

64 ©ISO/IEC 2023

7.3.12 DISPLAY directive

7.3.12.1 GeneralThe DISPLAY directive transfers data to the source listing or an implementor defined compile-time-device. The implementor defines the stage of processing for this directive.
7.3.12.2 General format

7.3.12.3 Syntax rules1) The DISPLAY directive shall begin on a new line and shall be specified entirely on that line.2) Arithmetic-expression-1 shall be formed in accordance with 7.3.6, Compile-time arithmetic expressions.3) Boolean-expression-1 shall be formed in accordance with 7.3.7, Compile-time boolean expressions.
7.3.12.4 General rules1) The DISPLAY directive causes the contents of each operand to be transferred to the source listing or compile-time-device-1 or both in the order listed. Any conversion of data required is defined by the implementor.2) If the compiler does not produce a source listing, the result of the DISPLAY directive is defined by the implementor, otherwise the data transfer shall take place irrespective of whether it is suppressed by the LISTING directive.3) If the PARAMETER phrase is specified, the value referenced by compilation-variable-name-1 is obtained from the operating environment by an implementor-defined method when the DISPLAY directive is processed. If no value is made available from the operating environment no transfer shall take place.4) When a DISPLAY directive contains more than one operand the values of the operands are transferred in the sequence in which the operands are encountered.5) If the UPON phrase is specified:

>>DISPLAY arithmetic-expression-1boolean-expression-1literal-1PARAMETER compilation-variable-name-1

 ...
UPON compile-time-device-1 ...LISTING

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 65

a) if LISTING is specified, data is transferred to the same device as that used for source listings.b) if compile-time-device-1 is specified, data is transferred to the device defined by the implementor for receiving that data.6) If the UPON phrase is not specified, the default is as if UPON LISTING were specified.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

66 ©ISO/IEC 2023

7.3.13 EVALUATE directive

7.3.13.1 GeneralThe EVALUATE directive provides for multi-branch conditional compilation. This directive is processed during the text manipulation stage of processing.
7.3.13.2 General formatFormat 1 (evaluate-value)

Format 2 (evaluate-truth)

7.3.13.3 Syntax rulesALL FORMATS1) For descriptive purposes in these syntax rules, operand-1 refers to literal-1, arithmetic-expression-1, or boolean-expression-1 in format 1 and to the TRUE keyword in format 2; operand-2 refers to literal-2, arithmetic-expression-2, or boolean-expression-2 in format 1 and to constant-conditional-expression-1 in format 2; and operand-3 refers to literal-3 or arithmetic-expression-3 in format 1.2) EVALUATE operand-1 shall begin on a new line and shall be specified entirely on that line.

>> EVALUATE literal-1arithmetic-expression-1boolean-expression-1

>> WHEN literal-2arithmetic-expression-2boolean-expression-2

 THROUGHTHRU

 literal-3arithmetic-expression-3

 text-1

>> WHEN OTHER text-2 >> END-EVALUATE

>> EVALUATE TRUE{ >>WHEN constant-conditional-expression-1 [text-1] } .. .>> WHEN OTHER text-2 >> END-EVALUATE

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 67

3) >>WHEN operand-2 [THROUGH operand-3] shall begin on a new line and shall be specified entirely on that line.4) Text-1 shall begin on a new line.5) >>WHEN OTHER shall begin on a new line and shall be specified entirely on that line.6) Text-2 shall begin on a new line.7) >>END-EVALUATE shall be specified on a new line and shall be specified entirely on that line.8) Text-1 and text-2 may be any kind of source lines, including compiler directives. Text-1 and text-2 may consist of multiple lines.9) Excluding text-1 and text-2, the phrases of a given EVALUATE directive shall all be specified in the same library text or all in source-text. A nested EVALUATE directive specified in text-1 or in text-2 is considered a new EVALUATE directive.FORMAT 110) Literal-1, arithmetic-expression-1, and boolean-expression-1 are selection subjects. The operands specified in the WHEN phrase are selection objects.11) All operands of one EVALUATE directive shall be of the same category. For this rule, an arithmetic expression is of category numeric and a boolean expression is of category boolean.12) If the THROUGH phrase is specified, all selection subjects and selection objects shall be of category numeric.13) The words THROUGH and THRU are equivalent.14) Arithmetic-expression-1, arithmetic-expression-2, and arithmetic-expression-3 shall be formed in accordance with 7.3.6, Compile-time arithmetic expressions.15) Boolean-expression-1 and boolean-expression-2 shall be formed in accordance with 7.3.7, Compile-time boolean expressions.16) Constant-conditional-expression-1 shall be formed in accordance with 7.3.8, Constant conditional expression.
7.3.13.4 General rulesALL FORMATS 1) Text-1 and text-2 are not part of the EVALUATE compiler directive line. Any text words in text-1 or text-2 that do not form a compiler directive line are subject to the matching and replacing rules of the COPY statement and the REPLACE statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

68 ©ISO/IEC 2023

FORMAT 12) If an operand of the EVALUATE directive consists of a single numeric literal, that operand is treated as a literal, not as an arithmetic-expression.3) Boolean-expression-1 and boolean-expression-2 are evaluated in accordance with 7.3.7, Compile-time boolean expressions.4) The selection subject is compared against the values specified in each WHEN phrase in turn as follows:a) If the THROUGH phrase is not specified, a TRUE result is returned if the selection subject is equal to literal-2, arithmetic-expression-2, or boolean-expression-2.b) If the THROUGH phrase is specified, a TRUE result is returned if the selection subject lies in the inclusive range determined by literal-2 or arithmetic-expression-2 and literal-3 or arithmetic-expression-3.If a WHEN phrase evaluates to TRUE, all lines of text-1 associated with that WHEN phrase are included in the resultant text. All lines of text-1 associated with other WHEN phrases in that EVALUATE directive and all lines of text-2 associated with a WHEN OTHER phrase are omitted from the resultant text.5) If no WHEN phrase evaluates to TRUE, all lines of text-2 associated with the WHEN OTHER phrase, if specified, are included in the resultant text. All lines of text-1 associated with other WHEN phrases are omitted from the resultant text.6) If the END-EVALUATE phrase is reached without any WHEN phrase evaluating to TRUE, and without encountering a WHEN OTHER phrase, all lines of text-1 associated with all WHEN phrases are omitted from the resultant text.7) If literal-1 is an alphanumeric or national literal, a character by character comparison for equality based on the binary value of each character's encoding is used. If the literals are of unequal length they are not equal.FORMAT 28) For each WHEN phrase in turn, the constant-conditional-expression is evaluated in accordance with 7.3.8, Constant conditional expression.If a WHEN phrase evaluates to TRUE, all lines of text-1 associated with that WHEN phrase are included in the resultant text. All lines of text-1 associated with other WHEN phrases of that EVALUATE directive and all lines of text-2 associated with a WHEN OTHER phrase are omitted from the resultant text.9) If no WHEN phrase evaluates to TRUE, all lines of text-2 associated with the WHEN OTHER phrase, if specified, are included in the resultant text. All lines of text-1 associated with other WHEN phrases are omitted from the resultant text.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 69

10) If the END-EVALUATE phrase is reached without any WHEN phrase evaluating to TRUE, and without encountering a WHEN OTHER phrase, all lines of text-1 associated with all WHEN phrases are omitted from the resultant text.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

70 ©ISO/IEC 2023

7.3.14 FLAG-02 directive

7.3.14.1 GeneralThe FLAG-02 directive specifies options to flag certain syntax for which the behavior might be incompatible between ISO 1989:2002 and ISO/IEC 1989:2014. This directive is processed during the compilation stage of processing.NOTE The FLAG-02 directive is an obsolete element in this Working Draft International Standard and is to be deleted from the next edition of standard COBOL
7.3.14.2 General format

7.3.14.3 Syntax rule1) The FLAG-02 directive may be specified only between clauses in divisions other than the procedure division and only between statements in the procedure division.
7.3.14.4 General rules1) The implementor shall provide a warning mechanism that flags the incompatibilities potentially affecting existing programs for the selected option, where the incompatibility is between the specifications in ISO/IEC 1989:2002, and ISO/IEC 1989:2014.2) If ON is explicitly or implicitly specified for an option, the warning mechanism is enabled for that option for all text that follows until the end of the compilation group is reached, a FLAG-02 directive is encountered that turns off all flagging options, or a FLAG-02 directive is encountered that turns off that option.3) If OFF is specified, flagging for the selected option or options is disabled.4) The word or words following FLAG-02 indicate the syntax to be diagnosed:a) ALL: All of the options apply.b) EC-PROGRAM-EXCEPTIONS: A TURN directive for EC-ALL, EC-PROGRAM, EC-PROGRAM-ARG-OMITTED. or EC-PROGRAM-NOT-FOUND shall be flagged if

>> FLAG-02
ALLEC-PROGRAM-EXCEPTIONSI-O-STATUS-07MOVE-TO-SAME-NAMERANGE-EXCEPTION-FOR-INDEXTERMINATE-WITH-VARYING

ONOFF

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 71

1. the source element calls any function, or2. the source element invokes any method.c) IO-STATUS-07: A CLOSE statement shall be flagged if it specifies either the WITH NO REWIND phrase or the UNIT phrase.d) MOVE-TO-SAME-NAME: A MOVE statement shall be flagged when the sending and receiving operands are described by the same data description entry, and:1. the operands are of category alphanumeric-edited, or2. the data description entry for the operands includes a subordinate OCCURS … DEPENDING clause, and the data item referenced by that OCCURS … DEPENDING clause is subordinate to the data description entry referenced by the operands.e) RANGE-EXCEPTION-FOR-INDEX: An index-assignment or index-arithmetic format SET statement that specifies an index as the receiving field shall be flagged when checking for EC-RANGE-INDEX is enabled.f) TERMINATE-WITH-VARYING: A TERMINATE statement shall be flagged if the report being terminated contains a VARYING clause.5) If the FLAG-02 directive is not specified, the default for all options is off.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

72 ©ISO/IEC 2023

7.3.15 FLAG-14 directive

7.3.15.1 GeneralThe FLAG-14 directive specifies options to flag certain syntax for which the behavior might be incompatible between the previous COBOL standard and this Working Draft International Standard. This directive is processed during the compilation stage of processing.
7.3.15.2 General format

7.3.15.3 Syntax rule1) The FLAG-14 directive may be specified only between clauses in divisions other than the procedure division and only between statements in the procedure division.
7.3.15.4 General rules1) The implementor shall provide a warning mechanism that flags the incompatibilities potentially affecting existing programs for the selected option, where the incompatibility is between the specifications in ISO/IEC 1989:2014, and this Working Draft International Standard.NOTE A complete list of changes that potentially affect existing programs is given in E.2, Substantive changes potentially affecting existing programs.2) If ON is explicitly or implicitly specified for an option, the warning mechanism is enabled for that option for all text that follows until the end of the compilation group is reached, a FLAG-14 directive

>> FLAG-14

ALL COMPILE-TIME-ARITHMETIC-EXPRESSIONSEVALUATEI-O-DECLARATIVEI-O-STATUS-04I-O-STATUS-07NUM-ED-ZERO-FIGCONSTREAD-PREVIOUSREF-MOD-ZERO-LENGTHVALUE EDITING–VALUE-FIG-CON-LENGTHVALUE-ZEROWRITE-END-OF-PAGE

ONOFF

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 73

is encountered that turns off all flagging options, or a FLAG-14 directive is encountered that turns off that option.3) If OFF is specified, flagging for the selected option or options is disabled.4) The word or words following FLAG-14 indicate the syntax to be diagnosed:a) ALL. All of the options apply. b) COMPILE-TIME-ARITHMETIC-EXPRESSIONS. A compile-time arithmetic expression that could give a different result shall be flagged.c) EVALUATE directive. A directive containing a WHEN phrase and a WHEN OTHER phrase shall be flagged.d) I-O-DECLARATIVE. An input-output statement that can be specified with an INVALID KEY phrase is specified without that phrase when a declarative that specifies INPUT, OUTPUT, I-O, or EXTEND is specified shall be flagged. A READ statement that can be specified with an AT END phrase is specified without that phrase when a declarative that specifies INPUT or I-O is specified shall be flagged.e) I-O-STATUS-04. A reference to a data item specified in a FILE STATUS clause that tests for ‘04’ shall be flagged.f) I-O-STATUS-07. A reference to a data item specified in a FILE STATUS clause that specifies ‘07’ shall be flagged.g) NUM-ED-ZERO-FIG-CONSTANT. The use of the figurative constant ZERO in the VALUE clause for a numeric-edited data item shall be flagged.h) READ-PREVIOUS. A READ PREVIOUS statement shall be flagged.i) REF-MOD-ZERO-LENGTH. A reference modification of a data-item shall be flagged— when the REF-MOD-ZERO-LENGTH directive is not explicitly specified as either ON or OFF— and when the TURN directive for EC-BOUND-REF-MOD is turned on, either implicitly or explicitly.j) VALUE-EDITING. A VALUE clause for a numeric-edited data item that does not contain any editing symbols and is specified as a literal shall be flagged.k) VALUE-FIG-CON-NO-LENTH. A figurative constant specified in the VALUE clause of a data item with no specified length shall be flagged.l) VALUE-ZERO. A numeric-edited data item that has a VALUE clause that specifies the figurative constant ZERO shall be flagged.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

74 ©ISO/IEC 2023

m) WRITE-END-OF-PAGE. A WRITE statement that allows an END-OF-PAGE phrase when the END-OF-PAGE phrase is not specified shall be flagged.5) If the FLAG-14 directive is not specified, the default for all options is off.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 75

7.3.16 IF directive

7.3.16.1 GeneralThe IF directive provides for 1- or 2-way conditional compilation. This directive is processed during the text manipulation stage of processing.
7.3.16.2 General format

7.3.16.3 Syntax rules1) >>IF conditional-expression-1 shall begin on a new line and shall be specified entirely on that line.2) Text-1 shall begin on a new line.3) >>ELSE shall begin on a new line and shall be specified entirely on that line.4) Text-2 shall begin on a new line.5) >>END-IF shall begin on a new line and shall be specified entirely on that line.6) Text-1 and text-2 may be any kind of source lines, including compiler directives. Text-1 and text-2 may consist of multiple lines.7) The phrases of a given IF directive shall be specified all in the same library text or all in source-text. For purposes of this rule, text-1 and text-2 are not considered phrases of the IF directive. A nested IF directive specified in text-1 or in text-2 is considered a new IF directive.
7.3.16.4 General rules1) Text-1 and text-2 are not part of the IF compiler directive line. Any text words in text-1 or text-2 that do not form a compiler directive line are subject to the matching and replacing rules of the COPY statement and the REPLACE statement.2) If constant-conditional-expression-1 evaluates to TRUE, all lines of text-1 are included in the resultant text and all lines of text-2 are omitted from the resultant text.3) If constant-conditional-expression-1 evaluates to FALSE, all lines of text-2 are included in the resultant text and all lines of text-1 are omitted from the resultant text.

>> IF constant-conditional-expression-1 text-1 >> ELSE text-2 >> END-IF

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

76 ©ISO/IEC 2023

7.3.17 LEAP-SECOND directive

7.3.17.1 GeneralThe LEAP-SECOND directive specifies whether a value greater than or equal to 60 may be returned in the seconds portion of the value returned by the ACCEPT statement with the TIME phrase, the CURRENT-DATE intrinsic function, the FORMATTED-CURRENT-DATE intrinsic function, and the WHEN-COMPILED intrinsic function. It also specifies whether a value greater than or equal to 86,400 may be returned by the SECONDS-PAST-MIDNIGHT intrinsic function. This directive specifies whether a value in the seconds subfield of a formatted time value may be greater than or equal to 60 and whether a value in standard numeric time form may be greater than or equal to 86,400. This directive is processed during the compilation stage of processing.
7.3.17.2 General format

7.3.17.3 Syntax rule1) The LEAP-SECOND directive shall not be specified within a compilation unit.
7.3.17.4 General rules1) If the LEAP-SECOND directive is not specified, a LEAP-SECOND directive with the OFF phrase is implied before the first compilation unit in the compilation group.2) When ON is specified or implied, the implementor defines whether a value greater than 59 may be reported in the seconds position of the value returned from: — the ACCEPT statement with the TIME phrase— the CURRENT-DATE intrinsic function— the FORMATTED-CURRENT-DATE intrinsic function— the WHEN-COMPILED intrinsic function.3) When OFF is specified or implied, a value greater than 59 shall not be reported in the seconds position of the value returned from: — the ACCEPT statement with the TIME phrase— the CURRENT-DATE intrinsic function— the FORMATTED-CURRENT-DATE intrinsic function— the WHEN-COMPILED intrinsic function.4) When ON is specified or implied, a standard numeric time form value shall be greater than or equal to zero and less than 86,401. The implementor defines whether a value greater than or equal to 86,400 may be returned from the SECONDS-PAST-MIDNIGHT intrinsic function.

>>LEAP-SECOND ONOFF

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 77

5) When OFF is specified or implied, a standard numeric time form value shall be greater than or equal to zero and less than 86,400.6) When ON is specified or implied, the value contained in the seconds subfield of a formatted time value shall be greater than or equal to zero and less than 61.7) When OFF is specified or implied, the value contained in the seconds subfield of a formatted time value shall be greater than or equal to zero and less than 60.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

78 ©ISO/IEC 2023

7.3.18 LISTING directive

7.3.18.1 GeneralThe LISTING directive instructs the compiler to turn any source listing on or off. The implementor defines the stage of processing for this directive.NOTE This Working Draft International Standard does not define the content or layout of any listing. The implementor can provide a listing of the original compilation group and, optionally, a listing of the result of any text manipulation applied to the original compilation group.
7.3.18.2 General format

7.3.18.3 General rules1) Whether the compiler produces a source listing is implementor-defined. If the compiler does not produce a source listing, the LISTING directive shall be ignored. Otherwise, the following general rules apply.2) The default LISTING directive is '>>LISTING ON'.3) Each LISTING directive shall be listed, even if the listing is being suppressed by a LISTING directive.4) If OFF is specified, source lines shall not be listed until a LISTING directive specifying or implying the ON phrase is encountered, with the exception that another LISTING OFF directive shall be listed.5) If ON is specified or implied, source lines shall be listed until either a LISTING OFF directive is encountered or the end of the compilation group is reached.

>> LISTING ONOFF

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 79

7.3.19 PAGE directive

7.3.19.1 GeneralThe PAGE directive specifies page ejection and provides documentation for the source listing. The implementor defines the stage of processing for this directive.
7.3.19.2 General format

7.3.19.3 Syntax rules1) Comment-text-1 may contain any character in the compile-time computer's coded character set except for control characters as specified in Clause 6, Reference format, rule 3b.2) Comment-text-1 is not checked syntactically.
7.3.19.4 General rules1) Comment-text-1 shall serve only as documentation.2) If a source listing is being produced, a PAGE directive shall cause page ejection followed by listing of the PAGE directive.3) If a source listing is not being produced, a PAGE directive shall have no effect.

>> PAGE comment-text-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

80 ©ISO/IEC 2023

7.3.20 POP directive

7.3.20.1 GeneralThe POP directive is used to restore the state of a directive that was previously saved by a PUSH directive. This directive is processed during the text manipulation stage of processing.
7.3.20.2 General format

7.3.20.3 Syntax rules1) Directive-name shall be the name of a compiler directive that is other than an EVALUATE, IF, PAGE, POP, or PUSH directive.2) If directive-name is specified, the POP directive shall not be specified where directive-name must not be specified.3) If ALL is specified, the POP directive shall be specified only in a compilation unit, between clauses in divisions other than the procedure division, and between statements in the procedure division.4) The POP directive shall not be specified within an exception checking PERFORM statement.
7.3.20.4 General rules1) If directive-name is specified and there was a previously executed PUSH directive that stored the state of the directive referenced by directive-name and that stored directive was not removed by a POP directive, the state of the compiler directive referenced by the POP directive shall be restored. In the case where there may be multiple occurrences of the directive, such as a DEFINE directive, all instances of that directive are restored.2) If directive-name is specified and the state of the compiler directive referenced by the POP directive was not saved by a previously successfully executed PUSH directive in this compilation group or the state was restored by a successful POP directive, the POP directive is unsuccessful and the implementor shall provide a warning mechanism that the POP directive was unsuccessful.3) If ALL is specified, the state of all of the directives that were previously stored by a PUSH directive and were not removed by a POP directive shall be restored. In the case where there may be multiple occurrences of a directive, such as a DEFINE directive, all instances of that directive that were pushed and not popped are restored.

>> POP directive-nameALL

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 81

7.3.21 PROPAGATE directive

7.3.21.1 GeneralThe PROPAGATE directive is used to cause propagation of exception conditions to the activating runtime element. This directive is processed during the compilation stage of processing.
7.3.21.2 General format

7.3.21.3 Syntax rule1) A PROPAGATE directive shall not be specified within a compilation unit.
7.3.21.4 General rules1) When the ON phrase is specified or implied, automatic propagation of exception conditions becomes enabled for functions, methods, and programs that follow in the compilation group. Automatic propagation remains enabled until a PROPAGATE directive specifying the OFF phrase is encountered or the end of the compilation group is reached.2) During execution of a runtime element for which automatic propagation of exception conditions is enabled, any exception condition raised and not handled by either an exception phrase or exception processing procedures in that runtime element shall be propagated as though a GOBACK RAISING LAST statement were executed in a declarative for that exception condition.3) When the OFF phrase is specified, automatic propagation of exception conditions becomes disabled for functions, methods, and programs that follow in the compilation group until a PROPAGATE directive specifying the ON phrase is encountered.4) The default for a compilation group is PROPAGATE OFF.

>> PROPAGATE ONOFF

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

82 ©ISO/IEC 2023

7.3.22 PUSH directive

7.3.22.1 GeneralThe PUSH directive is used to save the state of a directive so that its status might be restored by a subsequent POP directive. This directive is processed during the text manipulation stage of processing.
7.3.22.2 General format

7.3.22.3 Syntax rules1) Directive-name shall be the name of a compiler directive other than an EVALUATE, IF, PAGE, POP, or PUSH directive.2) If directive-name is specified, the PUSH directive shall not be specified where directive-name must not be specified.3) If ALL is specified, the PUSH directive shall be specified only in a compilation unit between clauses in divisions other than the procedure division and between statements in the procedure division.4) The PUSH directive shall not be specified within an exception checking PERFORM statement.
7.3.22.4 General rules1) If directive-name is specified, the state of the directive is saved.2) If ALL is specified, the state of all of the directives other than EVALUATE, IF, PAGE, POP, or PUSH are saved. 3) The effects of the directive being pushed remain active. In the case where there may be multiple occurrences of the directive, such as a DEFINE directive, all instances of that directive are pushed.

>> PUSH directive-nameALL

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 83

7.3.23 REF-MOD-ZERO-LENGTH directive

7.3.23.1 GeneralThe REF-MOD-ZERO-LENGTH directive specifies whether resultant data items may have zero-length or not. This directive is processed during the text manipulation stage of processing.
7.3.23.2 General format.

7.3.23.3 General rule1) When this directive is omitted or is specified as off, then when reference-modification results in a zero-length data item, the exception condition EC-BOUND-REF-MOD is raised

>> REF-MOD-ZERO-LENGTH ONOFF

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

84 ©ISO/IEC 2023

7.3.24 SOURCE FORMAT directive

7.3.24.1 GeneralThe SOURCE FORMAT directive specifies whether the reference format of the source text or library text that follows is fixed form or free form. This directive is processed during the text manipulation stage of processing.
7.3.24.2 General format

7.3.24.3 General rules1) The SOURCE FORMAT directive indicates that the source text or library text following the directive and continuing through a subsequent SOURCE FORMAT directive shall be treated as fixed form if FIXED is specified, or as free form if FREE is specified. (See 6.3, Fixed-form reference format, and 6.4, Free-form reference format.)2) The default reference format of a compilation group is fixed form.3) The default reference format of library text is the reference format that was in effect for the COPY statement that resulted in processing of this library text.4) A SOURCE FORMAT directive that is the first line of a compilation group or library text may be in either fixed form or free form.5) If a SOURCE FORMAT directive is specified in library text, the specified format shall be in effect until another SOURCE FORMAT directive is encountered or the end of the library text is reached. When the processing of that library text is completed, the reference format shall revert to the reference format that was in effect for the COPY statement that resulted in processing of that library text.

>> SOURCE FORMAT IS FIXEDFREE

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 85

7.3.25 TURN directive

7.3.25.1 GeneralThe TURN directive is used to turn checking for specified exception conditions on or off. This directive is processed during the compilation stage of processing.
7.3.25.2 General format

7.3.25.3 Syntax rules1) Any user-defined word beginning with the COBOL characters 'EC-' is interpreted as an exception-name-1 rather than as file-name-1. Any user-defined word that duplicates a compiler-directive word is interpreted as a compiler-directive word rather than as file-name-1.2) Exception-name-1 shall be one of the exception names listed in 14.6.13.1, Exception conditions. There shall be no verification that a user-defined exception-name or a file-name specified in a TURN directive is actually used within the range of the TURN directive.NOTE An exception object is always enabled.3) No exception-name-1 and file-name-1 combination shall be specified more than once in a TURN directive.4) If file-name-1 is specified, exception-name-1 shall begin with the COBOL characters 'EC-I-O'.5) A TURN directive shall not be specified within an exception processing PERFORM statement.
7.3.25.4 General rules1) The default TURN directive is '>>TURN EC-ALL CHECKING OFF'.2) With the exception of EC-I-O-WARNING, if exception-name-1 EC-ALL is specified, the effect is as if the same TURN directive were specified containing all exception-names.3) With the exception of EC-I-O-WARNING, if exception-name-1 is one of the level-2 exception-names, the effect is as if that TURN directive were specified containing all exception-names that are subordinate to that level-2 exception-name. If file-name-1 is specified, the effect is as if file-name-1 were specified for each of these exception-names.4) The exception-name EC-I-O-WARNING may be turned on only by specifying it explicitly within a TURN directive or by its presence in a WHEN phrase in an exception-checking PERFORM statement. Similarly, it may be turned off only by an explicit TURN directive or the end of an exception-checking PERFORM statement.

>> TURN exception-name-1 [file-name-1] ... CHECKING ON [WITH LOCATION]OFF

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

86 ©ISO/IEC 2023

5) If specified within a statement, the TURN directive does not apply to any phrase of that statement. That TURN directive applies to any succeeding statement in the sequence of source lines, whether or not that succeeding statement is within the scope of the statement in which the TURN directive is specified.6) If the ON phrase is specified or implied, checking for the exception condition associated with exception-name-1 is enabled for the procedure division statements and procedure division headers that follow in the compilation group; if file-name-1 is specified, checking is enabled only for exception conditions associated with that file-name. Checking remains enabled for every qualifying procedure division statement and procedure division header that follows in the compilation group until it is disabled by a TURN directive with the OFF phrase. When this document states ‘the EC-xxx exception condition is set to exist’ and that conditions for that exception condition occur during execution of a statement, if checking is not turned on for that exception condition, the results of continuing execution are undefined or defined by the implementor.NOTE When TURN ON is specified or implied for an exception condition, checking for the associated exception condition can result in a significant performance penalty.7) If the LOCATION phrase is specified, all information necessary to identify a source statement for the EXCEPTION-LOCATION, EXCEPTION-LOCATION-N, and EXCEPTION-STATEMENT functions is made available to the run unit. If the LOCATION phrase is not specified, the implementor shall specify whether this information is made available or not.8) If the OFF phrase is specified, checking for the exception condition associated with exception-name-1 is disabled for all procedure division statements and procedure division headers that follow in the compilation group and remains disabled until another TURN directive for exception-name-1 with the ON phrase is encountered; if file-name-1 is specified, checking is disabled only for exception conditions associated with that file-name.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 87

8 Language fundamentals

8.1 Character sets

8.1.1 GeneralThe character set concepts in COBOL are the computer's coded character set, the COBOL character repertoire, and alphabets.The computer's coded character set is the character set used for COBOL's internal processing.The COBOL character repertoire is a repertoire of characters used in defining the syntax of the language. It is an abstract character set in that it is a list of characters independent of their encoding. The elements of the language that are specified in the COBOL character repertoire are given in 8.1.3, COBOL character repertoire.Alphabets identify coded character sets for representing data on external media or identify collating sequences, or both. The programmer may define alphabets in the SPECIAL-NAMES paragraph or reference predefined alphabets identified in the SPECIAL-NAMES paragraph.The CODE-SET clause may be used in a file description entry, referencing alphabets as defined in SPECIAL-NAMES, to describe alternative encoding of records on external media. During input-output operations, records for files described with the CODE-SET clause are converted to and from that encoding and the encoding of the computer's coded character set.
8.1.2 Computer's coded character setThe computer's coded character set is the set of characters used in the memory of the computer during compilation or during execution of a COBOL runtime element.In source code, the content of alphanumeric and national literals, except for hexadecimal formats, may contain any characters in the computer's coded character set used for writing source code, consistent with the characters the implementor allows for the class of the literal. The coded character set used during compilation may be the same as or different from the coded character set used during execution of the resultant runtime elements.In source code, comments may contain any characters in the coded character set that is used for writing source code, subject to the rules in Clause 6, Reference format.The runtime computer's coded character set consists of a coded character set used to represent data described as usage display and a coded character set used to represent data described as usage national, called the computer's alphanumeric coded character set and the computer's national coded character set, respectively. The alphanumeric coded character set and the national coded character set may be two distinct coded character sets, or they may be one coded character set where a subset is designated as alphanumeric and the set or a subset is designated as national. In either case, unless specifically qualified as alphanumeric or national, the term computer's coded character set references both the alphanumeric and the national coded character sets. The characters of the alphanumeric coded character set and the characters of the national coded character set may, but need not be, disjoint sets.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

88 ©ISO/IEC 2023

NOTE 1 In general, the specification assumes that the national character set includes the characters of the alphanumeric character set; for example, intrinsic functions are defined for conversion between the two. An alphanumeric character set is typically a Latin alphabet coded character set, such as ISO/IEC 646, but can be any coded character set. A national character set is intended for larger coded character sets, such as the Universal Coded Character Set (UCS) defined by ISO/IEC 10646, but can be any coded character set.NOTE 2 An example of one coded character set used to represent both the alphanumeric and the national coded character set is UTF-16 in the UCS where the national coded character set might consist of the entire UCS coded character set and the alphanumeric coded character set might consist of a subset of the UCS. Nothing precludes the alphanumeric and the national coded character sets from both consisting of the entire UCS coded character set.At runtime, an implementor may recognize a combination of characters from the computer's alphanumeric coded character set and the computer's national coded character set in the content of data items of category alphanumeric. This combination is referred to as mixed alphanumeric and national data. When this capability is provided, the implementor shall specify any applicable general rules.The COBOL specification is independent of the encoding used to represent a computer's coded character set, except that:1) The number of bytes used in the memory of the computer to represent characters in the alphanumeric coded character set shall be the same for all characters in that coded character set; the number of bytes shall be determined at compile time.2) The number of bytes used in the memory of the computer to represent characters in the national coded character set shall be the same for all characters in that coded character set; the number of bytes shall be determined at compile time.3) The number of bytes used to represent a character of the national coded character set shall be equal to or greater than the number of bytes used to represent a character of the alphanumeric coded character set.NOTE 3 COBOL processes each fixed-size element of a character set as one character, even when a graphic symbol requires two or more elements for its representation in that character set.Source code rules are described in 8.1.3, COBOL character repertoire.The implementor shall specify the number of bits in a byte for each supported computer. The implementor shall specify the set of characters in and the encoding of each of the computer's alphanumeric character set and the computer's national character set. When these are implemented as one character set, the implementor shall specify the characters that map into the computer's alphanumeric coded character set and the characters that map into the computer's national coded character set. If more than one encoding of the computer's character set is supported, the implementor shall specify the mechanism for selecting the encoding for use at runtime.The implementor shall specify one and only one alphanumeric coded character value associated with each of the following COBOL elements:— the figurative constants: SPACE, QUOTE, and ZERO when associated with an alphanumeric data item

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 89

— the character used for space filling of alphanumeric data items— the editing characters: 'B', 'C', 'D', 'E', 'R', '0', '-', '+', '*', '/', ',', '.', and space characters used for numeric digits in alphanumeric data items and literalsNOTE 4 The coded character value of a digit in a numeric data item - even when defined with USAGE DISPLAY - can be modified if the single character position also includes an internal indicator of the sign of a data item. The requirement in this rule for a single value applies only to character positions in alphanumeric data items and literals, not to positions in numeric data items.— the default currency string character associated with the '$' editing symbol.There shall be a single alphanumeric coded character value used for the figurative constant SPACE, for space filling of alphanumeric data items, and corresponding to the picture editing symbol 'B'.There shall be a single alphanumeric coded character value used for the figurative constant ZERO, corresponding to the picture editing symbol '0', and used for the numeric digit '0'.The implementor shall specify one and only one national coded character value associated with each of the following COBOL elements:— the figurative constants: SPACE, QUOTE, and ZERO when associated with a national data item— the character used for space filling of national data items— the editing characters: 'B', 'C', 'D', 'E', 'R', '0', '-', '+', '*', '/', ',', '.', and space characters used for numeric digits in national data items and literalsNOTE 5 The coded character value of a digit in a numeric data item - even when defined with USAGE NATIONAL - can be modified if the single character position also includes an internal indicator of the sign of a data item. The requirement in this rule for a single value applies only to character positions in national data items and literals, not to positions in numeric data items.— the default currency string character associated with the '$' editing symbol.There shall be a single national coded character value used for the figurative constant SPACE, for space filling of national data items, and corresponding to the picture editing symbol 'B'.There shall be a single national coded character value used for the figurative constant ZERO, corresponding to the picture editing symbol '0', and used for the numeric digit '0'.The coded character values required for the alphanumeric character set and the coded character values for the national character set corresponding to each COBOL element are permitted to be identical or different. However, they shall be treated as equivalent as required by the applicable rules for equivalence of alphanumeric and national characters.When the computer's coded character set at runtime differs from the coded character set known at compile time, the content of alphanumeric and national literals shall be converted, prior to use at runtime, to the computer's runtime alphanumeric or national coded character set as appropriate for the class of the literal, except that the hexadecimal-alphanumeric format and the hexadecimal-national format literals shall not be converted. The implementor shall define the correspondence of each character of the compile-time coded character set with an associated character in the runtime coded character set. If the runtime coded character set is known at compile time, the conversion may occur

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

90 ©ISO/IEC 2023

either at compile time or at runtime. If the runtime coded character set is not known at compile time, conversion occurs at runtime. The implementor determines the point at which runtime conversion occurs.When the computer's compile-time coded character set includes characters that are not also included in the COBOL character repertoire, the implementor shall specify any such additional characters that are prohibited from use as a currency symbol.
8.1.3 COBOL character repertoire

8.1.3.1 GeneralThe COBOL character repertoire is used to specify the syntax of the language. COBOL words, separators, picture symbols, numeric literals, the currency sign, floating format indicator characters, and the content of boolean and hexadecimal literals are defined in the COBOL character repertoire. The implementor maps the COBOL character repertoire to one or more coded character sets to be used in writing source code.The COBOL character repertoire consists of the basic letters, basic digits, basic special characters, and extended letters as shown in Table 1, COBOL character repertoire. Extended letters permit writing user-defined words in many languages in addition to the English language.
Table 1 — COBOL character repertoire

Description Character MeaningBasic letters A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Za, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z
Latin capital letters (uppercase letters)
Latin small letters (lowercase letters)

Basic digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 digits

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 91

8.1.3.2 General rules1) The implementor shall define a mapping of each basic letter, basic digit, basic special character, and extended letter of the COBOL character repertoire to one or more coded character sets. The COBOL character repertoire may be represented in any encoding scheme chosen by the implementor, including but not limited to one coded character set containing all characters of the repertoire or two distinct coded character sets, one alphanumeric and one national, mixed together. When two distinct coded character sets are used, the implementor shall define a correspondence between the basic letters, basic digits, and basic special characters of the alphanumeric and national coded character sets.NOTE 1 The concepts 'alphanumeric character' and 'national character' apply to the encoding of data. The concepts 'basic letter' and 'extended letter' apply to source code and specify the symbols themselves, not their encoding. A given instance of a basic letter in a compilation group can be encoded in either an alphanumeric coded character set or in a national coded character set, but it is the same letter in either case. For example, within a compilation group, a basic letter 'A' encoded in ISO/IEC 646 has the same meaning in COBOL words as a basic letter 'A' encoded in ISO/IEC 10646 -- just as an uppercase 'A' has the same meaning as a lowercase 'a'.NOTE 2 Examples of coded character sets that can be used to represent the COBOL character repertoire are ISO/IEC 10646 UCS-4, UTF-8, or UTF-16; and implementor-defined coded character sets consisting of two distinct coded character sets mixed together, one a national coded character set and one an alphanumeric

Basic special characters +–*/=$,;."'()><&:_

spaceplus signminus sign (hyphen)asteriskslant (slash, solidus)equal signcurrency signcommasemicolonperiodquotation markapostropheleft parenthesisright parenthesisgreater than less than ampersandcolonunderscoreExtended letters Additional characters for use in the formation of user-defined words, as specified in Annex B, Characters permitted in user-defined words

Table 1 — COBOL character repertoire (Continued)

Description Character Meaning

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

92 ©ISO/IEC 2023

coded character set. There are other possible implementor-defined encodings of the COBOL character repertoire.2) If the COBOL character repertoire is mapped to mixed alphanumeric and national coded character sets, the implementor shall specify the control functions or other mechanism for distinguishing alphanumeric characters from national characters. If more than one encoding is permitted in a single compilation group, the implementor shall specify the control functions or other methods used for distinguishing between encodings. Any control functions used to switch between coded character sets are utilized in the compilation process and are not part of the syntax of the compilation group unless otherwise specified by the implementor.3) Within a compilation group, the following rules apply:a) COBOL basic letters, when specified in the non-hexadecimal formats of alphanumeric and national literals, are treated in a case-sensitive manner, unless specific rules require otherwise. COBOL basic letters appearing elsewhere within the compilation group are treated in a case-insensitive manner.b) Each basic letter, basic digit, basic special character, and extended letter represented in the alphanumeric character set is equivalent to its corresponding basic letter, basic digit, basic special character, and extended letter, represented in the national character set, respectively.Equivalence of uppercase and lowercase basic letters is achieved by folding from uppercase to lowercase in accordance with the case mapping described in Annex C.4) The set of extended letters consists of characters from the repertoire specified in Annex B, Characters permitted in user-defined words, excluding any character that is defined as a basic letter, basic digit, or basic special character in the COBOL character repertoire. Extended letters in user-defined words are subject to the following rules:a) A character in Annex B is included in the set of extended letters if it exists in the implementor-defined compile-time coded character set.b) An uppercase extended letter is treated as though it were folded to its corresponding lowercase extended letter, if any, in accordance with the case mapping described in Annex C, except when specific rules require uppercase letters and their corresponding lowercase letters to be considered distinct from each other.NOTE 3 Extended letters in the COBOL character repertoire are an optional feature in this Working Draft International Standard.c) If the set of extended letters includes any of the combining characters identified in Annex B, the base character and each combining character are treated as separate characters in determining the length of a user-defined word.NOTE 4 For portable source code, programmers can form user-defined words from the basic letters, the basic digits, the underscore, and the hyphen in the COBOL character repertoire.NOTE 5 Annex B identifies characters recommended for use in programming language identifiers. The list of characters in Annex B excludes punctuation and symbols that are not generally used in words or that

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 93

are considered inappropriate for programming language identifiers. Some characters in Annex B can have an appearance similar to basic special characters specified in COBOL or can appear strange to speakers of some languages, but are necessary for representing certain languages. They are permitted in COBOL on the assumption that no confusion will result for user-defined words written by programmers fluent in the languages for which those characters are essential.NOTE 6 Extended letters are case folded to lowercase for determining equivalence of uppercase and lowercase.5) When an implementation does not provide a graphic representation of all characters of the COBOL character repertoire, substitute graphics may be specified by the implementor to replace the characters not represented.
8.1.4 AlphabetsAlphabets in COBOL are named specifications of coded character sets or collating sequences or both. The SPECIAL-NAMES paragraph provides the means for naming alphabets and for specifying user-defined coded character sets and collating sequences. A coded character set or collating sequence is used by specifying its alphabet-name in COBOL statements or entries that reference a coded character set or collating sequence as an operand.
8.1.5 Collating sequencesA collating sequence defines the order of characters within a coded character set or COBOL alphabet for purposes of sorting, merging, and comparing data and for processing files with indexed organization. Logically, there are two collating sequences - an alphanumeric collating sequence and a national collating sequence. An alphanumeric collating sequence defines the order associated with data items or record keys described as usage display; a national collating sequence defines the order associated with data items or record keys described as usage national. These two logical collating sequences may be defined and implemented separately or may be defined and implemented as one composite collating sequence with characters mapped into a logical alphanumeric collating sequence and a logical national collating sequence.The default ordering associated with these collating sequences is defined by the implementor. Specific orderings may be selected:— as the program collating sequence, by specification of an alphabet or a locale in the PROGRAM COLLATING SEQUENCE clause of the OBJECT-COMPUTER paragraph;— for SORT or MERGE statements, by specification of a locale or alphabet in a SORT or MERGE statement;— for indexed files, by specification of a locale or alphabet in a COLLATING SEQUENCE clause of the file control entry;— for specific comparisons, by use of the LOCALE-COMPARE or STANDARD-COMPARE intrinsic functions. When a locale is specified, the associated ordering is determined at runtime.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

94 ©ISO/IEC 2023

8.2 Locales

8.2.1 GeneralA locale provides a specification of cultural elements for use at runtime. Cultural elements are grouped into named locale-categories that control specific aspects of runtime behavior, as follows:Locale-category name Behavior affectedLC_COLLATE Collating sequenceLC_CTYPE Character classification and case conversionLC_MESSAGES Formats of informative and diagnostic messages and interactive responsesLC_MONETARY Monetary formattingLC_NUMERIC Numeric formattingLC_TIME Date and time formatsLC_ALL Locale-categories LC_COLLATE, LC_CTYPE, LC_MESSAGES,LC_MONETARY, LC_NUMERIC, and LC_TIME, and any other categories included in the locale.Locale category names, the details of locale-categories, and locale field names shall be as specified in ISO/IEC 9945:2009, Clause 7. The format and implementation of locales may differ from those specifications provided that logically-equivalent functionality is supported.When the use of cultural elements from a locale is specified for a source unit, the specific values, formats, or algorithms associated with the locale categories are determined at runtime.Some operating environments provide a locale for system-wide use, called a system-default locale. Those environments might also provide for selection of a locale for use within a run unit, called a user-default locale. If the operating environment does not supply a default locale, it is implementor-defined.At the time a run unit is activated, the current runtime locale is set to the user default locale and remains in effect for the run unit until another runtime locale is established. The SET statement provides the capability of establishing any locale as the current runtime locale, as well as the ability to set the user default locale to any locale. While there is always a current locale for the entire run unit, it has effect only for compilation units using language features that reference a locale.Execution of a SET statement specifying USER-DEFAULT as the sending operand sets the current runtime locale for the specified locale categories to the user default locale. The implementor shall specify the manner in which the user default locale is defined and shall provide at least one user default locale for use in computing environments that do not provide a user default locale.Execution of a SET statement specifying SYSTEM-DEFAULT as the sending operand sets the current runtime locale for the specified locale categories to the current system default locale. The implementor shall specify the manner in which the system default locale is defined and shall provide at least one system default locale for use in computing environments that do not provide a system default locale.Execution of a SET statement specifying a locale-name as the sending operand sets the current runtime locale for the specified locale categories to the locale associated with that locale-name in the LOCALE

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 95

clause of the SPECIAL-NAMES paragraph. The SET statement may be used to save information about the current locale so that the particular locale may later be made current by using another SET statement.If the user default locale or the system default locale is switched by a non-COBOL runtime module, the new user default or system default locale is not utilized by COBOL unless a SET statement is executed to make it the current runtime locale. A locale switch for any locale categories by an activated COBOL runtime module is utilized on return by the activating runtime module. It is implementor-defined whether, and for which locale categories, a switch of current locale by a non-COBOL runtime module is utilized by COBOL. The capability of setting the system default locale from COBOL is not provided.The manner of identifying the current locale is specified in 14.6.6, Locale identification.If the locale is not found during an operation requiring a locale, the EC-LOCALE-MISSING exception condition is set to exist and the operation is unsuccessful. If the locale content is invalid or incomplete during an operation using a locale, the EC-LOCALE-INVALID exception condition is set to exist and the operation is unsuccessful.If a locale does not define both alphanumeric and national collating sequences in category LC_COLLATE, the locale shall define a national collating sequence such that it contains characters to which a correspondence exists for the characters permitted in data items of usage display; this correspondence is used in converting alphanumeric characters to national characters in locale-based evaluation of a relation condition.The locale categories LC_MESSAGES and LC_NUMERIC are not used directly by COBOL; however, the ability to set and query these locale categories is provided so that applications may use it.The set of cultural elements constituting LC_ALL may include categories and cultural elements not used by COBOL.
8.2.2 Locale field namesThe following locale field names are referenced in the COBOL specification in order to clarify processing:
Category Field name DescriptionLC_MONETARYint_curr_symbol international currency symbolcurrency_symbol local currency symbolmon_decimal_point decimal delimitermon_thousands_sep string used to group digits to the left of the decimal delimitermon_grouping size of each group of digitspositive_sign string used to indicate nonnegative valued quantities

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

96 ©ISO/IEC 2023

negative_sign string used to indicate negative-valued quantitiesint_frac_digits number of fractional digits (those to the right of the decimal delimiter) when using international formatting of monetary valuesfrac_digits number of fractional digits (those to the right of the decimal delimiter) when using local formatting of monetary valuesp_cs_precedes indicator of whether the currency symbol precedes or succeeds the value for a nonnegative quantityn_cs_precedes indicator of whether the currency symbol precedes or succeeds the value for a negative quantityLC_TIME d_fmt date representationt_fmt time representation

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 97

8.3 Lexical elements

8.3.1 GeneralThe lexical elements are character-strings and separators.A character-string is a character or a sequence of contiguous characters that forms a COBOL word, a literal, or a picture character-string. A character-string is delimited by separators.
8.3.2 COBOL words

8.3.2.1 GeneralA COBOL word is a character-string of not more than 63 characters that forms a compiler-directive word, a context-sensitive word, an intrinsic-function-name, a reserved word, a system-name, or a user-defined word. Each character of a COBOL word that is not a special character word shall be selected from the set of basic letters, basic digits, extended letters, and the basic special characters hyphen and underscore. The hyphen or underscore shall not appear as the first or last character in such words.Within a compilation group, compilation-variable-names form intersecting sets with other types of user-defined words, system-names, context-sensitive words, and intrinsic-function names. The same COBOL word may be used as a compilation-variable-name and as one of these other types of words.Within a source element the following apply:1) Reserved words shall not be used as user-defined words or system-names.2) Compiler-directive words, except those that are also reserved words, may be used as user-defined words and system-names.3) Context-sensitive words may be used as user-defined words and system-names in contexts other than the language construct in which they are defined. Specific rules may apply to the interpretation of a word as user-defined or context-sensitive.4) A given word may be used as a system-name and as a user-defined word, subject to the rules specified in 8.3.2.2, User-defined words, and 8.3.2.3, System-names.5) Intrinsic-function-names may be used as user-defined words and system-names, except for — intrinsic function names LENGTH, RANDOM, SIGN, and SUM; and — intrinsic function names identified in a function-specifier in the REPOSITORY paragraph.
8.3.2.2 User-defined wordsA user-defined word is a COBOL word that is supplied by the user to satisfy the format of a clause or statement.The types of user-defined words are:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

98 ©ISO/IEC 2023

— alphabet-name— class-name— compilation-variable-name— condition-name— constant-name— data-name— directive-name— dynamic-length-structure-name— file-name— function-prototype-name— index-name— interface-name— level-number— locale-name— method-name— mnemonic-name— object-class-name— ordering-name— paragraph-name— parameter-name— program-name— program-prototype-name— property-name— record-key-name— record-name— report-name— screen-name— section-name— symbolic-character— type-name— user-function-nameWithin a source element, a given user-defined word may be used as only one type of user-defined word with the following exceptions:1) a compilation-variable-name may be the same as any other type of user-defined word2) a level-number may be the same as a paragraph-name or a section-name3) the same name may be used as any of the following types of user-defined words:— constant-name— data-name— property-name— record-key-name— record-nameFurther rules for uniqueness are specified in 8.4.2, Uniqueness of reference.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 99

With the exception of section-names, paragraph-names, and level-numbers, each user-defined word shall contain at least one basic letter or extended letter. Level-numbers need not be unique; a given specification of a level-number may be identical to any other level-number.The following user-defined words shall be externalized to the operating environment:1) program-names of outermost programs, object-class-names, function-prototype-names, interface-names, method-names, program-prototype-names, property-names, and user-function-names2) data-names, file-names, and record-names of items described with the EXTERNAL attribute.The implementor shall specify whether extended letters may be specified in user-defined words externalized to the operating environment.For any externalized user-defined words for which the AS phrase is specified, the content of the literal specified in that AS phrase is a name that is externalized to the operating environment. The implementor defines the formation and mapping rules of these names.NOTE The AS phrase provides a way to specify names that are either case-sensitive or not valid COBOL words. Such names can be required by other programming languages or system components.For any externalized user-defined words for which the AS phrase is not specified, the implementor defines the mapping between the user-defined word and the corresponding name that is externalized to the operating environment.Within a run unit, all instances of a given name that is externalized to the operating environment shall identify the same kind of entity or item. Except for method-names and property-names, when two or more source elements identify something with the same externalized name, they refer to the same instance.Externalized names shall be referenced in a source element only:1) in the AS phrase in a repository paragraph entry,2) in the AS phrase in an EXTERNAL clause,3) as program-name in a CALL statement,4) as program-name in a CANCEL statement,5) as program-name in a program-address-identifier,6) as method-name in an INVOKE statement or inline method invocation.All other references to names for which externalization is permitted shall be specified using the user-defined words, as opposed to the externalized names.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

100 ©ISO/IEC 2023

In the AS phrases, only the externalized names shall be referenced. In the CALL, CANCEL, and INVOKE statements, the inline method invocation, and in the program-address-identifier, either the externalized names or the user-defined words may be referenced, depending on the conditions described below.When an INVOKE statement or an inline method invocation references a method-name using a universal object reference:1) When the COBOL call convention is implied or COBOL is specified in a CALL-CONVENTION compiler directive, that method-name is treated as a COBOL word that maps to the externalized name of the method to be invoked, applying the same implementor-defined mapping rules as for a method-name for which no AS phrase is specified.2) When call-convention-name-1 is specified in an applicable CALL-CONVENTION compiler directive, that method-name is treated as a literal that maps, in a manner defined by the implementor, to the externalized name of the method to be invoked.When an INVOKE statement or an inline method invocation references a method-name using an object reference that is not a universal object reference, the naming convention and mapping to be used for the method-name is determined by the entry convention of the class or interface that contains the method. If the method being invoked is referenced using a universal object reference, the ENTRY-CONVENTION, if any, in the class or interface definition containing the method is ignored.When a CALL statement, a CANCEL statement, or a program-address-identifier references a program-name that names a compilation unit:1) If the CALL statement, CANCEL statement, or program-address-identifier specifies a program-prototype-name, the naming convention and mapping used for the program-name is determined by the entry convention indicated by the description of the program to be called, as specified in 12.3.8, REPOSITORY paragraph, General rule 10;2) otherwise:a) When the COBOL call convention is implied or COBOL is specified in the CALL-CONVENTION compiler directive, the program-name is treated as a COBOL word that maps to the externalized name of the program, applying the same implementor-defined mapping rules as for a program-name for which no AS phrase is specified.b) When call-convention-name-1 is specified in the CALL-CONVENTION compiler directive, the program-name is treated as a literal that maps, in a manner defined by the implementor, to the externalized name of the program.
8.3.2.2.1 Alphabet-nameAn alphabet-name identifies a specific character set or collating sequence, or both. This relationship is established in the SPECIAL-NAMES paragraph.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 101

8.3.2.2.2 Class-nameA class-name identifies a proposition, for which a truth value may be determined, that the content of a data item consists exclusively of those characters listed in the definition of the class-name.
8.3.2.2.3 Compilation-variable-nameA compilation-variable-name identifies a compilation variable defined in a DEFINE compiler directive.
8.3.2.2.4 Condition-nameA condition-name identifies a value, set of values, or range of values defined in the data division, or identifies an on or off status defined in the SPECIAL-NAMES paragraph.
8.3.2.2.5 Constant-nameA constant-name identifies a constant, which is defined by a constant entry in the data division.
8.3.2.2.6 Data-nameA data-name identifies a data item described in a data description entry, a record described in a record description entry, or a screen item described in a screen description entry.
8.3.2.2.7 Directive-nameA directive-name identifies a compiler directive whose setting is saved or restored by a PUSH or POP compiler directive.
8.3.2.2.8 Dynamic-length-structure-nameA dynamic-length-structure-name specifies the physical layout of a dynamic-length elementary item. This relationship is established in the SPECIAL-NAMES paragraph.
8.3.2.2.9 File-nameA file-name identifies a file connector described in a file description entry or a sort-merge file description entry within the file section of the data division.
8.3.2.2.10 Function-prototype-nameA function-prototype-name identifies a function prototype.
8.3.2.2.11 Index-nameAn index-name identifies an index associated with a specific table.
8.3.2.2.12 Interface-nameAn interface-name identifies an interface, a grouping of method prototypes.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

102 ©ISO/IEC 2023

8.3.2.2.13 Level-numberA level-number, expressed as a one-digit or two-digit number, indicates the hierarchical position of a data item or the special properties of a data description entry.
8.3.2.2.14 Locale-nameA locale-name identifies a locale that specifies a set of cultural elements. A locale-name is defined in the SPECIAL-NAMES paragraph.
8.3.2.2.15 Method-nameA method-name identifies a method.
8.3.2.2.16 Mnemonic-nameA mnemonic-name identifies an implementor-defined device-name, feature-name, or switch-name. This relationship is established in the SPECIAL-NAMES paragraph.
8.3.2.2.17 Object-class-nameAn object-class-name identifies an object class, the entity that defines common behavior and implementation for zero, one, or more objects.
8.3.2.2.18 Ordering-nameAn ordering-name identifies a cultural ordering table used in the execution of the STANDARD-COMPARE intrinsic function.
8.3.2.2.19 Paragraph-nameA paragraph-name identifies a paragraph in the procedure division. Paragraph-names are equivalent if they are composed of the same sequence of the same number of COBOL characters.NOTE The paragraph-names '00123' and '123' are different paragraph-names.
8.3.2.2.20 Parameter-nameA parameter-name identifies a formal parameter of a parameterized class or a parameterized interface.
8.3.2.2.21 Program-nameA program-name identifies a program. For a COBOL program, program-name is the name specified in the PROGRAM-ID paragraph of the program's identification division. For a non-COBOL program, the rules for formation of the program-name are defined by the implementor.
8.3.2.2.22 Program-prototype-nameA program-prototype-name identifies a program prototype.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 103

8.3.2.2.23 Property-nameA property-name identifies a means of getting information out of and passing information back into an object.
8.3.2.2.24 Record-key-nameA record-key-name identifies a key associated with an indexed file.
8.3.2.2.25 Record-nameA record-name identifies a record described in a record description entry. A record-name may be specified where a data-name is allowed unless specific rules for the format disallow it.
8.3.2.2.26 Report-nameA report-name identifies a report described in a report description entry within the report section of the data division.
8.3.2.2.27 Screen-nameA screen-name identifies a screen description entry in the screen section.
8.3.2.2.28 Section-nameA section-name identifies a section in the procedure division.
8.3.2.2.29 Symbolic-characterA symbolic-character is a user-defined figurative constant that represents a value specified in the SPECIAL-NAMES paragraph.
8.3.2.2.30 Type-nameA type-name identifies a type declaration specified by a data description entry.
8.3.2.2.31 User-function-nameA user-function-name identifies a function.
8.3.2.3 System-names

8.3.2.3.1 GeneralA system-name is used to communicate with the operating environment. The implementor may define rules for the formation of a system-name that add restrictions to the rules for formation of a COBOL word.The types of system-names are:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

104 ©ISO/IEC 2023

— call-convention-name— code-name— computer-name— device-name— entry-convention-name— external-locale-name— feature-name— library-name— physical-structure-name— switch-name— text-nameWithin an implementation, a given system-name shall not belong to more than one of the following types of system-names: device-name, feature-name, and switch-name.
8.3.2.3.2 Call-convention-nameA call-convention-name identifies an implementor-defined convention for mapping a method-name or a program-name to its externalized name and may identify attributes of the linkage mechanism used to interact with a function, method, or program.
8.3.2.3.3 Code-nameA code-name identifies a character code set and a collating sequence.
8.3.2.3.4 Computer-nameA computer-name may identify the computer upon which the compilation unit is to be compiled or the runtime module is to be run.
8.3.2.3.5 Device-nameA device-name identifies a hardware or software device in the operating environment.
8.3.2.3.6 Entry-convention-nameAn entry-convention-name identifies attributes of the linkage mechanism by which a function, method, or program is to receive control.
8.3.2.3.7 External-locale-nameAn external-locale-name identifies a locale that specifies a set of cultural elements. This locale is provided in the operating environment.
8.3.2.3.8 Feature-nameA feature-name identifies a feature of an input-output device.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 105

8.3.2.3.9 Library-nameA library-name identifies a COPY library.
8.3.2.3.10 Physical-structure-nameA physical-structure-name identifies an implementor-defined physical layout of a dynamic-length elementary item.
8.3.2.3.11 Switch-nameA switch-name identifies an implementor-defined external switch.
8.3.2.3.12 Text-nameA text-name identifies a library text.
8.3.2.4 Reserved words

8.3.2.4.1 GeneralThe COBOL words shown in 8.9, Reserved words, are reserved for use as keywords, optional words, or special-character words in language constructs. Reserved words shall not be used as system-names or user-defined words.NOTE Although not required, it is expected that future revisions to this document will take into consideration the restrictions on new reserved words that were included in earlier versions of this Standard. Those included prohibiting new reserved words starting with the digits 0 through 9, the letters X, Y, and Z. It also restricted new reserved words starting with one or two letters followed by a hyphen or the use of two consecutive hyphens. Finally, it required new reserved words, other than special character words to include at least two basic letters.The types of reserved words are:— required words— optional words
8.3.2.4.2 Required wordsA required word is a word whose presence is required when the format in which the word appears is used. Required words are of two types:1) Keywords. Within each format, such words are uppercase and underlined.2) Special character words. The special character words are: Word Meaning + Arithmetic operator - unary plus or addition

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

106 ©ISO/IEC 2023

 – Arithmetic operator - unary minus or subtraction * Arithmetic operator - multiplication / Arithmetic operator - division ** Arithmetic operator - exponentiation & Concatenation operator > Relational operator - greater than < Relational operator - less than = Relational operator - equal and assignment operator in COMPUTE== Pseudo-text delimiter in COPY and REPLACE statements >= Relational operator - greater than or equal <= Relational operator - less than or equal<> Relational operator - not equal *> Comment indicator >> Compiler directive indicator :: Method invocation operator
8.3.2.4.3 Optional wordsWithin each format, uppercase words that are not underlined are called optional words and may be specified at the user's option with no effect on the semantics of the format.
8.3.2.5 Context-sensitive wordsA context-sensitive word is a COBOL word that is reserved only in the general formats in which it is specified. Context-sensitive words and the contexts in which they are reserved are specified in 8.10, Context-sensitive words.
8.3.2.6 Intrinsic-function-namesAn intrinsic-function-name is a COBOL word that identifies a specific intrinsic function. The list of intrinsic function names is given in 8.11, Intrinsic function names.
8.3.2.7 Exception-namesAn exception-name is a COBOL word that identifies an exception condition. The list of exception-names is given in 14.6.13.1, Exception conditions.
8.3.3 Literals

8.3.3.1 GeneralA literal is defined by a reserved word that references a figurative constant or is a character-string representing a data value derived from the ordered set of characters of which the literal is composed. Each literal possesses a class and category: alphanumeric, boolean, national, or numeric.The paired quotation symbols specified in the opening and closing delimiters of alphanumeric, boolean, and national literals may be either apostrophes or quotation marks. Both forms may be used within a

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 107

single source unit. If the opening and closing delimiters are contiguous, the length of the literal is zero, and it is known as a zero-length literal.Hexadecimal digits are used to specify the value of the literal in the hexadecimal-alphanumeric, hexadecimal-boolean, and hexadecimal-national formats of literals. The hexadecimal digits are the basic digits '0' through '9' and the basic letters 'A' through 'F'.
8.3.3.2 Alphanumeric literals

8.3.3.2.1 GeneralAlphanumeric literals are of the class and category alphanumeric.
8.3.3.2.2 General formatFormat 1 (alphanumeric):

Format 2 (hexadecimal-alphanumeric):

8.3.3.2.3 Syntax rulesALL FORMATS1) The length of an alphanumeric literal, excluding the separators that delimit the literal, shall be less than or equal to 8,191 alphanumeric character positions.FORMAT 12) Character-1 may be any character in the coded character set that the implementor has chosen for source code representation and designated as a character in the compile-time alphanumeric coded character set.NOTE 1 This allows, but does not require, characters in an alphanumeric literal to be represented in source code in a national coded character set. This permits, for example, a literal of the form "ABC" to be represented in the source code in UTF-16 and stored as ISO/IEC 646. This is essential in order to allow source code to be represented entirely in a coded character set such as UTF-16, but is not restricted to that case.An implementation is neither required to recognize nor prohibited from recognizing UTF-8 or mixed alphanumeric and national characters in format 1 alphanumeric literals. When permitted, the capability shall be optionally available to the user in a manner that does not restrict the characters

" [character-1] ... "' [character-1] ... '

X"[hex-character-sequence-1] ..."X'[hex-character-sequence-1] ...'

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

108 ©ISO/IEC 2023

normally recognized by that implementation; the implementor shall specify any applicable syntax rules.3) Two contiguous quotation symbol characters matching the quotation symbol used in the opening delimiter represent a single occurrence of that quotation symbol character in the content of the literal.4) The two contiguous quotation symbols used to represent a single quotation symbol character shall bein the same coded character set representation as the opening quotation symbol.FORMAT 25) Hex-character-sequence-1 shall be composed of hexadecimal digits.NOTE 2 Hexadecimal-alphanumeric literals can be of zero length.6) Each hex-character-sequence-1 shall consist of the number of hexadecimal digits that the implementor has specified as the number of hexadecimal digits that map to an alphanumeric character.
8.3.3.2.4 General rulesALL FORMATS1) The separators that delimit the alphanumeric literal are not included in the value of the alphanumeric literal.2) Alphanumeric literals are of the class and category alphanumeric. FORMAT 13) If character-1 is not specified, the literal is a zero-length literal. If character-1 is specified, the following rules apply:a) The value of the literal at compile time is the string of occurrences of character-1, represented in the computer's compile-time coded character set defined by the implementor for usage DISPLAY.b) The value of the literal at runtime is the string of alphanumeric characters that results from converting the compile-time value of the literal to its runtime equivalent, as described in 8.1.2, Computer's coded character set.NOTE This rule permits storing alphanumeric literals in national character representation when usage DISPLAY is implemented in a large character set such as the UCS.c) When the implementor provides the option of UTF-8 or mixed alphanumeric and national characters in the content of format 1 alphanumeric literals, the implementor shall specify the applicable general rules.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 109

FORMAT 24) If hexadecimal-sequence-1 is not specified the literal is a zero-length literal, otherwise the value of the literal at runtime shall be a string of alphanumeric characters, each of which has the bit configuration specified by one occurrence of hex-character-sequence-1.5) The implementor defines the result of specifying a hex-character-sequence-1 for which no corresponding character in that coded character set exists. The implementor also defines the mapping of each hex-character-sequence-1 to a character, when the characters do not occupy a multiple of four bits.
8.3.3.3 Numeric literals

8.3.3.3.1 GeneralNumeric literals are of the class and category numeric.
8.3.3.3.2 Fixed-point numeric literalsA fixed-point numeric literal is a character-string whose characters are selected from the digits '0' through '9', the plus sign, the minus sign, and the decimal point. The implementor shall allow for fixed-point numeric literals of 1 through 31 digits in length. The rules for the formation and value of fixed-point numeric literals are as follows: 1) A literal shall contain at least one digit.2) A literal shall not contain more than one sign character. If a sign is used, it shall appear as the leftmost character of the literal. If the literal is unsigned, the literal is nonnegative.3) A literal shall not contain more than one decimal point. The decimal point is treated as an assumed decimal point, and may appear anywhere within the literal except as the rightmost character.4) The value of a fixed-point numeric literal is the algebraic quantity represented by the characters in the fixed-point numeric literal. The size of a fixed-point numeric literal is equal to the number of digits in the string of characters in the literal.An integer literal is a fixed-point numeric literal that contains no decimal point.
8.3.3.3.3 Floating-point numeric literalsThe rules for the formation and value of floating-point numeric literals are:1) A floating-point numeric literal is formed from two fixed-point numeric literals separated by the letter 'E' without intervening spaces.2) The literal to the left of the 'E' represents the significand. It may be signed and shall include a decimal point. The significand shall be from 1 to 36 digits in length. If the significand is signed, the floating-point numeric literal is considered to be signed. If the significand is unsigned, the floating-point numeric literal is considered to be positive.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

110 ©ISO/IEC 2023

3) The literal to the right of the 'E' represents the exponent. It may be signed and shall have a maximum of four digits and no decimal point. The maximum permitted value and minimum permitted value of the exponent is implementor-defined.4) If all the digits in the significand are zero, then all the digits of the exponent shall also be zero and neither significand nor exponent shall have a negative sign.5) The value of a floating-point numeric literal is the algebraic product of the value of its significand and the quantity derived by raising ten to the power of the exponent.
8.3.3.4 Boolean literals

8.3.3.4.1 GeneralBoolean literals are of the class and category boolean.
8.3.3.4.2 General formatFormat 1 (boolean)

Format 2 (hexadecimal-boolean)

8.3.3.4.3 Syntax rules ALL FORMATS1) The length of a boolean literal, excluding the separators that delimit the literal, shall be less than or equal to 8,191 boolean character positions.FORMAT 12) Boolean-character-1 shall be a boolean character, '0' or '1', from the computer's coded character set.FORMAT 23) Hexadecimal-digit-1 shall be a hexadecimal digit.NOTE Hexadecimal-boolean literals can be of zero length.

B"[boolean-character-1] ... "B'[boolean-character-1] ... '

BX"[hexadecimal-digit-1] ... "BX'[hexadecimal-digit-1] ... '

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 111

8.3.3.4.4 General rules ALL FORMATS 1) The separators that delimit the boolean literal are not included in the value of the boolean literal.2) Boolean literals are of the class and category boolean.FORMAT 13) If Boolean-character-1 is specified, the value of a boolean literal is the value of the sequence of occurrences of boolean-character-1.4) If boolean-character-1 is not specified, the literal is a zero-length literal.FORMAT 25) Each hexadecimal digit has the following boolean equivalent value: '0' is B"0000", '1' is B"0001", '2' is B"0010", '3' is B"0011", '4' is B"0100", '5' is B"0101", '6' is B"0110", '7' is B"0111", '8' is B"1000", '9' is B"1001", 'A' is B"1010", 'B' is B"1011", 'C' is B"1100", 'D' is B"1101", 'E' is B"1110", 'F' is B"1111".6) The value of the literal at runtime is the value of an equivalent boolean literal formed by replacing each hexadecimal digit by its boolean equivalent value, and replacing the leading BX" separator with the B" separator.7) If hexadecimal-digit-1 is not specified, the literal is a zero-length literal.
8.3.3.5 National literals

8.3.3.5.1 GeneralNational literals are of the class and category national.
8.3.3.5.2 General formatFormat 1 (national)

N"[character-1] ... "N'[character-1] ... '

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

112 ©ISO/IEC 2023

Format 2 (hexadecimal-national)

8.3.3.5.3 Syntax rules ALL FORMATS1) The length of a national literal, excluding the separators that delimit the literal, shall be less than or equal to 8,191 national character positions.2) Character-1 may be:— any character in the national coded character set that the implementor has designated for source code representation— any character in the alphanumeric coded character set that the implementor has designated for source code representation such that a correspondence exists between that alphanumeric character and a national character.NOTE 1 The implementor can choose to represent the source code entirely in a national coded character set or in a mix of alphanumeric and national coded character sets. The content of a national literal can be coded in either representation and stored in national representation. For example, a literal of the form N'ABC' can be represented in single-byte characters and stored as UTF-16. This is essential in order to allow source code to be represented in a coded character set such as UTF-8, but is not restricted to that case.FORMAT 13) Two contiguous quotation symbol characters matching the quotation symbol used in the opening delimiter represent a single occurrence of that quotation symbol character in the content of the literal.The two contiguous quotation symbol characters shall be in the same coded character set representation as the opening quotation symbol.FORMAT 24) Hex-character-sequence-1 shall be composed of hexadecimal digits.5) Each hex-character-sequence-1 shall consist of the number of hexadecimal digits that the implementor has specified as the number of hexadecimal digits that map to a national character.NOTE 2 Hexadecimal-national literals can be of zero length.
8.3.3.5.4 General rules ALL FORMATS1) The separators that delimit the national literal are not included in the value of the national literal.

NX"[hex-character-sequence-1] ... "NX'[hex-character-sequence-1] ... '

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 113

2) National literals are of the class and category national.FORMAT 13) If character-1 is not specified, the literal is a zero-length literal. If character-1 is specified, the following rules apply:a) The value of the literal at compile time is the string of occurrences of character-1, represented in the computer's compile-time coded character set defined by the implementor for usage NATIONAL. Control functions, if any, that switch character set encoding are not included in the value of the literal.b) The value of the literal at runtime is the string of national characters that results from converting the compile-time value of the literal to its runtime equivalent, as described in 8.1.2, Computer's coded character set.FORMAT 24) If hex-character-sequence-1 is not specified the literal is a zero-length literal, else the value of the literal at runtime shall be a string of national characters, each of which has the bit configuration specified by one occurrence of hex-character-sequence-1.5) The implementor defines the result of specifying a hex-character-sequence-1 for which no corresponding character in that coded character set exists. The implementor also defines the mapping of each hex-character-sequence-1 to a character, when the characters do not occupy a multiple of four bits.
8.3.3.6 Figurative constant values

8.3.3.6.1 GeneralFigurative constant values are generated by the compiler and referenced through the use of the reserved words given below.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

114 ©ISO/IEC 2023

8.3.3.6.2 General formatFormat 1 (zero):

Format 2 (space):

Format 3 (high-value):

Format 4 (low-value):

Format 5 (quote):

Format 6 (all-literal):
Format 7 (symbolic-character):
8.3.3.6.3 Syntax rulesALL FORMATS1) A figurative constant may be used whenever 'literal' appears in a format or when a rule allows it,

ALL ZEROZEROESZEROS

ALL SPACESPACES

ALL HIGH-VALUEHIGH-VALUES

ALL LOW-VALUELOW-VALUES

ALL QUOTEQUOTES

ALL literal-1
ALL symbolic-character-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 115

with the following restrictions:a) If the literal is restricted to a numeric literal, the only figurative constant permitted is ZERO (ZEROS, ZEROES) without the ALL phrase.b) A figurative constant shall not be specified where a syntax rule prohibits it.FORMAT 62) Literal-1 shall be an alphanumeric, boolean, or national literal, any of which may be a concatenation expression. The literal shall be neither a figurative constant nor a zero-length literal.3) If the length of literal-1 is greater than one, it is not permitted to be associated with a numeric or numeric-edited item.FORMAT 74) Symbolic-character-1 shall be specified in the SYMBOLIC CHARACTERS clause of the SPECIAL-NAMES paragraph.
8.3.3.6.4 General rulesALL FORMATS1) When a figurative constant is used in a context requiring national characters, the figurative constant represents a national character value. Otherwise, when a figurative constant represents a character value, the figurative constant represents an alphanumeric character value. In both cases, the character value representation of the figurative constant ZERO (ZEROS, ZEROES), SPACE (SPACES), and QUOTE (QUOTES) is the value of the character '0', space, and '"', respectively, in the computer's runtime coded character set. The implementor shall specify the unique representation of ZERO, SPACE, and QUOTE in the computer's alphanumeric and national coded character sets.2) When a figurative constant represents a string of one or more characters and the length of the string is specified in the rules for the context in which the figurative constant is used, then when this figurative constant is specified in a VALUE clause or in association with a fixed-length data item, literal, or intermediate result, the string of characters is repeated character by character until the size of the resultant string is greater than or equal to the number of character positions in the associated data item, literal, or intermediate result. This resultant string is then truncated from the right until the number of character positions remaining is equal either to 1 or to the number of character positions in the associated data item, literal, or intermediate result, whichever is greater. This is done prior to and independent of the application of any JUSTIFIED clause that may be associated with the data item.NOTE 1 A figurative constant is associated with a data item or literal when, for example, the figurative constant is moved to it, compared with it, or paired with it in a binary operation.3) When a figurative constant represents a string of one or more characters and the length of the string is not specified in the rules for the context in which the figurative constant is used, the length of the string is determined from context by applying the following rules in order:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

116 ©ISO/IEC 2023

a) When a figurative constant is specified in a concatenation expression, the length of the string is one character.b) When a figurative constant is other than ALL literal-1, the length of the string is one character.NOTE 2 For example, when the figurative constant appears in a DISPLAY, STOP, STRING, or UNSTRING statement, it is one character.c) The length of the string is the length of literal-1.FORMAT 14) The zero format represents the numeric value '0', one or more of the boolean character '0', or one or more of the character '0' in the computer's runtime coded character set, depending on context.FORMAT 25) The space format represents one or more of the character space in the computer's runtime coded character set.FORMAT 36) At compile time and when referenced in the SPECIAL-NAMES paragraph, the high-value format represents the character, or multiple-character combination, that has the highest ordinal position in the collating sequence used during compilation.At runtime, when referenced outside the SPECIAL-NAMES paragraph, the high-value format represents the character, or multiple-character combination, that has the highest ordinal position in the runtime collating sequence.When locale category LC_COLLATE is in effect for the program collating sequence, HIGH-VALUES is the character, or multiple-character combination, that has the highest ordinal position in the collating sequence specified by the locale in effect.If the context of the figurative constant requires national characters, the national program collating sequence is used; otherwise, the alphanumeric program collating sequence is used.FORMAT 47) At compile time and when referenced in the SPECIAL-NAMES paragraph, the low-value format represents the character, or multiple-character combination, that has the lowest ordinal position in the collating sequence used during compilation.At runtime, when referenced outside the SPECIAL-NAMES paragraph, the low-value format represents the character, or multiple-character combination, that has the lowest ordinal position in the runtime collating sequence.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 117

When locale category LC_COLLATE is in effect for the program collating sequence, LOW-VALUES is the character, or multiple-character combination, that has the lowest ordinal position in the collating sequence specified by the locale in effect.If the context of the figurative constant requires national characters, the national program collating sequence is used; otherwise, the alphanumeric program collating sequence is used.FORMAT 58) The quote format represents one or more of the quotation mark character ' " ' in the computer's runtime coded character set. The word QUOTE or QUOTES shall not be used in place of a quotation symbol to bound a literal.FORMAT 69) The all-literal format represents all or part of the string generated by successive concatenations of the characters comprising literal-1.FORMAT 710) The symbolic-character format represents one or more of the character specified as the value of symbolic-character-1 in the SYMBOLIC CHARACTERS clause of the SPECIAL-NAMES paragraph.
8.3.4 Picture character-stringsA picture character-string consists of certain symbols that are composed of the currency symbol and certain combinations of characters in the COBOL character repertoire. An explanation of the picture character-string and the rules that govern its use are given in 13.18.40, PICTURE clause.
8.3.5 SeparatorsA separator is one of the following, except when appearing in a literal:1) The COBOL character space is a separator. Anywhere a space is used as a separator or as part of a separator, more than one space may be used. All spaces immediately following the separators comma, semicolon, or period are considered part of that separator and are not considered to be the separator space.2) The COBOL characters comma and semicolon, immediately followed by a space, are separators that may be used anywhere the separator space is used. They may be used to improve readability.3) The COBOL character period, when followed by a space, is a separator. The separator period shall be used only to indicate the end of a sentence, or as shown in formats.4) Except when appearing in a picture character-string, the COBOL characters right parenthesis and left parenthesis are separators. Except in pseudo-text, parentheses may appear only in balanced pairs of left and right parentheses delimiting subscripts, a list of function or method arguments, a reference modifier, arithmetic or boolean expressions, or conditions.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

118 ©ISO/IEC 2023

5) The opening delimiters and closing delimiters of literals are separators. Either an apostrophe or a quotation mark may be used as the quotation symbol character in opening and closing delimiters.The opening delimiters of literals are:— a quotation symbol— the two contiguous characters B", B', N", N', X", and X'— the three contiguous characters BX", BX', NX", and NX'The closing delimiters of literals are:— a quotation mark when the opening delimiter uses a quotation mark— an apostrophe when the opening delimiter uses an apostropheThe opening delimiter shall be immediately preceded by a space, left parenthesis, or opening pseudo-text delimiter. The closing delimiter shall be immediately followed by one of the separators space, comma, semicolon, period, right parenthesis, or closing pseudo-text delimiter. Separators immediately preceding the opening delimiter are not part of the opening delimiter. Separators immediately following the closing delimiter are not part of the closing delimiter.6) Pseudo-text delimiters are separators. An opening pseudo-text delimiter shall be immediately preceded by a space; a closing pseudo-text delimiter shall be immediately followed by one of the separators space, comma, semicolon, or period. Pseudo-text delimiters may appear only in balanced pairs delimiting pseudo-text.7) The COBOL character colon, except as part of the invocation operator, is a separator and is required when shown in the general formats. 8) The separator space may optionally immediately precede all separators except:a) As specified by reference format rules (See Clause 6, Reference format.)b) The closing delimiter of a literal. In this case, a preceding space is considered as part of the literal and not as a separator.c) The opening pseudo-text delimiter, where the preceding space is required.d) The terminating period of a data description entry that ends with a PICTURE clause that contains a comma or period as the last character of the picture character-string.9) The separator space may optionally immediately follow any separator except the opening delimiter of a literal. A space following the opening delimiter of a literal is part of the literal and not a separator.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 119

8.4 References

8.4.1 GeneralReferences identify elements referred to during compilation of source unit or execution of a run unit. The reserved words and types of names specified in 8.3, Lexical elements, are forms of reference. Additional forms of reference are identifiers and condition-names.
8.4.2 Uniqueness of reference

8.4.2.1 GeneralEvery user-defined name in a source element is assigned, by the user, to name a resource that is to be used in solving a data processing problem. (See 8.3.2.2, User-defined words.) In order to use a resource, a statement shall contain a reference that uniquely identifies that resource. In order to ensure specificity of reference, a user-defined name may be qualified, subscripted, or reference-modified as described in the following paragraphs.When the same name has been assigned in separate source elements to two or more occurrences of a resource of a given type, and when qualification by itself does not allow the reference in one of those source elements to differentiate between the two identically named resources, then certain conventions that limit the scope of names apply. These conventions ensure that the resource identified is that described in the source element containing the reference. (See 8.4.6, Scope of names.)The same name shall not be used both as the name of an external record and as the name of any other external data item described in the run unit. The same name shall not be used both as the name of an item possessing the global attribute and as the name of any other data item described in the source element that describes that global data item.
8.4.2.2 Qualification

8.4.2.2.1 GeneralQualification is used to allow unique reference of user names. Qualification is the specification of superordinate names from the hierarchy to which a user-defined name belongs. The superordinate names are called qualifiers. Identical user-defined names may be specified in a source unit; however, uniqueness shall be established through qualification for each user-defined name explicitly referenced, except as specified in rules 2 through 6. All available qualifiers need not be specified so long as uniqueness is established.Qualification of a user-defined name is required unless one of the following is true:1) No other name has the identical spelling.2) It is unique within the context of a REDEFINES clause.3) It is unique within the context of a VARYING clause.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

120 ©ISO/IEC 2023

4) Any other definition of the name is subordinate to a type declaration entry for which the type-name is not referenced in any TYPE clause in the source unit.5) The name is a data-name referenced in a data description entry clause whose subject is subordinate to the same group item as that data-name. In this case, the names of any group items superordinate to both the data-name and the subject of the data description entry clause are used as implicit qualifiers for the reference, in addition to any explicit qualifiers needed to establish uniqueness within that group.6) The name is a paragraph-name and the section containing the reference also contains the named paragraph.
8.4.2.2.2 General formatFormat 1 (qualified-data-name):
Format 2 (qualified-condition-name):
Format 3 (qualified-index-name):
Format 4 (qualified-procedure-name):

Format 5 (qualified-screen-name):

Format 6 (qualified-record-key-name):

data-name-1 [data-qualifier] ... [file-report-qualifier]
condition-name-1 [data-qualifier] ...[file-name-1]
index-name-1 [data-qualifier] ...[file-report-qualifier]
 paragraph-name-1 INOF

 section-name-1

screen-name-1 INOF

 screen-name-2

 record-key-name-1 INOF

 file-name-2

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 121

Format 7 (qualified-linage-counter):

Format 8 (qualified-report-counter):

where data-qualifier is:

where file-report-qualifier is:

8.4.2.2.3 Syntax rules1) For each non unique user-defined name that is explicitly referenced, uniqueness shall be established through a sequence of qualifiers that precludes any ambiguity of reference.2) A name may be qualified even though it does not need qualification; if there is more than one combination of qualifiers that ensures uniqueness, then any such set may be used.3) The words IN and OF are equivalent.4) Each data-name-2 shall be the name associated with a level number to which the item being qualified is subordinate. Qualifiers shall be specified in the order of successively more inclusive levels in the hierarchy. For purposes of item qualification, the hierarchy of an item declared at level 88 includes the conditional variable with which it is associated, and progresses through the successively more inclusive levels of the hierarchy of that conditional variable.5) The qualification of a condition-name may include the conditional variable with which the condition-name is associated, as well as by any name by which that conditional variable may be qualified.6) The qualification of an index-name may include the name of the table with which the index-name is associated, as well as any name by which that table may be qualified.

 LINAGE-COUNTER INOF

 file-name-3

 PAGE-COUNTERLINE-COUNTER

 INOF

 report-name-2

INOF

 data-name-2

INOF

 file-name-1report-name-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

122 ©ISO/IEC 2023

7) If explicitly referenced, a paragraph-name shall not be duplicated within a section. A paragraph-name need not be qualified when referred to from within the same section.8) LINAGE-COUNTER shall be qualified if more than one file description entry containing a LINAGE clause may be referenced within the source element in which the reference to LINAGE-COUNTER occurs.9) LINE-COUNTER shall be qualified each time it is referenced in the procedure division if more than one report description entry is specified in the source element. In the report section, an unqualified reference to LINE-COUNTER is qualified implicitly by the name of the report in whose report description entry the reference is made. Whenever the LINE-COUNTER of a different report is referenced, LINE-COUNTER shall be qualified explicitly by the report-name associated with the different report.10) PAGE-COUNTER shall be qualified each time it is referenced in the procedure division if more than one report description entry is specified in the source element. In the report section, an unqualified reference to the PAGE-COUNTER is qualified implicitly by the name of the report in whose report description entry the reference is made. Whenever the PAGE-COUNTER of a different report is referenced, PAGE-COUNTER shall be qualified explicitly by the report-name associated with the different report.
8.4.2.3 Subscripts

8.4.2.3.1 GeneralSubscripts are used when reference is made to an individual element within a table of like elements.
8.4.2.3.2 General formatFormat 1 (qualified-data-name-with-subscripts):
Format 2 (qualified-condition-name-with-subscripts):
where subscript is:

qualified-data-name-1 [(subscript ...)]
qualified-condition-name-1 [(subscript ...)]

ALLarithmetic-expression-1
index-name-1 +-

 integer-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 123

NOTE Qualified-data-name-1 and qualified-condition-name-1 are shown for context and are not part of the subscript general format.
8.4.2.3.3 Syntax rules1) Qualified-data-name-1 and qualified-condition-name-1 are defined in 8.4.2.2, Qualification.2) If a subscript is specified, the data description entry describing qualified-data-name-1 or the conditional variable associated with qualified-condition-name-1 shall contain an OCCURS clause or shall be subordinate to a data description entry that contains an OCCURS clause.3) Except as defined in Syntax rule 5, when a reference is made to a table element, the number of subscripts shall equal the number of OCCURS clauses in the description of the table element being referenced. This allows a maximum of seven subscripts to be specified. When more than one subscript is required, the subscripts are written in the order of successively less inclusive dimensions of the table.4) Index-name-1 shall correspond to a data description entry in the hierarchy of the table being referenced that contains an INDEXED BY phrase specifying that index-name.5) Each table element reference shall be subscripted except when such reference appears:a) As the subject of a SEARCH statement.b) In a REDEFINES clause.c) In the KEY IS phrase of an OCCURS clause.d) In the KEY phrase of a SORT statement that references a table.e) As the subject of a SORT statement that references a table where the rightmost subscript is not the word ALL. If the rightmost subscript is the word ALL, the number of subscripts is equal to one less than the number of OCCURS clauses in the description of the table element being referenced.f) In the FROM, TO, or USING clause of a screen description entry when the subject of the entry has an OCCURS clause.g) As a data-name addend in the SUM clause of a report description entry.6) The subscript ALL may be used only:— When the subscripted identifier is used as an intrinsic function argument, or— as the rightmost or only subscript of a table in the table format of a SORT statement. This is equivalent to omitting the rightmost or only subscript in this context.7) ALL shall not be specified if qualified-condition-name-1 is specified.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

124 ©ISO/IEC 2023

8) In the report section, neither a sum counter nor the LINE-COUNTER and PAGE-COUNTER identifiers may be used as a subscript.
8.4.2.3.4 General rules1) A subscript is determined as follows:a) If ALL is specified, the subscript is all of the possible values of a subscript for the associated table as specified in the rules for the functions for which the subscript ALL is allowed.b) If arithmetic-expression-1 is specified, the subscript is the result of the evaluation of arithmetic-expression-1. If the evaluation of arithmetic-expression-1 does not result in an integer, the EC-BOUND-SUBSCRIPT exception condition is set to exist.c) If index-name-1 is specified, the subscript is the occurrence number represented by the value of the index referenced by index-name-1 modified by integer-1, if specified. The mapping of the value of the index referenced by index-name-1 to an occurrence number is defined by the implementor. If integer-1 is specified, the subscript is the occurrence number derived from the index incremented by the value of integer-1 (when the operator + is used) or decremented by the value of integer-1 (when the operator – is used).2) The value of a subscript shall be a positive integer. The lowest possible occurrence number represented by a subscript is 1, which identifies the first element of any given dimension of a table. Each successive element within that dimension of the table is referenced by occurrence numbers of 2, 3, The highest permissible occurrence number for any given dimension of a fixed-capacity or occurs-depending table is the maximum number of occurrences of the item as specified in the associated OCCURS clause. The highest permissible occurrence number for any given dimension of a dynamic-capacity table is implementor-defined and may be affected by the availability of runtime resources. If the value of the subscript is not a positive integer or is less than one or is greater than the highest permissible occurrence number, the EC-BOUND-SUBSCRIPT exception condition is set to exist.
8.4.3 Identifiers

8.4.3.1 Identifier

8.4.3.1.1 GeneralAn identifier is a sequence of character-strings and separators used to reference a data item uniquely.
8.4.3.1.2 General formatFormat 1 (function-identifier):
Format 2 (qualified-data-name-with-subscripts):function-identifier-1
qualified-data-name-with-subscripts-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 125

Format 3 (reference-modification):
Format 4 (inline-method-invocation):
Format 5 (object-view):
Format 6 (predefined-object):

Format 7 (object-property):
Format 8 (predefined-address)
Format 9 (address-identifier)

Format 10 (qualified-linage-counter):
Format 11 (qualified-report-counter):

identifier-1 reference-modifier-1
inline-invocation-1
identifier-2 object-view-1

EXCEPTION-OBJECTNULLSELF[object-class-name-1 OF] SUPER

property-name-1 OF identifier-3
NULL

data-address-identifier-1program-address-identifier-1

qualified-linage-counter-1
qualified-report-counter-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

126 ©ISO/IEC 2023

8.4.3.1.3 Syntax rulesALL FORMATS1) Identifier is defined recursively: whenever the format for an identifier allows another identifier to be specified, that other identifier may be any of the formats for an identifier, including the one being defined provided the rules for each format are followed.FORMAT 12) Function-identifier-1 is defined by 8.4.3.2, Function-identifier.FORMAT 23) Qualified-data-name-with-subscripts-1 is defined by 8.4.2.3, Subscripts.FORMAT 34) Reference-modifier-1 is defined by 8.4.3.3, Reference-modification.FORMAT 45) Inline-invocation-1 is defined by 8.4.3.4, Inline method invocation.FORMAT 56) Object-view-1 is defined by 8.4.3.5, Object-view.FORMAT 67) Predefined-object references are defined by 8.4.3.6, EXCEPTION-OBJECT; 8.4.3.7, NULL object reference; and 8.4.3.8, SELF and SUPER.FORMAT 78) Object properties are defined by 8.4.3.9, Object property.FORMAT 89) Predefined-address NULL is defined in 8.4.3.10, NULL address pointer and message tag content.FORMAT 910) Address-identifiers are defined by 8.4.3.11, Data-address-identifier and 8.4.3.13, Program-address-identifier.FORMAT 1011) Qualified-linage-counter-1 is defined in 8.4.2.2, Qualification.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 127

FORMAT 1112) Qualified-report-counter-1 is defined in 8.4.2.2, Qualification.
8.4.3.1.4 General rules1) The order in which the various components of an identifier are applied is as follows, with the first to be applied listed first:a) a qualified-data-name-with-subscript; a predefined-object reference; a function-identifier without arguments; a qualified-report-counter; or a qualified-linage-counterb) an address-identifier applies to an identifier on the rightc) an object-view applies to the identifier on the leftd) OF for object properties applies the property-name on the left to the identifier on the righte) the inline method invocation operator applies the literal method-name with optional arguments enclosed in parentheses on the right to the identifier on the leftf) a function-identifier with arguments applies the function-name on the left to a list of arguments enclosed in parentheses on the rightg) a reference modifier applies to the identifier on the left.
8.4.3.2 Function-identifier

8.4.3.2.1 GeneralA function-identifier references the unique data item that results from the evaluation of a function.
8.4.3.2.2 General format

8.4.3.2.3 Syntax rules1) A function-identifier shall not be specified as a receiving operand.2) If intrinsic-function-name-1 or the ALL phrase is specified in the REPOSITORY paragraph or if function-prototype-name-1 or function-pointer-name-1 is specified, the word FUNCTION may be omitted from the function-identifier; otherwise the word FUNCTION is required.

[FUNCTION] function-pointer-name-1function-prototype-name-1intrinsic-function-name-1

 argument-1 OMITTED ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

128 ©ISO/IEC 2023

3) Function-prototype-name-1 shall be the user-function-name of the containing function definition or a function prototype specified in the REPOSITORY paragraph.4) Function-pointer-name-1 shall be defined as a function-pointer data item.5) If function-pointer-name-1 is specified, the parentheses shall be specified.6) If a function's definition permits arguments and a left parenthesis immediately follows function-prototype-name-1 or intrinsic-function-name-1, the left parenthesis is always treated as the left parenthesis of that function's arguments.NOTE For a function that may be referenced either with or without arguments, such as the RANDOM function, careful coding is necessary to ensure correct interpretation. For example, in the following:FUNCTION MAX (FUNCTION RANDOM (A) B)'A' is treated as an argument to the RANDOM function. If 'A' is instead meant to be a second argument to the MAX function, different coding is necessary - either:FUNCTION MAX ((FUNCTION RANDOM) (A) B)orFUNCTION MAX (FUNCTION RANDOM () A B)orFUNCTION MAX (FUNCTION RANDOM A B).7) The word OMITTED shall not be specified if intrinsic-function-name-1 is specified.8) Argument-1 shall be an identifier, a literal, a boolean expression, or an arithmetic expression. Specific rules governing the number, class, category, and type of argument-1 are given for intrinsic functions in the definition of that intrinsic function in Clause 15, Intrinsic functions, and for user-defined functions in 14.8.2, Parameters and 14.8.3, Returning items.9) If the word OMITTED is specified, the OPTIONAL phrase shall be specified for the corresponding formal parameter.10) If function-prototype-name-1 or function-pointer-name-1 is specified and the formal parameter corresponding to argument-1 is specified with a BY VALUE phrase, argument-1 shall be of class numeric, object, or pointer.11) A numeric function shall not be specified where an integer operand is required, even though a particular reference of the numeric function might yield an integer value. 12) An integer function other than the integer form of the ABS function shall not be specified where an unsigned integer is required.13) If function-prototype-name-1 or function-pointer-name-1 is specified, the rules for conformance specified in 14.8.2, Parameters and 14.8.3, Returning items, apply.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 129

14) If function-prototype-name-1 or function-pointer-name-1 is specified and the formal parameter corresponding to argument-1 is specified with the BY REFERENCE phrase in the USING phrase of the procedure division header and argument-1 is a bit data item, argument-1 shall be described such that it is aligned on a byte boundary and that subscripting and the leftmost position in a reference modification of argument-1 consist of only numeric literals or arithmetic expressions whose result is a positive integer, in which all operands are numeric literals, and in which the exponentiation operator is not specified.
8.4.3.2.4 General rules1) A function-identifier references a temporary data item whose value is determined when the function is referenced at runtime.If intrinsic-function-name-1 is specified, the temporary data item is an elementary data item whose description and category are specified by the definition of that intrinsic function in Clause 15, Intrinsic functions.If function-prototype-name-1 is specified, the description, class, and category of the temporary data item is that specified by the description in the linkage section of the item specified in the RETURNING phrase of the procedure division header of the function prototype identified by function-prototype-name-1.If function-pointer-name-1 is specified, the description, class, and category of the temporary data item is that specified by the description in the linkage section of the item specified in the RETURNING phrase of the procedure division header of the function prototype identified by the TO phrase of the USAGE clause in the definition of function-pointer-name-1.2) At the time reference is made to a function, its arguments are evaluated individually in the order specified in the list of arguments, from left to right. An argument being evaluated may itself be a function-identifier or may be an expression containing function-identifiers. There is no restriction preventing the function referenced in evaluating an argument from being the same function as that for which the argument is specified. Additional rules for intrinsic functions are given in Clause 15, Intrinsic functions, for user-defined functions in 14.2.3, General rules of the procedure division and in 14.8.2, Parameters and 14.8.3, Returning items.3) If function-prototype-name-1 is specified, the function to be activated is identified by function-prototype-name-1 in accordance with the rules specified in 12.3.8, REPOSITORY paragraph, and function-prototype-name-1 is used to determine the characteristics of the activated function.4) If function-pointer-name-1 is specified, the function prototype specified in the TO phrase of the USAGE clause in the definition of function-pointer-name-1 is used to determine the characteristics of the activated element and the function to be activated.5) If function-prototype-name-1 or function-pointer-name-1 is specified, the manner used for passing each argument is determined as follows:a) BY REFERENCE is assumed when the BY REFERENCE phrase is specified or implied for the corresponding formal parameter and argument-1 is an identifier that is permitted as a receiving operand, other than an object property or object data item.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

130 ©ISO/IEC 2023

b) BY CONTENT is assumed when the BY REFERENCE phrase is specified or implied for the corresponding formal parameter and argument-1 is a literal, an arithmetic expression, a boolean expression, an object property, object data item, or any identifier that is not permitted as a receiving operand.c) BY VALUE is assumed when the BY VALUE phrase is specified for the corresponding formal parameter.6) Evaluation of the function-identifier proceeds as follows:a) Each argument-1 is evaluated at the beginning of the evaluation of the function-identifier. If an exception condition exists, no function is activated and execution proceeds as specified in General rule 6f. If an exception condition does not exist, the values of argument-1 are made available to the activated function at the time control is transferred to that function. b) If function-prototype-name-1 or function-pointer-name-1 is specified, the runtime system attempts to locate the function being activated. If function-prototype-name-1 is specified, the rules are specified in 8.4.6, Scope of names and 8.4.6.6, Scope of function-prototype-names. Additional rules are given in 12.3.8, REPOSITORY paragraph. If the function is not found, the EC-FUNCTION-NOT-FOUND exception condition is set to exist, the function is not activated, and execution continues as specified in General rule 6f.c) If the function is located but the resources necessary to execute the function are not available, the EC-PROGRAM-RESOURCES exception condition is set to exist, the function activation is not successful, and execution continues as specified in General rule 6f. The runtime resources that are checked in order to determine the availability of the function for execution are defined by the implementor. If function-pointer-name-1 is specified, the runtime system attempts to execute the function at the address pointed to by function-pointer-name-1. If function-pointer-name-1 is NULL, the EC-FUNCTION-PTR-NULL exception condition is set to exist, no function is activated, and execution continues as specified in General rule 6f.d) The function specified by the function-identifier is made available for execution and control is transferred to the activated function in a manner consistent with the entry convention specified for the function. If function-prototype-name-1 or function-pointer-name-1 is specified and the function to be activated is a COBOL function, its execution is described in 14.2.3, General rules of the procedure division; if intrinsic-function-name-1 is specified, its execution is described in Clause 15, Intrinsic functions; if function-prototype-name-1 or function-pointer-name-1 is specified and the function to be activated is not a COBOL function, the execution is defined by the implementor.e) After control is returned from the activated function, if an exception condition is propagated from the activated function, execution continues as specified in General rule 6f.f) If an exception condition exists, any declarative or WHEN phrase of a PERFORM statement that is associated with that exception condition is executed. Execution then proceeds as defined for the exception condition and execution of the declarative or WHEN phrase of the PERFORM statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 131

7) If the word OMITTED is specified or a trailing argument is omitted, the omitted-argument condition for that parameter evaluates to TRUE in the activated function. (See 8.8.4.8, Simple omitted argument condition.)8) If a parameter for which the omitted-argument condition is true is referenced in an activated function, except as an argument or in the omitted-argument condition, the EC-FUNCTION-ARG-OMITTED exception condition is set to exist and the results of the execution of the function are undefined.
8.4.3.3 Reference-modification

8.4.3.3.1 GeneralReference modification defines a unique data item by specifying an identifier, a leftmost position, and a length.
8.4.3.3.2 General format

8.4.3.3.3 Syntax rules1) Identifier-1 shall reference a data item that is one of the following: — a boolean data item,— a national data item,— an elementary data item of category alphanumeric or an alphanumeric group item,— an alphabetic data item,— a numeric-edited data item that is not subordinate to a strongly-typed group item,— an alphanumeric-edited data item that is not subordinate to a strongly-typed group item,— a national-edited data item that is not subordinate to a strongly-typed group item,— a numeric data item of usage display or national that is not subordinate to a strongly-typed group item,— a group item that is neither a strongly-typed group nor a variable-length group.For reference modification, bit group items and national group items are treated as elementary data items.2) If identifier-1 is a function-identifier, it shall reference an alphanumeric, boolean, or national function.3) Identifier-1 shall not be a reference-modification format identifier.4) Leftmost-position and length shall be arithmetic expressions.5) Unless otherwise specified, reference modification is allowed anywhere an identifier referencing a data item of class alphanumeric, boolean, or national is permitted.

identifier-1(leftmost-position : [length])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

132 ©ISO/IEC 2023

NOTE Because the references to data items are restricted to identifiers, where data-name-n is used in a general format or syntax rule, then reference-modification is not permitted.
8.4.3.3.4 General rules1) Leftmost-position represents a boolean position, alphanumeric position, or national position when identifier-1 references a boolean, alphanumeric, or national data item, respectively. 2) If the data item referenced by identifier-1 is explicitly or implicitly described as usage DISPLAY and its category is other than alphanumeric, identifier-1 is operated upon for purposes of reference modification as if it were redefined as a data item of class and category alphanumeric of the same size as the data item referenced by identifier-1. 3) If the data item referenced by identifier-1 is explicitly or implicitly described as usage NATIONAL and its category is other than national, it is operated upon for purposes of reference modification as if it were redefined as a data item of class and category national of the same size as the data item referenced by identifier-1.4) Each position of the data item referenced by identifier-1 is assigned an ordinal number incrementing by one from the leftmost position to the rightmost position. The leftmost position is assigned the ordinal number one. If the data description entry for identifier-1 contains a SIGN IS SEPARATE clause, the sign position is assigned an ordinal number within that data item.5) Reference modification creates a unique data item that is a subset of the data item referenced by identifier-1. This unique data item is defined as follows:a) If the usage of identifier-1 is bit, positions used in evaluation are bit positions; otherwise, positions used in evaluation are character positions.b) The evaluation of leftmost-position specifies the ordinal position of the leftmost bit or character of the unique data item in relation to the leftmost bit or character of the data item referenced by identifier-1. Evaluation of leftmost-position shall result in a positive nonzero integer less than or equal to the number of positions in the data item referenced by identifier-1.c) The evaluation of length specifies the number of bit positions or character positions of the data item to be used in the operation. The evaluation of length shall result in a positive nonzero integer, unless the REF-MOD-ZERO-LENGTH directive is set to ON, when the result may also be zero. The sum of leftmost-position and length minus the value one shall be less than or equal to the number of positions in the data item referenced by identifier-1. If length is not specified, the unique data item extends from and includes the position identified by leftmost-position up to and including the rightmost position of the data item referenced by identifier-1.If the evaluation of leftmost-position or length results in a non-integer value, a zero value, or a value that references a position outside the area of identifier-1, the EC-BOUND-REF-MOD exception condition is set to exist. However, when the REF-MOD-ZERO-LENGTH directive is in effect, a zero-length result is allowed.NOTE When the runtime coded character set is the UTF-16 format of the UCS, the COBOL system treats the two halves of a surrogate pair as separate character position as specified in 8.5.1.4, Limitations of character handling.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 133

6) The unique data item is considered to be an elementary data item without the JUSTIFIED clause. The unique data item has the same class, category, and usage as that defined for identifier-1, except that:a) the category alphanumeric-edited is considered class and category alphanumeric,b) the category national-edited is considered class and category national,c) the categories numeric and numeric-edited are considered class and category national if the usage is national; otherwise they are considered class and category alphanumeric.
8.4.3.4 Inline method invocation

8.4.3.4.1 GeneralInline method invocation references a temporary data item returned from invocation of a method.
8.4.3.4.2 General format

8.4.3.4.3 Syntax rules1) Inline method invocation shall not be specified as a receiving operand.2) Identifier-1 shall be of class object; neither the predefined object reference NULL nor a universal object reference shall be specified.3) One of the INVOKE statements specified in General rule 1 shall be valid according to 14.9.23, INVOKE statement, syntax rules.4) The data item referenced in the RETURNING phrase of the invoked method's procedure division header shall not be described with the ANY LENGTH clause or with the ACTIVE-CLASS phrase.
8.4.3.4.4 General rules1) An inline method invocation references a temporary data item with the same class, category, and content as the temp-identifier that would be returned from the execution of the applicable form of INVOKE statement, as follows:

INVOKE identifier-1 literal-1 USING arguments RETURNING temp-identifier
INVOKE identifier-1 literal-1 RETURNING temp-identifier

object-class-name-1identifier-1

 :: literal-1 (arithmetic-expression-1boolean-expression-1identifier-2literal-2OMITTED

)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

134 ©ISO/IEC 2023

INVOKE object-class-name-1 literal-1 USING arguments RETURNING temp-identifier
INVOKE object-class-name-1 literal-1 RETURNING temp-identifierwhere:a) arguments are the operands specified within parentheses in the inline method invocation, if any;b) temp-identifier has the same description, class, and category as the RETURNING parameter in the specification of the method identified by literal-1 and either identifier-1 or object-class-name-1;c) temp-identifier is a temporary item that exists for the purpose of effecting the inline invocation in this way and for no other purpose.2) If an exception occurs during the execution of a statement containing this format, the resumption point is the next executable statement.

8.4.3.5 Object-view

8.4.3.5.1 GeneralAn object-view causes an object reference to be treated as though it had the specified description. A runtime conformance check for this description will be done on the object.
8.4.3.5.2 General format

8.4.3.5.3 Syntax rules1) Identifier-1 shall be of class object; the predefined object references SUPER and NULL shall not be specified.2) An object-view shall not be specified as a receiving operand.
8.4.3.5.4 General rules1) This reference of identifier-1 is treated at compile-time as though it had the description specified by the AS phrase.2) If object-class-name-1 is specified without either of the optional phrases, identifier-1 is treated as though it were described as USAGE IS OBJECT REFERENCE object-class-name-1. If the object referenced by identifier-1 is not an object of object-class-name-1 or an object of a subclass of object-class-name-1, the EC-OO-CONFORMANCE exception condition is set to exist.

identifier-1 AS [FACTORY OF] object-class-name-1 [ONLY]interface-name-1UNIVERSAL

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 135

3) If the FACTORY phrase is specified and the ONLY phrase is not specified, identifier-1 is treated as though it were described as USAGE OBJECT REFERENCE FACTORY OF object-class-name-1. If the object referenced by identifier-1 is not the factory object of object-class-name-1 or the factory object of a subclass of object-class-name-1, the EC-OO-CONFORMANCE exception condition is set to exist.4) If the ONLY phrase is specified and the FACTORY phrase is not specified, identifier-1 is treated as though it were described as USAGE OBJECT REFERENCE object-class-name-1 ONLY. If the object referenced by identifier-1 is not an object of object-class-name-1, the EC-OO-CONFORMANCE exception condition is set to exist. 5) If both the FACTORY phrase and the ONLY phrase are specified, identifier-1 is treated as though it were described as USAGE OBJECT REFERENCE FACTORY OF object-class-name-1 ONLY. If the object referenced by identifier-1 is not the factory object of object-class-name-1, the EC-OO-CONFORMANCE exception condition is set to exist.6) If interface-name-1 is specified, identifier-1 is treated as though it were described as USAGE OBJECT REFERENCE interface-name-1. If the object referenced by identifier-1 does not implement interface-name-1, the EC-OO-CONFORMANCE exception condition is set to exist.7) If UNIVERSAL is specified, identifier-1 is treated as though it were described as USAGE OBJECT REFERENCE without any of the optional phrases to indicate the class or interface for objects referenced by identifier-1. The EC-OO-CONFORMANCE exception condition is not set to exist.
8.4.3.6 EXCEPTION-OBJECT

8.4.3.6.1 GeneralEXCEPTION-OBJECT is a predefined object reference that is used in a declarative procedure to reference the current exception object.
8.4.3.6.2 General format

8.4.3.6.3 Syntax rules1) EXCEPTION-OBJECT shall not be specified as a receiving operand.2) EXCEPTION-OBJECT is implicitly described as class object and category object reference, as an external data item, and as a universal object reference.
8.4.3.6.4 General rules1) EXCEPTION-OBJECT references the current exception object. If an exception object is not associated with the current exception, EXCEPTION-OBJECT is set to null.2) There is one instance of EXCEPTION-OBJECT in a run unit.

EXCEPTION-OBJECT

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

136 ©ISO/IEC 2023

8.4.3.7 NULL object reference

8.4.3.7.1 GeneralNULL is a predefined object reference that contains the null object reference value.
8.4.3.7.2 General format

8.4.3.7.3 Syntax rules1) NULL shall not be specified as a receiving operand.2) NULL is implicitly described as class object and category object reference, and is not a universal object reference.
8.4.3.7.4 General rule1) Predefined object reference NULL contains the null object reference value; this is a unique value defined by the implementor such that it is guaranteed to never reference an object.
8.4.3.8 SELF and SUPER

8.4.3.8.1 GeneralSELF and SUPER are predefined object references that reference the object on which the current method is executing.
8.4.3.8.2 General format

8.4.3.8.3 Syntax rules1) This identifier format may be specified only in a method definition.2) This identifier format shall not be specified as a receiving operand.3) SUPER may be specified only as the object in an object-property identifier or as the object used to invoke a method with the INVOKE statement or an inline invocation of a method.4) Object-class-name-1 shall be the name of a class specified in the INHERITS clause of the containing class definition.

NULL

SELFobject-class-name-1 OF SUPER

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 137

5) If the INHERITS clause of the containing class definition specifies more than one object-class-name, object-class-name-1 shall be specified.6) If the INHERITS clause of the containing class definition specifies only one object-class-name, object-class-name-1 may be specified.7) SELF and SUPER are both implicitly described as class object and category object reference, and are not universal object references.
8.4.3.8.4 General rules1) SELF and SUPER both reference the object that was used to invoke the method in which the reference to SELF or SUPER appears.2) If SELF is specified for a method invocation, the method resolution is based upon the set of methods defined for the runtime class of the object referenced by SELF.NOTE 1 The method resolution is not limited to the methods that are defined for the class that contains the method invocation. The object referenced by SELF at runtime can be an object of a subclass of the class that contains the invocation. Thus method invocation through the predefined object reference SELF uses the same method binding mechanism as is used for any other object identifier, based on the runtime class of the object.3) If SUPER is specified for a method invocation, the method resolution is based on the set of methods defined within the runtime class of the object that invoked the object referenced by SELF and ignores all the methods defined in the class containing the invocation and all the methods defined in any subclass of that class.NOTE 2 The invoked method will be one that is defined in a superclass.4) If object-class-name-1 is specified, the search for the method shall include only those methods defined for object-class-name-1.
8.4.3.9 Object property

8.4.3.9.1 GeneralObject properties provide a special syntax to get information out of and pass information back into an object. The mechanisms for accessing object properties are get property methods and set property methods. A get property method is a method explicitly defined with the GET PROPERTY phrase or a method implicitly generated for a data item described with the PROPERTY clause; a set property method is a method explicitly defined with the SET PROPERTY phrase or a method implicitly generated for a data item described with the PROPERTY clause.
8.4.3.9.2 General format

property-name-1 OF object-class-name-1identifier-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

138 ©ISO/IEC 2023

8.4.3.9.3 Syntax rules1) Property-name-1 shall be an object property specified in the REPOSITORY paragraph.2) Identifier-1 shall be an object reference; neither a universal object reference nor the predefined object reference NULL shall be specified.3) If the object property is used as a sending item, a get property method shall exist for property-name-1 in the object referenced by identifier-1 or in the factory object of the object class object-class-name-1.4) If the object property is used as a receiving item, a set property method shall exist for property-name-1 in the object referenced by identifier-1 or in the factory object of the object class object-class-name-1.5) The description of an object property used as a sending item is the same as the description of the returning item of the get property method. This object property may be specified wherever a data item with that description would be valid as a sending item.6) The description of an object property used as a receiving item is the same as the description of the USING parameter of the set property method. This object property may be specified wherever a data item with that description would be valid as a receiving item.7) The data description of the item specified in the RETURNING phrase of the get property method shall be the same as the data description of the item specified as the USING parameter of the set property method.
8.4.3.9.4 General rules1) When an object property is used only as a sending item, a conceptual temporary data item, temp-1, is used in its place. The value of the property is determined as though the associated get property method were invoked, in accordance with the rules of the INVOKE statement, and the returned value placed in temp-1. The data description of temp-1 is the same as the data description of the item specified in the RETURNING phrase of the get property method.2) When an object property is used only as a receiving item, a conceptual temporary data item, temp-2, is used in its place. The value of the property is assigned as though the associated set property method were invoked, in accordance with the rules of the INVOKE statement, passing the content of temp-2 as the parameter. The data description of temp-2 is the same as the data description of the item specified as the USING parameter of the set property method.3) When an object property is used as both a sending item and a receiving item, conceptual temporary data items temp-1 and temp-2 are used in its place; temp-1 and temp-2 are the same temporary data item, where temp-2 redefines temp-1. For sending operations, the value of the property is determined in the same manner as for sending items in General rule 1; for receiving operations, the value of the property is assigned in the same manner as for receiving items in General rule 2. The data descriptions of temp-1 and temp-2 are the same as the data description of the item specified in the RETURNING phrase of the get property method.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 139

8.4.3.10 NULL address pointer and message tag content

8.4.3.10.1 GeneralNULL is a predefined address of class pointer or a predefined content of class message-tag.
8.4.3.10.2 General format

8.4.3.10.3 Syntax rules1) This item may be used only in the following cases, depending upon the associated data item’s class:a) If the class of the associated data item is pointer, it may be used only as a sending operand in an INITIALIZE or a SET statement; as an argument in a program-prototype format CALL statement, a function-prototype format function activation, or a method invocation; or in a pointer-or-object-reference relation condition.b) If the class of the associated data item is message-tag, it may be used only as a sending operand in an INITIALIZE or a SET statement or in a message-tag relation condition.
8.4.3.10.4 General rules1) When associated with a data-pointer, the predefined address NULL references a data item of category data-pointer that contains the null address. The null data address is an implementor-defined value that is guaranteed not to represent the address of any data item.2) When associated with a function-pointer, the predefined address NULL references a data item of category function-pointer that contains the NULL function address. The null function address is an implementor-defined value that is guaranteed not to represent the address of any function.3) When associated with a program-pointer, the predefined address NULL references a data item of category program-pointer that contains the NULL program address. The null program address is an implementor-defined value that is guaranteed not to represent the address of any program.4) When associated with a message-tag, the predefined content NULL references a data item of category message-tag that contains the null content. The null content is an implementor-defined value that is guaranteed not to represent a message server or message requestor.
8.4.3.11 Data-address-identifier

8.4.3.11.1 GeneralA data-address-identifier references the unique data item that contains the address of a data item.

NULL

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

140 ©ISO/IEC 2023

8.4.3.11.2 General format

8.4.3.11.3 Syntax rules1) Identifier-1 shall reference a data item defined in the file section, working-storage section, local-storage section, or linkage section. Identifier-1 shall not be defined in the working-storage or file section of an object or a factory object.2) Identifier-1 shall not reference an object reference or an elementary item subordinate to a strongly-typed group item.3) Identifier-1 shall not reference a data item that is described with the CONSTANT RECORD clause, or any data item subordinate to such a data item.4) If identifier-1 is a bit data item, identifier-1 shall be described such that:a) subscripting and reference modification in identifier-1 consist of only fixed-point numeric literals or arithmetic expressions in which all operands are fixed-point numeric literals and the exponentiation operator is not specified; andb) it is aligned on a byte boundary.5) This identifier format shall not be specified as a receiving operand.6) Identifier-1 shall not reference a dynamic-length elementary item, an element of a dynamic-capacity table, an item subordinate to a dynamic-capacity table, or an item subordinate to a group that contains a dynamic-length elementary item.
8.4.3.11.4 General rules1) Data-address-identifier creates a unique data item of class pointer and category data-pointer that contains the address of identifier-1.2) If identifier-1 is a strongly-typed group item or a restricted data-pointer, the data-address-identifier is a restricted data-pointer that is restricted to the type of identifier-1.
8.4.3.12 Function-address-identifier

8.4.3.12.1 GeneralA function-address-identifier identifies the unique data item that contains the address of a function.

ADDRESS OF identifier-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 141

8.4.3.12.2 General format

8.4.3.12.3 Syntax rules1) Identifier-1 shall be of category alphanumeric or national.2) Function-prototype-name-1 shall be a function prototype specified in the REPOSITORY paragraph.3) This identifier format shall not be specified as a receiving operand.
8.4.3.12.4 General rules1) Function-address-identifier creates a unique data item of class pointer and category function-pointer that contains the address of a function identified by one of the following:a) the content of the data item referenced by identifier-1b) function-prototype-name-1.If identifier-1 is specified, paragraph 8.3.2.2, User-defined words, describes how this value is used to identify the referenced function. Identifier-1 shall reference a function prototype specified in the REPOSITORY paragraph.2) The function may be written in COBOL or in another language for which the implementor has declared support. For a COBOL function, the address is that of the function identified by the externalized function-name in its FUNCTION-ID paragraph. For a non-COBOL function, the relation between the address and the associated function is defined by the implementor.3) When function-prototype-name-1 is specified, the function-address-identifier has the characteristics of a function-pointer restricted to function-prototype-name-1.4) If the runtime system cannot locate the function, the EC-FUNCTION-NOT-FOUND exception condition is set to exist and the value of the address-identifier is the predefined address NULL.
8.4.3.13 Program-address-identifier

8.4.3.13.1 GeneralA program-address-identifier references the unique data item that contains the address of a program.

ADDRESS OF FUNCTION function-prototype-name-1identifier-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

142 ©ISO/IEC 2023

8.4.3.13.2 General format

8.4.3.13.3 Syntax rules1) Identifier-1 shall be of category alphanumeric or national.2) Literal-1 shall be an alphanumeric or national literal whose length is not zero.3) Program-prototype-name-1 shall be a program prototype specified in the REPOSITORY paragraph.4) This identifier format shall not be specified as a receiving operand.
8.4.3.13.4 General rules1) Program-address-identifier creates a unique data item of class pointer and category program-pointer that contains the address of a program identified by one of the following:a) the content of the data item referenced by identifier-1 b) the value of literal-1c) program-prototype-name-1.If identifier-1 or literal-1 is specified, paragraph 8.3.2.2, User-defined words, describes how this value is used to identify the referenced program.2) The program may be written in COBOL or in another language for which the implementor has declared support. For a COBOL program, the address is that of the outermost program identified by the externalized program-name in its PROGRAM-ID paragraph. For a non-COBOL program, the relation between the address and the associated program is defined by the implementor.3) When program-prototype-name-1 is specified, the program-address-identifier has the characteristics of a program-pointer restricted to program-prototype-name-1.4) If the runtime system cannot locate the program, the EC-PROGRAM-NOT-FOUND exception condition is set to exist and the value of the address-identifier is the predefined address NULL.
8.4.3.14 LINAGE-COUNTER

8.4.3.14.1 GeneralThe LINAGE-COUNTER identifier is generated by the presence of a LINAGE clause in a file description entry.

ADDRESS OF PROGRAM identifier-1literal-1program-prototype-name-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 143

8.4.3.14.2 General format

8.4.3.14.3 Syntax rules1) LINAGE-COUNTER may be referenced only in procedure division statements.2) The LINAGE-COUNTER identifier shall not be referenced as a receiving operand.3) Qualification requirements for LINAGE-COUNTER are defined by 8.4.2.2, Qualification.
8.4.3.14.4 General rules1) LINAGE-COUNTER references a temporary unsigned integer data item of class and category numeric whose size is equal to the page size specified in the LINAGE clause.2) The semantics of the LINAGE-COUNTER identifier is described in 13.18.34, LINAGE clause, General rule 7.
8.4.3.15 Report counters

8.4.3.15.1 GeneralThe PAGE-COUNTER and LINE-COUNTER identifiers are generated automatically and exist independently for each report.
8.4.3.15.2 General format

8.4.3.15.3 Syntax rules1) In the report section, PAGE-COUNTER and LINE-COUNTER may be referenced only in a SOURCE clause. In the procedure division, PAGE-COUNTER and LINE-COUNTER may be referenced in any context where an integer data item may appear.2) Qualification requirements for PAGE-COUNTER and LINE-COUNTER are defined by 8.4.2.2, Qualification.NOTE Because each report maintains an independent PAGE-COUNTER and LINE-COUNTER, it is the programmer's responsibility to assign the correct values to any page numbers and to ensure that report groups are printed correctly within the limits of the page.

LINAGE-COUNTER INOF

 file-name-1

PAGE-COUNTERLINE-COUNTER

 INOF

 report-name-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

144 ©ISO/IEC 2023

3) LINE-COUNTER shall not be referenced as a receiving operand.
8.4.3.15.4 General rules1) PAGE-COUNTER and LINE-COUNTER reference temporary unsigned integer data items of class and category numeric, which are maintained for each report.2) The initial value of PAGE-COUNTER is set to 1 by the execution of an INITIATE statement for the corresponding report and its value is updated by 1 during each page advance. It is reset to 1 when a report group that contains a NEXT GROUP clause with a RESET phrase is printed.3) The initial value of LINE-COUNTER is set to zero by execution of an INITIATE statement for the corresponding report. It is reset to zero whenever a page advance takes place.4) At the time each report line is printed, the value of LINE-COUNTER specifies the line number of the page on which the line is printed. The value of LINE-COUNTER after the printing of a report group is the same as the line number of the last line printed, unless a NEXT GROUP clause is defined for the report group, in which case the final value of LINE-COUNTER is defined by the general rules for the NEXT GROUP clause.5) The values of PAGE-COUNTER and LINE-COUNTER are not affected by the processing of a dummy report group, nor by the processing of a report group whose printing is suppressed by means of the SUPPRESS statement.
8.4.4 Condition-name

8.4.4.1 GeneralThere are two kinds of condition-names. One is used to identify a subset of the values that an associated data item may assume. The other is associated with the on status or off status of an implementor-defined switch.Within the data division, the level-number 88 identifies a condition-name and a specific value, set of values, or range of values. This condition-name is associated with the data item to which it is subordinate, called a conditional variable. Referencing this condition-name in a condition, as described in 8.8.4.5, Simple condition-name condition (conditional variable), is an abbreviation for the conditional expression that posits that the value of the associated conditional variable is equal to one of the set of values identified with condition-name. This kind of condition-name is defined in 13.16, Data description entry. This kind of condition-name may be used in a SET statement to move a value to the associated conditional variable to make the condition-name either 'true' or 'false'.Within the SPECIAL-NAMES paragraph, a condition-name identifies the on status or off status of an implementor-defined switch. Referencing this condition-name, as described in 8.8.4.6, Simple switch-status condition, in a condition posits that the associated switch has the 'on' or 'off' status that is associated with the condition-name. This condition-name may also be used in a SET statement to set the associated switch to the 'on' or 'off' status.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 145

8.4.4.2 General formatFormat 1 (switch-status-condition-name):
Format 2 (qualified-condition-name-with-subscripts):
8.4.4.3 Syntax rulesFORMAT 11) Condition-name-1 shall be associated with a switch-name in the SPECIAL-NAMES paragraph.FORMAT 22) Qualified-condition-name-with-subscripts-1 is defined by 8.4.2.2, Qualification.
8.4.5 Explicit and implicit data item referencesWithin a source element, a procedure division statement may reference data items that contribute to, or are affected by, the execution of the statement. Such references may be explicit or implicit references.An explicit reference in a procedure division statement occurs when the name of the item is written in that procedure division statement.An implicit reference in a procedure division statement occurs when the name of the data item is not written in that procedure division statement and it contributes to, or is affected by, the execution of the statement.Within a source element, a specification in the environment or data division may specify the name of a data item as an explicit reference in order to identify those data items that are to be referenced implicitly in procedure division statements related to such specifications.8.4.6, Scope of names, applies to the explicit identification of data items within a procedure division statement. It also applies to the explicit identification in the environment division or data division.Name resolution for any implicitly referenced data item in a procedure division statement always occurs during processing of the source element that contains the explicit specification establishing that implicit reference. Therefore, name resolution for implicitly referenced data items may, but need not, occur during the processing of the source element in which the implicit references to them is made.NOTE 1 When a source element contains a procedure division statement with an implicit reference, and the specification establishing that implicit reference is in a containing source element, it might not be possible to reference explicitly that same data item in the contained program that has an implicit reference to it.

condition-name-1
qualified-condition-name-with-subscripts-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

146 ©ISO/IEC 2023

NOTE 2 When an implicit reference is to a subscripted data-name, an identifier, or an arithmetic expression, the explicit specification for the data item that is being implicitly referenced can include not only the data-name of that data item, but also additional data-names, such as those used as subscripts, portions of reference modifiers, parameters to inline method invocations, and operands in arithmetic expressions. Name resolution for each of these data-names occurs in the ENVIRONMENT DIVISION or the DATA DIVISION where the explicit reference is written. When item identification requires knowing the current content of such items, their content is evaluated at runtime.
8.4.6 Scope of names

8.4.6.1 GeneralWhen source elements are directly or indirectly contained within other source elements, each source element may use identical user-defined words to name items independent of the use of these user-defined words by other source elements. (See 8.3.2.2, User-defined words.) When identically named items exist, a source element's reference to such a name, even when it is a different type of user-defined word, is to the item which that source element describes rather than to the item, possessing the same name, described in another source element.The following types of user-defined words may be referenced throughout a compilation group:— library-name— text-nameThe following types of user-defined words may be referenced only by statements in the source element in which the user-defined word is declared:— paragraph-name— section-nameThe following types of user-defined words, when they are declared within a configuration section, may be referenced only by statements and entries either in that source element that contains a configuration section or in any source element contained within that source element:— alphabet-name— class-name— condition-name (declared in a configuration section)— dynamic-length-structure-name— locale-name— mnemonic-name— ordering-name— symbolic-characterSpecific conventions for declarations and references to the following types of user-defined words are specified in 8.4.6.2, Local and global names, through 8.4.6.11, Scope of property-names:— compilation-variable-name— condition-name (not declared in a configuration section)— constant-name— data-name

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 147

— file-name— function-prototype-name— index-name— interface-name— method-name— object-class-name— parameter-name— program-name— program-prototype-name— property-name— record-key-name— record-name— report-name— screen-name— type-name— user-function-name
8.4.6.2 Local and global names

8.4.6.2.1 GeneralA local name may be referenced only in the source element in which it is declared.A global name may be referenced in the source element in which it is declared or in any source elements that are directly or indirectly contained within that source element.When a source element, source element B, is directly contained within another source element, source element A, both source elements may define a name using the same user-defined word. In addition, source element A may be contained in another source element and that other source element may also define a name using the same user-defined word. When such a duplicated name is referenced in source element B, the following rules are used to determine the referenced item:1) The set of names to be used for determination of a referenced item consists of all names that are defined in source element B and all global names that are defined in source element A and in any source elements that directly or indirectly contain source element A. Using this set of names, the normal rules for qualification and any other rules for uniqueness of reference are applied until one or more items is identified.2) If only one item is identified, it is the referenced item.3) If more than one item is identified, no more than one of them may have a name local to source element B. If zero or one of the items has a name local to source element B, the following rules apply:a) If the name is declared in source element B, the item in source element B is the referenced item.b) Otherwise, if source element A is contained within another source element, the referenced item is:1. The item in source element A if the name is declared in source element A.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

148 ©ISO/IEC 2023

2. The item in the containing source element if the name is not declared in source element A and is declared in the source element containing source element A. This rule is applied to further containing source elements until a single valid name has been found.
8.4.6.2.2 Scope of condition-names, constant-names, data-names, file-names,
record-names, report-names, screen-names, and type-namesA constant-name, file-name, record-name, report-name, screen-name, or type-name described with a GLOBAL clause is a global name. All data-names and screen-names subordinate to a global name are global names. A constant-name, data-name, record-name, file-name, or type-name declared in a source element for an object definition, whether factory or instance, is a global name. All condition-names associated with a global name are global names.When a condition-name, constant-name, data-name, file-name, record-name, report-name, screen-name, or type-name is not a global name, it is a local name.The requirements governing the uniqueness of the names allocated by a single source element to be condition-names, constant-names, data-names, file-names, record-names, report-names, screen-names, and type-names are explained elsewhere in these specifications. (See 8.3.2.2, User-defined words.)
8.4.6.2.3 Scope of index-namesIf a data item possessing the global attribute includes a table described with an index-name, that index-name also possesses the global attribute. Therefore, the scope of an index-name is identical to that of the data-name that names the table whose index is named by that index-name.
8.4.6.2.4 Scope of record-key-namesThe record-key-name defined by a SOURCE phrase in the ALTERNATE RECORD KEY clause or RECORD KEY clause of the file control entry for an indexed file is global if the GLOBAL clause is specified in the file description entry for that file; otherwise, the record-key-name is local.NOTE The scope of a record-key-name specified in a RECORD KEY or ALTERNATE RECORD KEY clause is the scope of the file description entry identified in the SELECT statement. The scope of data-names specified in the RECORD KEY or ALTERNATE RECORD KEY clauses is the scope of the record description entry containing their data descriptions.
8.4.6.2.5 Scope of PAGE-COUNTER AND LINE-COUNTERPAGE-COUNTER and LINE-COUNTER are global if the GLOBAL clause is specified in report description entry of the associated report; otherwise, they are local.
8.4.6.2.6 Scope of LINAGE-COUNTERLINAGE-COUNTER is global if the GLOBAL clause is specified in the file description entry for the associated file; otherwise, it is local.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 149

8.4.6.3 Scope of program-namesThe program-name of a program is declared in the PROGRAM-ID paragraph of the program's identification division. A program-name may be referenced only by the CALL statement, the CANCEL statement, the program-address-identifier, and the end program marker. The names assigned to programs that are contained directly or indirectly within the same outermost program shall be unique within that outermost program.The following rules regulate the scope of a program-name for the CALL and CANCEL statements, and the program-address-identifier:1) If the program-name is that of a program that does not possess the common attribute and that is directly contained within another program, that program-name may be referenced only by statements included in that containing program or, if the program possesses the recursive attribute, in the program itself.2) If the program-name is that of a program that does possess the common attribute and that is directly contained within another program, that program-name may be referenced only by statements included in that containing program and any programs directly or indirectly contained within that containing program, except that the program possessing the common attribute and any programs contained within it may reference the program-name only if the program possesses the recursive attribute.3) If the program-name is that of an outermost program, that program-name may be referenced by statements included in any source element in the run unit.
8.4.6.4 Scope of object-class-names and interface-namesThe object-class-name of an object class referenced within a source element shall be either the name of the containing object class definition or declared in the REPOSITORY paragraph of that or a containing source element. Object class definitions within a compilation group shall have unique object-class-names.The interface-name of an interface referenced within a source element shall be either the name of the containing interface definition or declared in the REPOSITORY paragraph of that or a containing source element.Interface definitions within a compilation group shall have unique interface-names.An object-class-name or interface-name declared in the REPOSITORY paragraph of a source element may be used in that source element and any nested source element.
8.4.6.5 Scope of method-namesThe method-name of a method is declared in the METHOD-ID paragraph. A method-name may be referenced only by the INVOKE statement, an inline invocation, and the end method marker.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

150 ©ISO/IEC 2023

The methods declared in an object class definition shall have unique method resolution signatures within that object class definition. The methods declared in a subclass may have the same method resolution signature as a method in the superclass, subject to the conditions in 11.7, METHOD-ID paragraph.The methods declared in an interface definition shall have unique method resolution signatures within that interface definition. The methods declared in an inheriting interface may have the same method resolution signature as a method in the inherited interface, subject to the conditions in 11.7, METHOD-ID paragraph.
8.4.6.6 Scope of function-prototype-namesFunction-prototype-names referenced within a source element shall be either the user-function-name of the containing function definition or a function-prototype-name declared in the REPOSITORY paragraph.
8.4.6.7 Scope of user-function-namesA user-function-name may be referenced in the REPOSITORY paragraph of any source element that follows that function definition within the compilation group and, if the external repository is updated, in any subsequently-compiled source unit that specifies that user-function-name as a function-prototype-name in its REPOSITORY paragraph.
8.4.6.8 Scope of program-prototype-namesProgram-prototype-names referenced within a source element shall be either the program-name of a containing program definition or a program-prototype-name declared in the REPOSITORY paragraph
8.4.6.9 Scope of compilation-variable-namesThe scope of a compilation-variable-name is from the point of definition to the end of the compilation group. Compilation-variable-names may be referenced in compiler directives and in a constant entry.
8.4.6.10 Scope of parameter-namesParameter-names may be referenced only within the class definition or interface definition in which they are specified in the USING phrase, subject to the rules in 11.3, CLASS-ID paragraph, or 11.6, INTERFACE-ID paragraph.
8.4.6.11 Scope of property-namesThe property-name of a property referenced within a source element shall be declared in the REPOSITORY paragraph of that or a containing source element.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 151

8.5 Data description and representation

8.5.1 Computer independent data description

8.5.1.1 GeneralTo make data as computer-independent as possible, the characteristics or properties of data are described in the data division in a format that is largely independent from the manner in which data are stored internally in the computer or on a particular external medium. When the implementation provides multiple ways of storing data, the clauses of the data description entries determine the specific representation of the data in storage. Each implementor shall provide a complete specification of the possible representations on the computer for which COBOL is implemented, except when specific reference is made to other standards defining such representations.Except for the hexadecimal formats, the contents of literals are described in the computer's coded character set known at compile time. When a different coded character set is in effect on the computer at runtime, the content of the literal is converted to the computer's runtime coded character set as described in 8.1.2, Computer's coded character set. The hexadecimal literal formats specify the bit patterns to be used at runtime.
8.5.1.2 Files and recordsCOBOL has some language elements for describing physical aspects of a file, like the external name used to associate the logical file with a physical file, and the grouping of logical records within the physical limitations of the file medium.For the most part, COBOL deals with logical files. COBOL input and output statements refer to logical records. Each logical record consists of a set of data description entries that describe the characteristics of a particular record. Each data description entry consists of a level-number followed by a data-name, if required, followed by a series of independent clauses, as required.Data items described in the working-storage section, the local storage section, or the linkage section may also be grouped into logical records using record description entries.Files, including their physical aspects, the relationship between physical and logical files, and the characteristics of logical files, are described in 9.1, Files.
8.5.1.3 Levels

8.5.1.3.1 GeneralA level concept is inherent in the structure of a record. This concept arises from the need to specify subdivision of a record for the purpose of data reference. Once a subdivision has been specified, it may be further subdivided to permit more detailed data referral.The most basic subdivisions of a record, that is, those not further subdivided, are called elementary items; consequently, a record is said to consist of a sequence of elementary items, or the record itself may be an elementary item.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

152 ©ISO/IEC 2023

In order to refer to a set of elementary items, the elementary items are combined into groups. Each such group may be combined with other groups and/or other elementary items into a containing group. An elementary item belongs to each containing group within a hierarchy of containing groups.
8.5.1.3.2 Level-numbersA system of level-numbers shows the organization of elementary items and group items. Since records are the most inclusive data items, level-numbers for records start at 1. Less inclusive data items are assigned higher (not necessarily successive) level-numbers not greater in value than 49. There are special level-numbers, 66, 77, and 88, that are exceptions to this rule.A group includes all group and elementary items following it until a level-number less than or equal to the level-number of that group is encountered. All items that are immediately subordinate to a given group item shall be described using numerically equal level-numbers greater than the level-number used to describe that group item.Three types of entries exist for which there is no true concept of level. These are:1) Entries that specify elementary items or groups introduced by a RENAMES clause.2) Entries that specify noncontiguous working-storage, local storage, and linkage data items.3) Entries that specify condition-names.Entries describing items by means of RENAMES clauses for the purpose of re-grouping data items have been assigned the special level-number 66.Entries that specify noncontiguous data items that are not subdivisions of other items, and are not themselves subdivided, have been assigned the special level-number 77.Entries that specify condition-names to be associated with particular values of a conditional variable have been assigned the special level-number 88.
8.5.1.3.3 TablesRepetitive data may be described in COBOL as a table. Tables may have multiple dimensions. Elements of tables may be elementary items or groups. Elements of a table are referenced using subscripts, as described in 8.4.2.3, Subscripts. COBOL provides for three types of tables: fixed-capacity tables, occurs-depending tables, and dynamic-capacity tables. Additional rules for defining and using tables may be found in 13.18.38, OCCURS clause.The capacity of a table is the number of occurrences of the elements of that table. The logical capacity of a table is the number of occurrences whose content is defined at any given time in accordance with General rule 7 of 13.18.38, OCCURS clause. The physical capacity of that table is the number of occurrences for which physical resources have been allocated

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 153

8.5.1.4 Limitations of character handlingEach coded character of the character sets supported by an implementation is processed at runtime as a single character position. The following processing limitations shall apply when ISO/IEC 10646 is chosen as a computer's coded character set:1) The non-combining character and the following combining characters of a composite sequence defined in ISO/IEC 10646 are each treated as a single character position.2) The high-half 2 octets and the low-half 2 octets of a four-octet sequence defined in the UTF-16 format of ISO/IEC 10646 are each treated as a single character position.NOTE The UTF-16 format of ISO/IEC 10646 is a coded character set where each code element (or 'code value') consists of two octets. Many, but not all, of the letters and symbols are represented in one code element. In order to accommodate more entities than could otherwise be defined in a two-octet coded character set, the following techniques are used in ISO/IEC 10646:— some abstract characters or text entities are defined as 'combining character sequences' of multiple code elements where a two-octet base character and one or more two-octet combining characters form a complete entity, together called a composite sequence.— some abstract characters or text entities are defined as 'surrogate pairs' consisting of two code elements.These techniques facilitate efficient processing of data as fixed-size two-octet code elements, but present opportunities for corruption of data if not handled correctly. To achieve a better understanding, see ISO/IEC 10646.COBOL does not provide any special handling or recognition of surrogate pairs; nor does COBOL provide recognition of composite sequences. Each two-octet code element of UTF-16 is treated in COBOL as though it were itself a character. Users are responsible for ensuring that any truncation, replacement, or reference-modification that occurs is consistent with the needs of their application.
8.5.1.5 Algebraic signsAlgebraic signs fall into two categories: operational signs, which are associated with signed numeric data items and signed numeric literals to indicate their algebraic properties; and editing signs, which appear in edited data items to identify the sign of the item.The SIGN clause permits the programmer to state explicitly the location of the operational sign. This clause is optional; if it is not used, operational signs will be represented as defined by the implementor.Editing signs are inserted into a data item through the use of the sign control symbols of the PICTURE clause.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

154 ©ISO/IEC 2023

8.5.1.6 Alignment of data items in storage

8.5.1.6.1 Alignment of alphanumeric groups and of data items of usage displayAlignment of alphanumeric groups and of data items of usage display is at a natural alphanumeric character boundary and is coincident with a byte boundary in the architecture of the processor.The alignment of the start of an alphanumeric group item relative to the first item within that group is defined by the implementor, with the exception that alignment of the group is coincident with the first item when that item is a national data item or a data item of class boolean, message-tag, object, or pointer.
8.5.1.6.2 Alignment of data items of usage national Alignment of data items of usage national is at a natural national character boundary.The alignment of the start of a group item and the alignment of the start of the first item within that group, when the first item is of usage national, are at the same position in storage.
8.5.1.6.3 Alignment of data items of usage bitAlignment of elementary bit data items and bit group items within a record, when neither a SYNCHRONIZED clause nor an ALIGNED clause is specified, is at the next bit position in storage when that item is:— an elementary bit data item immediately following an elementary bit data item or bit group item of the same level;— a bit group item immediately following a bit group item or elementary bit data item of the same level.Alignment of all other bit data items within a record, when a SYNCHRONIZED clause is not specified, is at the first bit position of the first available byte.Alignment of elementary bit data items of level 1 or level 77 and a level 1 bit group are at the first bit of a byte.Implicit filler bit positions are generated:— As defined by the implementor for a bit data item described with the SYNCHRONIZED clause. The implementor defines the positioning rules associated with any filler bit positions.— Following a bit data item within an alphanumeric group item, within a strongly-typed group item, or within a bit group item, as needed to advance alignment to a required natural boundary for the next item within that group. The filler bit positions are implicitly described as a filler elementary bit data item of the necessary number of bits and of the same level number as the next item within that group.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 155

— Following a bit data item that is the last data item in a record that is an alphanumeric group or strongly-typed group item, as needed to increase the number of bits to fill an integral number of characters. The filler bit positions are implicitly described as a filler elementary bit data item of the necessary number of bits with a level number the same as the highest hierarchical level of any bit data item superordinate to the last item, or, if there is no such superordinate item, the same as the level number of the last data item in the record.NOTE No filler is generated at the end of a record that is entirely a bit group, at the end of a level 77 item, or at the end of a level 1 elementary item.The alignment of the start of a group item and the alignment of the first item within that group, when the first item is a bit data item, are at the same bit position in storage.
8.5.1.6.4 Item alignment for increased object-code efficiencySome computer memories are organized in such a way that there are natural addressing boundaries in the computer memory, such as word boundaries, half-word boundaries, and byte boundaries. The way in which data is stored is determined by the runtime module, and need not respect these natural boundaries.However, certain uses of data in such constructs as arithmetic operations or subscripting may be facilitated if the data is stored so as to be aligned on these natural boundaries. Specifically, additional operations might be required at runtime for the accessing and storage of data if portions of two or more data items appear between adjacent natural boundaries, or if certain natural boundaries bifurcate a single data item.Data items that are aligned on these natural boundaries in such a way as to avoid such additional machine operations are defined to be synchronized.Synchronization is accomplished in two ways:1) By use of the SYNCHRONIZED clause.2) By recognizing the appropriate natural boundaries and organizing the data suitably without the use of the SYNCHRONIZED clause.Each implementor who provides for special types of alignment shall specify the precise interpretations that are to be made. The use of such items within a group may affect the results of statements in which the group is used as an operand. Each implementor who provides for these special types of alignment shall describe the effect of the implicit FILLER and the semantics of any statement referencing these groups.
8.5.1.6.5 Alignment of strongly-typed group itemsAlignment of strongly-typed group items is at a natural alphanumeric character boundary and is coincident with a byte boundary in the architecture of the processor.The alignment of the start of a strongly-typed group item relative to the first item within that group is defined by the implementor, with the following exceptions:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

156 ©ISO/IEC 2023

— The alignment of the group shall be coincident with the first item when that item is a national group item or a data item of class boolean, message-tag, object, or pointer.— The alignment of the elementary items contained in the group shall be such that the essential characteristics of the type, as defined in 8.5.3, Types, is preserved.
8.5.1.7 Fixed-capacity tablesFixed-capacity tables are tables whose physical and logical capacities are the same and are fixed at compile time. Fixed-capacity tables are defined by an OCCURS clause without either the DEPENDING phrase or the DYNAMIC phrase.
8.5.1.8 Occurs-depending tablesOccurs-depending tables are tables whose physical capacity is fixed at compile time; however, the logical capacity may vary during execution. The range of the logical capacity is specified in the DEPENDING phrase of the OCCURS clause.
8.5.1.9 Dynamic-capacity tables

8.5.1.9.1 GeneralDynamic-capacity tables are tables whose physical and logical capacities may vary during execution. The logical capacity of a dynamic-capacity table is equal to its physical capacity. The number of occurrences allocated at a particular time is referred to as the current capacity of the table. A dynamic-capacity table differs from an occurs-depending table in that:1) its occurrences are created dynamically,2) it may have an unlimited capacity, and3) it may be defined in any place, other than the file section, in which a fixed-capacity table may be defined and may be nested in any combination to the same number of levels as a fixed-capacity table.A dynamic-capacity table also differs from fixed-capacity and occurs-depending tables in that table data items are not required to be contiguous in physical memory. The size, location, and time of physical allocation of a dynamic-capacity table are implementor-defined.The current capacity of a dynamic-capacity table may be initialized explicitly in the FROM phrase of the OCCURS clause or implicitly in the VALUE clause. If neither is specified, the current capacity is initialized to zero.The TO phrase of the OCCURS clause may be used to specify an upper value for the current capacity of a dynamic table, which may be exceeded with a nonfatal exception. This value is referred to as the expected capacity. The actual limit for the current capacity imposed by the implementor and by current resource availability is referred to as the maximum capacity.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 157

8.5.1.9.2 Operations on a single elementA data item in a dynamic-capacity table is referenced using a subscript, in the same way as specified for a fixed-capacity table in 8.4.2.3, Subscripts.When a data item in a dynamic-capacity table is referenced as a sending operand, the result of the operation is the same as for a fixed-capacity table whose number of occurrences is the current capacity of the table.When a data item in a dynamic-capacity table is referenced as a receiving item and the value of the subscript does not exceed the current capacity of the table, the result of the operation is the same as for a fixed-capacity table whose number of occurrences is the current capacity of the table.
8.5.1.9.3 Implicit changes in capacityWhen a data item in a dynamic-capacity table is referenced as a receiving item and the value of the subscript exceeds the current capacity of the table, a new element is automatically created and the capacity of the table is increased to the value given by the subscript. If this new capacity is more than one greater than the previous capacity, new intermediate occurrences are implicitly created.NOTE There is no requirement for neighboring occurrences in a dynamic-capacity table to be physically contiguous with each other.
8.5.1.9.4 Explicit changes in capacityIf the OCCURS clause specifies a CAPACITY phrase, the capacity of the dynamic-capacity table may be increased or decreased explicitly by means of the dynamic-capacity-table format SET statement. If the capacity of the table is thereby reduced, the appropriate number of higher occurrences is deleted and any resources they were using are freed.NOTE The implementor can keep the resources assigned to a table for efficiency's sake and release them only when they are required, provided that the functionality of the program is not thereby affected in any way.
8.5.1.9.5 Implicit initializationIf the INITIALIZED phrase is specified in the OCCURS clause of a dynamic-capacity table, any elementary items not referenced as receiving operands in a statement that creates new elements in that table are first initialized as though they had been the subject of a statement of the form INITIALIZE … WITH FILLER ALL TO VALUE THEN TO DEFAULT. Otherwise, the content of any unreferenced locations in the new table element and the content of the other new occurrences are undefined.NOTE The implementor need not physically allocate and, if specified, initialize such intermediate occurrences, provided that at runtime the implementation of the program is functionally identical to one where the intermediate occurrences are physically allocated and, if specified, initialized.
8.5.1.9.6 Exceeding capacityThe creation of a new element in a dynamic-capacity table may result in one of the following exceptions:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

158 ©ISO/IEC 2023

1) EC-BOUND-OVERFLOW. The nonfatal EC-BOUND-OVERFLOW exception condition shall exist when a dynamic-capacity table has an expected capacity and an operation causes this expected capacity to be exceeded. If the change in capacity was implicit and the expected capacity had already been exceeded before the operation, no exception shall exist.If checking for the EC-BOUND-OVERFLOW exception condition is not turned on, or results in the execution of a declarative procedure or a procedure in a WHEN phrase of a PERFORM statement that executes a RESUME statement with the NEXT STATEMENT phrase, the operation shall be allowed to continue, thus exceeding the receiving table's specified expected capacity.2) EC-BOUND-TABLE-LIMIT. The fatal EC-BOUND-TABLE-LIMIT exception condition shall exist when an operation attempts to increase the capacity of a dynamic-capacity table to a value higher than the maximum capacity of the table based on the resources available at runtime.
8.5.1.10 Dynamic-length elementary items

8.5.1.10.1 GeneralA dynamic-length elementary item is defined by the DYNAMIC LENGTH clause. A dynamic-length elementary item is one for which the number of character positions allocated to the data item may vary during program execution. The current length of the data item is the number of character positions in the content of the data item at any given time. A dynamic-length elementary item may be category alphanumeric or national.The maximum size of a dynamic-length elementary item is smallest of:— the value declared in the LIMIT phrase — the largest integer that can be stored in an item of the usage specified in the PREFIXED phrase— the maximum permitted by the implementor
8.5.1.10.2 Structure of a dynamic-length elementary itemThe internal structure of a dynamic-length elementary item is defined by reference to a dynamic-length-structure-name. The dynamic-length-structure-name, defined in the DYNAMIC LENGTH STRUCTURE clause in the SPECIAL-NAMES paragraph, may refer either to an explicit definition, using the PREFIXED and DELIMITED clauses, or to an implementor-defined definition. In the absence of a dynamic-length-structure-name the internal structure is defined by the implementor.
8.5.1.10.3 Location of dynamic-length elementary itemsDynamic-length elementary items may be physically located in memory within the record they are subordinate to, or they may be located elsewhere in the computer's memory. The actual physical location is defined by the implementor, and may change at any time during execution.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 159

8.5.1.10.4 Operations on dynamic-length elementary itemsA dynamic-length elementary item that is used as a sending operand or is reference-modified is treated as a fixed-length data item whose length is the dynamic-length elementary item's current length.If a dynamic-length elementary item is a receiving operand and is not reference-modified, the new value becomes the content of the item. The new length of the dynamic-length elementary item is determined by the length of new content. If the length of the sending operand is zero, no data is moved and the new length of the dynamic-length elementary item is set to zero. If the sending operand is a figurative constant, the length of the sending operand is determined as specified in 8.3.3.6, Figurative constant values, General rule 3.If the maximum length is reached, the value is truncated on the right as necessary.The length of a dynamic-length elementary item may also be modified using the SET statement, as specified by the dynamic-length elementary data item format of 14.9.39, SET statement. If the SET statement specifies a length that is unavailable, an EC-STORAGE-NOT-AVAIL exception condition is set to exist.
8.5.1.11 Variable-length data items

8.5.1.11.1 GeneralThe term variable-length data item refers to either a dynamic-capacity table or a dynamic-length elementary item.Any data item that is not variable-length is referred to as a fixed-length data item.
8.5.1.11.2 Contiguity of data itemsA variable-length data item may be part of any group structure, and its neighbors may be non-variable-length data items or variable-length data items. A variable-length data item is logically but not necessarily physically contiguous with its neighbors. However a variable-length data item behaves in all respects as though it were in fact contiguous with its neighbors whenever a procedural operation is applied to a group containing it.The physical address of a variable-length data item may change during execution of the program. Dynamic-capacity tables and dynamic-length elementary items, however they might change during execution, do not in any way affect the addresses of their neighbors.
8.5.1.11.3 Availability and persistence of variable-length data itemsThe availability of a variable-length data item to procedural operations is the same as for any other data item. A variable-length data item may be used in any procedural operation where a non-variable-length data item may be used.The persistence of a variable-length data item is the same as that of a non-variable-length data item. Although the memory resources assigned to the data item may be physically remote from those used by

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

160 ©ISO/IEC 2023

neighboring non-variable-length data items, this has no effect on the results of the execution of the program.The resources used by a variable-length data item may be freed automatically when:1) an object instance containing the data item is finalized;2) the program containing the data item is an initial program and executes an EXIT PROGRAM or GOBACK;3) the program containing the data item is a main program and executes a GOBACK or STOP;4) the program containing the data item is a called program and a CANCEL is executed referring to it;5) the program containing the data item encounters a fatal exception;6) the variable-length data item is explicitly or implicitly reduced in size;7) the variable-length data item is overwritten with a new value.The actual time when the resources used by a variable-length data item are freed is implementor-defined.
8.5.1.12 Variable-length groups

8.5.1.12.1 GeneralA variable-length group is a group item whose data description has at least one dynamic-length elementary item or dynamic-capacity table as a subordinate item. All other group items are referred to as fixed-length groups.Unlike other group items, a variable-length group is not equivalent to an alphanumeric data item and may not undergo a comparison or a move operation, in either direction, explicitly or otherwise, unless the other operand is a compatible group. Groups are compatible if all variable-length data items correspond and match as specified below. For the purposes of compatibility, either both operands may be variable-length groups or only one of the operands may be a variable-length group.In determining compatibility, any subordinate data items that specify the REDEFINES clause, and all data items subordinate to those data items, are ignored.Two fixed-length groups are always compatible, unless they are strongly typed and have different type definitions. Determination of compatibility between a variable-length group and another group is as follows:1) For each dynamic-capacity table in either group there is a corresponding table in the other group as specified in 8.5.1.12.2, Positional correspondence.2) For each pair of corresponding tables, these tables match, as specified in 8.5.1.12.3, Matching.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 161

3) For each dynamic-length elementary item in either group there is a corresponding dynamic-length elementary item in the other group as specified in 8.5.1.12.2, Positional correspondence.
8.5.1.12.2 Positional correspondenceTwo dynamic-length elementary items correspond if they start at the same relative byte positions within their groups.Two tables correspond if at least one of them is a dynamic-capacity table and they occupy the same relative byte positions within their groups. For groups of unequal lengths, where the relative byte position of a dynamic capacity table in the longer group is beyond the last character of the shorter group, the dynamic capacity table is treated as if it corresponds to a space-filled fixed-length table that is the same size as, and is at the same relative byte position in the shorter group as, the dynamic capacity table.
8.5.1.12.3 MatchingTwo dynamic-length elementary items always match, regardless of their definitions. For purposes of determining compatibility, including the calculation of relative byte positions, all dynamic-length elementary items are considered to be of zero length.Two corresponding tables match when the byte length of their elements is equal and their elements are compatible.If one of the corresponding tables is not a dynamic-capacity table, that table is treated as though it were a dynamic-capacity table whose capacity is either its fixed number of occurrences or the value of the DEPENDING operand, as applicable. For purposes of determining compatibility, the dynamic-capacity table is considered to be the same length as the corresponding table.Dynamic-capacity tables that match each other are each considered to be the length of a single element of that table.
8.5.2 Class and category of data items and literals

8.5.2.1 GeneralEach data item and each literal has a class and a category.Both the class and the category of a strongly-typed group item are the type-name specified in the TYPE clause in the data description of the group item. The class and the category of a group item that is not strongly typed are as follows:— an alphanumeric group item has class and category alphanumeric— a bit group item has class and category boolean— a national group item has class and category national.An alphanumeric group item is treated as though it had a usage of display.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

162 ©ISO/IEC 2023

The category of an elementary data item depends upon its description. The class of an elementary data item is related to its category, as shown in Table 2, Class and category relationships for elementary data items.
Table 2 — Class and category relationships for elementary data items

The class and category of a literal are defined in 8.3.3, Literals.Use of the name of a data class or data category in the rules of COBOL refers to the category unless class is specifically indicated.
8.5.2.2 Alphabetic categoryAn elementary data item described as alphabetic by its PICTURE character-string is of category alphabetic.Such an item is referred to as an alphabetic data item.
8.5.2.3 Alphanumeric categoryEach of the following is a data item of category alphanumeric:1) An elementary data item described as alphanumeric by its PICTURE character-string.2) An elementary data item described with a VALUE clause containing an alphanumeric literal, and without a PICTURE clause.3) An alphanumeric group item.

Class CategoryAlphabetic AlphabeticAlphanumeric AlphanumericAlphanumeric-editedNumeric-edited (if usage is display)Boolean BooleanIndex IndexMessage-tag Message-tagNational NationalNational-editedNumeric-edited (if usage is national)Numeric NumericObject Object-referencePointer Data-pointerFunction-pointerProgram-pointer

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 163

4) An alphanumeric function.Such an item is referred to as an alphanumeric data item.
8.5.2.4 Alphanumeric-edited categoryAn elementary data item described as alphanumeric-edited by its PICTURE character-string is of category alphanumeric-edited.Such an item is referred to as an alphanumeric-edited data item.
8.5.2.5 Boolean categoryEach of the following is a data item of category boolean:1) An elementary data item described as boolean by its PICTURE character-string.2) An elementary data item described with a VALUE clause containing a boolean literal, and without a PICTURE clause.3) A group item explicitly or implicitly described with a GROUP-USAGE clause with the BIT phrase.4) A boolean function.Such an item is referred to as a boolean data item.
8.5.2.6 Data-pointer categoryAn elementary data item explicitly or implicitly described as usage data-pointer is of category data-pointer.Such an item is referred to as a data-pointer or as a data-pointer data item.
8.5.2.7 Function-pointer categoryAn elementary data item explicitly or implicitly described as usage function-pointer is of category function-pointer.Such an item is referred to as a function-pointer or as a function-pointer data item.
8.5.2.8 Index categoryEach of the following is a data item of category index:1) An elementary data item explicitly or implicitly described as usage index.2) An index function.Such an item is referred to as an index data item.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

164 ©ISO/IEC 2023

8.5.2.9 Message-tag categoryAn elementary data item explicitly described as usage message-tag item.Such an item is referred to as a message tag or a message-tag data item.
8.5.2.10 National categoryEach of the following is a data item of category national:1) An elementary data item described as national by its PICTURE character-string.2) An elementary data item described with a VALUE clause containing a national literal and described without a PICTURE clause.3) A group item explicitly or implicitly described with a GROUP-USAGE clause with the NATIONAL phrase.4) A national function.Such an item is referred to as a national data item.
8.5.2.11 National-edited categoryAn elementary data item described as national-edited by its PICTURE character-string is of category national-edited.Such an item is referred to as a national-edited data item.
8.5.2.12 Numeric categoryEach of the following is a data item of category numeric:1) An elementary data item described as numeric by its PICTURE character-string and not described with a BLANK WHEN ZERO clause.2) An elementary data item described with one of the following usages: binary-char, binary-short, binary-long, binary-double, float-short, float-long, float-extended, float-binary-32, float-binary-64, float-binary-128, float-decimal-16, or float-decimal-34.3) A LINE-COUNTER.4) A LINAGE-COUNTER.5) A PAGE-COUNTER.6) A numeric function.7) An integer function.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 165

Such an item is referred to as a numeric data item.
8.5.2.13 Numeric-edited categoryEach of the following is a data item of category numeric-edited:1) A data item described as numeric-edited by its PICTURE character-string.2) A data item described as numeric by its PICTURE character-string and described with a BLANK WHEN ZERO clause.Such an item is referred to as a numeric-edited data item.
8.5.2.14 Object-reference categoryAn elementary data item explicitly or implicitly described as usage object-reference is of category object-reference.Such an item is referred to as an object-reference.
8.5.2.15 Program-pointer categoryAn elementary data item explicitly or implicitly described as usage program-pointer is of category program-pointer.Such an item is referred to as a program-pointer or as a program-pointer data item.
8.5.3 Types

8.5.3.1 GeneralA type is a template that contains all the characteristics of a data item and its subordinates. A type is declared and named by specifying the TYPEDEF clause. A type is referenced in a data description entry by specifying the TYPE clause. The essential characteristics of a type, which is identified by its type-name, are the relative positions and lengths of the elementary items defined in the type declaration, and the ALIGNED, BLANK WHEN ZERO, DYNAMIC LENGTH, JUSTIFIED, PICTURE, SIGN, SYNCHRONIZED, and USAGE clauses specified for each of these elementary items, together with the presence or absence of the STRONG phrase and the presence or absence of the EXTERNAL clause at level 1 of the type declaration.A type is referenced by specifying a data description entry with the TYPE clause. The typed item defined by this specification has all the characteristics of the referenced type.Group items may be strongly or weakly typed. A typed group item is strongly typed in any of the following cases:— The item is described with a TYPE clause that references a type declaration specifying the STRONG phrase.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

166 ©ISO/IEC 2023

— The item is subordinate to a group item described with the TYPE clause that references a type declaration specifying the STRONG phrase.Elementary type definitions shall not be specified with the STRONG phrase.Two typed items are of the same type when:— The items are described with TYPE clauses that reference equivalent type declarations; or— The items are described as subordinate items in equivalent type declarations, starting at the same relative byte pr bit position and having the same length in bytes or bits.Two type declarations are considered equivalent when they have the same type-name, both have the same presence or absence of the EXTERNAL clause and the STRONG phrase, and for each elementary item in one type declaration there is a corresponding elementary item in the other type declaration, starting at the same relative byte or bit position and having the same length in bytes or bits. Each pair of corresponding elementary items shall have the same ALIGNED, BLANK WHEN ZERO, DYNAMIC LENGTH, JUSTIFIED, PICTURE, SIGN, SYNCHRONIZED, and USAGE clauses, with the following exceptions: 1) Currency symbols match if and only if the corresponding currency strings are the same.2) Period picture symbols match if and only if the DECIMAL-POINT IS COMMA clause is in effect for both or for neither of these type declarations. Comma picture symbols match if and only if the DECIMAL-POINT IS COMMA clause is in effect for both or for neither of these type declarations.Additionally, locale specifications in the PICTURE clauses match if and only if:— both specify the same SIZE phrase in the LOCALE phrase of the PICTURE clause, and— both specify the LOCALE phrase without a locale-name or both specify the LOCALE phrase with the same external identification, where the external identification is the external-locale-name or literal value associated with a locale-name in the LOCALE clause of the SPECIAL-NAMES paragraph.NOTE When two typed items are defined in the same source element, the above rules mean that either both items are described with the same TYPE clause or both items are described as the same subordinate item in the same type declaration or equivalent declaration.
8.5.3.2 Weakly-typed items Weakly-typed items have the characteristics of their corresponding type declarations. These characteristics cannot be overridden by specifications on a group superordinate to the typed item.Weakly-typed items are used in the same manner as untyped items.NOTE The type declaration can be regarded as a 'shorthand' for one or more data description entries.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 167

8.5.3.3 Strongly-typed group itemsLike weakly-typed items, strongly-typed group items have the characteristics of their corresponding type declarations. Additionally, use of a strongly-typed group item is subject to restrictions to protect the integrity of the data.The only kind of items that may be strongly typed are group items.
8.5.4 Zero-length itemsA zero-length item is a data item or a literal whose minimum length is zero and whose length at runtime is zero. A zero-length item is one of the following:1) A group data item containing only an occurs-depending table in which the number of occurrences is zero.2) A group data item containing only a subordinate zero-length item.3) A data item defined with the ANY LENGTH clause corresponding to an argument or returning item that is a zero-length item.4) A data item defined with the DYNAMIC LENGTH clause that is a zero-length item.5) A logical record that has been specified using the variable-length or the fixed-or-variable-length format of the RECORD clause in which the number of characters positions is zero.6) An intrinsic function that returns a zero-length value.7) A variable-length group containing only dynamic-capacity tables each of whose current capacity is zero.8) A zero-length literal.9) A reference-modified data item that has resolved to a length of zero, when that has been permitted by use of the compiler directive REF-MOD-ZERO-LENGTH.
8.6 Scope and life cycle of data

8.6.1 GeneralA source unit may contain other source units, and these contained source units may reference some of the resources of the source unit in which they are contained. (See Clause 10, Structured compilation group, for full details of the structure.)
8.6.2 Global names and local namesThe scope of global and local names is described in 8.4.6, Scope of names.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

168 ©ISO/IEC 2023

8.6.3 External and internal itemsAccessible data items require that certain representations of data be stored. File connectors require that certain information concerning files be stored. The storage associated with a data item or a file connector may be external or internal.A record described in the working-storage section is given the external attribute by the presence of the EXTERNAL clause in its data description entry. Any data item described by a data description entry, including that in any associated type declaration subordinate to an entry describing an external record also attains the external attribute. If a record or data item does not have the external attribute, it is internal.A file connector is given the external attribute by the presence of the EXTERNAL clause in the associated file description entry. If the file connector does not have the external attribute, it is internal.The records described subordinate to a file description entry that does not contain the EXTERNAL clause or a sort-merge file description entry, as well as any data items described subordinate to the data description entries for such records, are always internal. If the EXTERNAL clause is included in the file description entry, its records and their subordinate data items attain the external attribute.Records, subordinate data items, and various associated control information described in the local-storage, linkage, report, and screen sections are always internal. Special considerations apply to data described in the linkage section whereby an association is made between the records described and other data items accessible to other runtime elements.External and internal data items and file connectors may have either global or local names.If a data item or file connector is external, the storage associated with that item is associated with the run unit rather than with any particular runtime element within the run unit. An external item may be accessed by any runtime element in the run unit that describes it. References to external items from different runtime elements using separate descriptions of the data item or file connector are always references to the same item. In a run unit, there is only one representation of an external item.If a data item or file connector is internal, the storage associated with it is associated only with the runtime module that describes it. Internal items are described in 8.6.4, Automatic, initial, and static internal items.
8.6.4 Automatic, initial, and static internal itemsEach internal item has one of the three persistence attributes: automatic, initial, or static. The designation of automatic, initial, and static items relates to their persistence and the persistence of their contents during the execution of the run unit.Data items, file connectors, and screen item attributes have two states: initial and last-used. The initial state of a data item depends on the presence or absence of a VALUE clause in its data description entry, the section in which the data item is described, and the description of the data item. The initial state of a file connector is that it is not in an open mode. The initial state of a screen item attribute depends on the description of the screen item.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 169

Last-used state means that the content of the data item, file connector, or screen item attribute is that of the last time it was modified.Data items defined in the local-storage section are automatic items. Their storage is allocated and set to initial state each time the runtime element containing them is activated. Each activated instance of the runtime element has its own copy of the item that persists while that instance of the runtime element is in active state.Data items and file connectors defined in the file and working-storage sections of an initial program are initial items. Also, screen item attributes in an initial program are treated as initial items. They are set to their initial state each time an initial program is activated. An initial item persists while the program is in active state. It is undefined whether each activation of an initial program has its own copy of initial items. Data items and file connectors defined in the working-storage or file section of a source element that is not an initial program are static items. Also, screen item attributes in a source element that is not an initial program are treated as static items. These items are set to their initial state each time the runtime element or object containing them is set to its initial state, as described in 14.6.2.3.2, Initial state, and in 14.6.2.4, Initial state of object data. They are allocated no later than immediately before initialization and persist to the first of the following:— the end of the run unit, — the execution of a CANCEL statement of a program that directly or indirectly contains the items, — the end of the object's life cycle in the case of object data.For static items that are not object data, there is one copy in a run unit.For static items that are object data:— In the factory object of a given class, there is one copy of each static item that is described in or inherited by the factory definition of that class.— In each instance object of a given class, there is one copy of each static item that is described in or inherited by the instance definition of that class.Further details are specified in 9.3.1, Objects and classes, 9.3.9, Class inheritance, and 9.3.14, Object life cycle.Data items described in the linkage section, when specified as formal parameters or the returning item in an activated source element, have the same persistence attributes as their corresponding arguments or the corresponding returning item in the activating source element. They are in last-used state when the runtime element is activated, and they persist while the argument persists and the source element that contains their definition is in active state.A table index is treated as a static item if the associated table is static and as an automatic item if the associated table is automatic.The persistence of a variable-length data item is the same as for any other data item defined in the same data division section. A variable-length data item is in its initial state at the start of processing and

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

170 ©ISO/IEC 2023

reverts to its initial state under the same circumstances as defined for other data items. A dynamic-capacity table in its initial state has its initial capacity set as specified in 8.5.1.9, Dynamic-capacity tables. When the data description entry of a dynamic-length elementary item contains a VALUE clause, the rules of the VALUE clause define the length of that item in its initial state. If no VALUE clause is specified, the length of that item in its initial state is zero.A structured constant is a static item that is always in initial state.
8.6.5 Based entries and based data itemsA based entry is a data description entry in the working-storage section, local-storage section, or linkage section that is described with a BASED clause. A based entry is not initially associated with an actual data item. An association is established linking the based entry to actual data when its implicit data-address pointer is assigned the address of an existing data item or assigned the address of storage obtained with an ALLOCATE statement. This association establishes a based data item. The association is maintained in an implicit data-address pointer that may be referenced by an identifier of the form ADDRESS OF data-name, where data-name is the name of the based entry.The association may cease to exist because the actual data no longer exists, as specified 8.6.4, Automatic, initial, and static internal items, and in 14.9.3, ALLOCATE statement, or because the implicit data-address pointer no longer references the actual data.The association ends:— when its implicit data-address pointer is set to a different value,— when the based entry is defined in the working-storage or local-storage section, at the end of the life cycle of the data items defined in that section,— when the based entry is defined in the linkage section, at the end of the execution of the runtime element.
8.6.6 Common, initial, and recursive attributesA program can be described with attributes that affect its initial state or that define the manner in which it may be called.A common program is one that is directly contained within another program and that may be called by programs directly or indirectly contained in that other program, as described in 8.4.6.3, Scope of program-names. The common attribute is attained by specifying the COMMON clause in a program's identification division. When the COMMON clause is not specified, a contained program that is not recursive may be called only from the directly-containing program. The COMMON clause facilitates the writing of nested programs that can be used by all the programs contained within a program.An initial program is one whose program state is initialized when the program is called. During the process of initializing an initial program, that program's internal data and that of any contained programs is initialized as described in 14.6.2, State of a function, method, object, or program. The initial attribute is attained by specifying the INITIAL clause in the program's identification division.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 171

A recursive program may call itself directly or indirectly. The program's internal data and that of any contained programs is initialized as described in 14.6.2, State of a function, method, object, or program. The recursive attribute is attained by specifying the RECURSIVE clause in the program's identification division.Functions and methods are always recursive. Their data is initialized in the same way as recursive programs.If neither the INITIAL nor RECURSIVE clause is specified in a program's identification division, the program's data is in the last-used state on other than the first activation of the program as described in 14.6.2, State of a function, method, object, or program. The program cannot be activated while it is active unless RECURSIVE is specified.
8.6.7 Sharing data itemsTwo runtime elements in a run unit may reference common data in the following circumstances:1) The data content of an external data record may be referenced from any runtime element provided that the runtime element has described that record.2) If a program is contained within another program, both programs may refer to data possessing the global attribute either in the containing program or in any program that directly or indirectly contains the containing program.3) The mechanism whereby an argument value is passed by reference from an activating runtime element to an activated runtime element establishes a common data item. The activated unit and the activating unit may use a different name to refer to the common data item.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

172 ©ISO/IEC 2023

8.7 Operators

8.7.1 Arithmetic operatorsThere are five binary arithmetic operators and two unary arithmetic operators that may be used in arithmetic expressions. They are represented by specific COBOL characters that shall be preceded by a space and followed by a space except that no space is required between a left parenthesis and a unary operator or between a unary operator and a left parenthesis. The following are the arithmetic operators:
Binary Arithmetic Operators Meaning+ Addition– Subtraction* Multiplication/ Division** Exponentiation
Unary Arithmetic Operators Meaning+ The effect of multiplication by the numeric literal +1– The effect of multiplication by the numeric literal –1

8.7.2 Boolean operatorsA boolean operator specifies the type of boolean operation to be performed on one or two operands, for a unary operator or binary operator, respectively. The following are the boolean operators:
Binary boolean operators MeaningB-AND AND operation (boolean conjunction)B-OR Inclusive OR operation (boolean inclusive disjunction)B-XOR Exclusive OR operation (boolean exclusive disjunction)
Unary boolean operator Meaning-NOT Negation operation
Boolean shift operators MeaningB-SHIFT-L SHIFT LEFT operationB-SHIFT-LC Circular SHIFT LEFT operation B-SHIFT-R SHIFT RIGHT operationB-SHIFT-RC Circular SHIFT RIGHT operation

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 173

8.7.3 Concatenation operatorThe concatenation operator is the COBOL character '&', which shall be immediately preceded and followed by a separator space.
8.7.4 Invocation operatorThe invocation operator is the two contiguous COBOL characters '::', which shall be immediately preceded and followed by a separator space. The use of the invocation operator is given in 8.4.3.4, Inline method invocation.
8.7.5 Relational operatorsThe relational operators specify the type of comparison to be made in a relation condition.
8.7.5.1 General format

Format 1 (simple-relational-operator):

Format 2 (extended-relational-operator):

IS GREATER THANIS >IS LESS THANIS <IS EQUAL TOIS =

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

174 ©ISO/IEC 2023

8.7.5.2 Syntax rules1) Format 1 specifies simple relational operators.2) Format 2 specifies extended relational operators.3) > is an abbreviation for GREATER THAN.4) NOT > is an abbreviation for NOT GREATER THAN.5) < is an abbreviation for LESS THAN.6) NOT < is an abbreviation for NOT LESS THAN.7) = is an abbreviation for EQUAL TO.8) NOT = is an abbreviation for NOT EQUAL.9) >= is an abbreviation for GREATER THAN OR EQUAL TO.10) <= is an abbreviation for LESS THAN OR EQUAL TO.11) <> is an abbreviation for NOT EQUAL.
8.7.6 Logical operatorsThe logical operators are the words AND, NOT, OR, EXCLUSIVE-OR, and XOR. The words EXCLUSIVE-OR and XOR are equivalent. The use of the logical operators is given in 8.8.4.9, Complex conditions.

IS GREATER THAN OR EQUAL TOIS >=IS NOT LESS THAN IS NOT <IS LESS THAN OR EQUAL TOIS <=IS NOT GREATER THAN IS NOT >IS NOT EQUAL TO IS NOT =IS <>

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 175

8.8 Expressions

8.8.1 Arithmetic expressions

8.8.1.1 GeneralAn arithmetic expression may be an identifier referencing a numeric data item, a numeric literal, the figurative constant ZERO (ZEROS, ZEROES), such identifiers, figurative constants, and literals separated by arithmetic operators, two arithmetic expressions separated by an arithmetic operator, or an arithmetic expression enclosed in parentheses. Any arithmetic expression may be preceded by a unary operator. The permissible combinations of identifiers, numeric literals, arithmetic operators, and parentheses are given in Table 3, Combinations of symbols in arithmetic expressions. Evaluation rules for arithmetic expressions depend on the mode of arithmetic in effect.
8.8.1.2 Native, standard-binary, and standard-decimal arithmeticThe following rules apply regardless of the mode of arithmetic that is in effect:1) Parentheses may be used in arithmetic expressions to specify the order of the arithmetic operations. Operations within parentheses are executed before operations on the parenthesized expression; the result is treated as a single operand in any further operation. When nested parentheses are specified, operations are executed from within the least inclusive set of parentheses to the most inclusive set.2) When operands are at the same level of inclusiveness, the following hierarchical order of execution is implied:1st — Unary plus and minus2nd — Exponentiation3rd — Multiplication and division4th — Addition and subtraction3) When the sequence of execution is not specified by parentheses, the order of execution of consecutive operations of the same hierarchical level is from left to right.NOTE 1 Parentheses are used to eliminate ambiguities in logic where consecutive operations of the same hierarchical level appear, to modify the normal hierarchical sequence of execution in expressions where it is necessary to have some deviation from the normal precedence, or to emphasize the normal sequence for the sake of clarity.4) The ways in which identifiers, literals, operators, and parentheses may be combined in arithmetic expressions are summarized in Table 3, Combinations of symbols in arithmetic expressions.

Table 3 — Combinations of symbols in arithmetic expressions

First symbol

Second symbol
Identifier or

literal
+ – * / ** Unary +

 or –
()

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

176 ©ISO/IEC 2023

5) An arithmetic expression may begin only with the symbol '(', '+', '–', an identifier, or a literal and may end only with a ')', an identifier, or a literal. There shall be a one-to-one correspondence between left and right parentheses of an arithmetic expression such that each left parenthesis is to the left of its corresponding right parenthesis. If the first operator in an arithmetic expression is a unary operator, it shall be immediately preceded by a left parenthesis if that arithmetic expression immediately follows an identifier or another arithmetic expression.NOTE 2 For example, when '1' and '+ 2' are used as subscripts for a two-dimensional table A, the arithmetic expression '+ 2' needs to be enclosed in parentheses, as in A (1 (+ 2)).6) The following rules apply to evaluation of exponentiation in an arithmetic expression:a) If the value of an expression to be raised to a power is zero, the exponent shall have a value greater than zero. Otherwise, the EC-SIZE-EXPONENTIATION exception condition is set to exist and the size error condition is raised.b) If the evaluation yields both a positive and a negative real number, the value returned as the result is the positive number.c) If the value of an expression to be raised to a power is less than zero, the evaluation of the exponent shall result in an integer. Otherwise, the EC-SIZE-EXPONENTIATION exception condition is set to exist and the size error condition is raised.7) Arithmetic expressions allow the user to combine arithmetic operations without the restrictions on composite of operands and receiving data items.
8.8.1.3 Native arithmeticNative arithmetic is an implementor-defined method of evaluating an arithmetic expression, an arithmetic statement, the SUM clause, and all integer and numeric functions. Native arithmetic is in effect when the ARITHMETIC IS NATIVE clause is specified in the OPTIONS paragraph or no ARITHMETIC clause is specified. The implementor shall specify techniques used for native arithmetic.
8.8.1.4 Standard-binary arithmetic

8.8.1.4.1 GeneralStandard-binary arithmetic is a method of evaluating an arithmetic expression, an arithmetic statement, the SUM clause, and certain integer and numeric functions as specified in 15.4.1, Numeric and integer

Identifier or literal — P — — P
+ – * / ** P — P P —Unary + or – P — — P —(P — P P —) — P — — PThe letter 'P' indicates a permissible pair of symbols.The character '—' indicates an invalid pair.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 177

functions, in a manner consistent with the rules associated with floating-point arithmetic using the basic 128-bit binary interchange format as specified in ISO/IEC 60559:2020, Clauses 3, 4, 5, 6, 7, and 8. Standard-binary arithmetic is in effect when the STANDARD-BINARY phrase of the ARITHMETIC clause is specified in the OPTIONS paragraph.NOTE The STANDARD-BINARY mode of arithmetic is an obsolete feature.Unlike other obsolete features, it is intended that interest in this facility will be reevaluated during the next revision of standard COBOL and before any final decision is made on whether or not to remove it from the next revision.The mechanisms for conversion of data items described with a usage of float-short, float-long, or float-extended into standard binary intermediate data items are defined by the implementor.Unless specified otherwise in rules, the EC-DATA-INCOMPATIBLE exception condition is set to exist when an operand, or a combination of operands, results in the signaling of an 'invalid operation' state as described in ISO/IEC 60559:2020, 7.2.
8.8.1.4.2 Standard-binary intermediate data itemA standard-binary intermediate data item (SBIDI) is of the class numeric and the category numeric. It is an abstract, signed, floating-point temporary data item in which the significand is represented either in base 2 or a base that is a power of 2, and in which the exponent represents a power of 2.NOTE 1 The STANDARD BINARY Intermediate Data Item (SBIDI) is an obsolete feature. Unlike other obsolete features, it is intended that interest in this facility will be reevaluated during the next revision of standard COBOL and before any final decision is made on whether or not to remove it from the next revision.The internal representation or representations shall be defined by the implementor such that every value that can be represented in the 128-bit basic binary interchange format as described in ISO/IEC 60559:2020, Clause 3, can be represented exactly in the implementor's chosen format or formats.The internal representation or representations shall also be defined by the implementor such that result values are equivalent to those that would be returned had the operands been in the 128-bit basic binary interchange format. Exception conditions encountered shall also be the same as those that would be encountered had the operands been in binary128 format. Implementors may use the method or methods, and whatever format or formats they choose.NOTE 2 An SBIDI can contain the unique values +0 and -0. For purposes of numeric processing and sign tests in COBOL, both values are treated as the unique value 0.NOTE 3 For consistency with ISO/IEC 60559:2020, the range of values in an SBIDI is

-(2**16384 - 2**16271)to

+(2**16384 - 2**16271)inclusive, with a maximum precision of 113 bits; the smallest positive nonzero value is 2**-16494; and the smallest normalized positive nonzero value is 2**-16382. All values representable in a standard-binary intermediate data item are the product of an integer and 2**-16494.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

178 ©ISO/IEC 2023

When standard-binary arithmetic is in effect, the following rules apply:1) Any operand of an arithmetic expression that is not already in SBIDI is converted into SBIDI form. If the operand value cannot be expressed exactly in an SBIDI, the value is rounded according to the rules in 11.9.11, INTERMEDIATE ROUNDING clause.NOTE 4 Many decimal values (for example, 1.0E+50 and 0.1) cannot be represented exactly in an SBIDI. In such cases, the algebraic value in the SBIDI is a rounded approximation of the algebraic value of the original operand.2) The size error condition is set to exist and the EC-SIZE-OVERFLOW or EC-SIZE-UNDERFLOW exception-condition is set to exist if the value is too large or too small, respectively, to be contained in an item in SBIDI format as specified in 14.7.5, SIZE ERROR phrase and size error condition.3) The rounding rules that apply to standard-binary intermediate data items are described in 11.9.11, INTERMEDIATE ROUNDING clause.
8.8.1.4.3 Basic arithmetic operations in standard-binary arithmeticAddition, subtraction, multiplication, and division are performed as specified in ISO/IEC 60559:2020, 5.4.1. The operations used are the general computation operations formatOf-addition, formatOf-subtraction, formatOf-multiplication, and formatOf-division. Unary plus and unary minus are performed as specified in ISO/IEC 60559:2020, 5.5.1.
8.8.1.4.4 Exponentiation in standard-binary arithmeticFor exponentiation, the operands and operator are: operand-1 ** operand-2.1) When operand-2 is zero and operand-1 is other than zero, the result shall be equivalent to the evaluation of the arithmetic expression(1)2) When the value of operand-2 is greater than zero, the results shall be determined as follows:a) When operand-2 is an integer and the following condition is true(operand-2 = 1)the equivalent expression shall be(operand-1)b) When operand-2 is an integer and the following condition is true(operand-2 = 2)the equivalent expression shall be

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 179

(operand-1 * operand-1)c) When operand-2 is an integer and the following condition is true(operand-2 = 3)the equivalent expression shall be((operand-1 * operand-1) * operand-1)d) When operand-2 is an integer and the following condition is true(operand-2 = 4)the equivalent expression shall be((operand-1 * operand-1) * (operand-1 * operand-1))e) Otherwise, the equivalent arithmetic expression is defined by the implementor. Operands used in the development of that value shall be in SBIDI form. All additions, subtractions, multiplications and divisions performed in the development of the result shall be performed in accordance with the corresponding rules in ISO/IEC 60559:2020.3) When operand-2 is less than zero, the result shall be equivalent to the evaluation of the arithmetic expression(1 / (operand-1 ** FUNCTION ABS (operand-2)))4) When both operand-1 and operand-2 are equal to zero, the EC-SIZE-EXPONENTIATION exception condition is set to exist.
8.8.1.5 Standard-decimal arithmetic

8.8.1.5.1 GeneralStandard-decimal arithmetic is a method of evaluating an arithmetic expression, an arithmetic statement, the SUM clause, and certain integer and numeric functions as specified in 15.4.1, Numeric and integer functions, in a manner consistent with the rules associated with floating-point arithmetic using the basic 128-bit decimal interchange format as specified in ISO/IEC 60559:2020, Clauses 3, 4, 5, 6, 7, and 8. Standard-decimal arithmetic is in effect when the STANDARD-DECIMAL phrase of the ARITHMETIC clause is specified in the OPTIONS paragraph.The mechanisms for conversion of data items described with a usage of float-short, float-long, or float-extended into standard-decimal intermediate data items are defined by the implementor.Unless specified otherwise in the rules, the EC-DATA-INCOMPATIBLE exception condition is set to exist when an operand, or a combination of operands, results in the signaling of an 'invalid operation' state as described in ISO/IEC 60559:2020, 7.2.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

180 ©ISO/IEC 2023

8.8.1.5.2 Standard-decimal intermediate data itemA standard-decimal intermediate data item (SDIDI) is of the class numeric and the category numeric. It is an abstract, signed, floating-point temporary data item in which the significand is represented in base 10 and the exponent represents a power of 10.The internal representation or representations shall be defined by the implementor such that every value that can be represented in the 128-bit basic decimal interchange format as described in ISO/IEC 60559:2020, Clause 3, can be represented exactly in the implementor's chosen format or formats.The internal representation or representations shall also be defined by the implementor such that result values are equivalent to those that would be returned had the operands been in the 128-bit basic decimal interchange format. Exception conditions encountered shall also be the same as those that would be encountered had the operands been in decimal128 format. Implementors can use the method or methods, and whatever format or formats they choose.NOTE 1 An SDIDI can contain the unique values +0 and -0. For purposes of numeric processing and sign tests in COBOL, both values are treated as the unique value 0.NOTE 2 For consistency with ISO/IEC 60559:2020, the range of values in an SDIDI is from

-9.999 999 999 999 999 999 999 999 999 999 999E+6144to

+9.999 999 999 999 999 999 999 999 999 999 999E+6144inclusive, with a maximum precision of 34 decimal digits; the smallest positive nonzero value is 1.0E-6176; and the smallest normalized positive nonzero value is 1.0E-6143. All values representable in a standard-decimal intermediate data item are the product of an integer and 1.0E**-6176.When standard-decimal arithmetic is in effect, the following rules apply:1) Any operand of an arithmetic expression that is not already in SDIDI form is converted into this form. If the operand value cannot be expressed exactly in an SDIDI, the value is rounded according to the rules in 11.9.11, INTERMEDIATE ROUNDING clause.NOTE 3 Many binary values (for example, 2**+120 and 2**-60) cannot be represented exactly in an SDIDI. In such cases, the algebraic value in the SDIDI is a rounded approximation of the algebraic value of the original operand.2) The size error condition is set to exist and the EC-SIZE-OVERFLOW or EC-SIZE-UNDERFLOW exception condition is set to exist if the value is too large or too small, respectively, to be contained in an item in decimal128 format. Refer to 14.7.5, SIZE ERROR phrase and size error condition, for more information.3) The rounding rules that apply to standard-decimal intermediate data items are described in 11.9.11, INTERMEDIATE ROUNDING clause.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 181

8.8.1.5.3 Basic arithmetic operations in standard-decimal arithmeticAddition, subtraction, multiplication, and division are performed as specified in ISO/IEC 60559:2020, 5.4.1. The operations used are the general computation operations formatOf-addition, formatOf-subtraction, formatOf-multiplication, and formatOf-division. Unary plus and unary minus are performed as specified in ISO/IEC 60559:2020, 5.5.1.
8.8.1.5.4 Exponentiation in standard-decimal arithmeticFor exponentiation, the operands and operator are: operand-1 ** operand-2.1) When operand-2 is zero and operand-1 is other than zero, the result shall be equivalent to the evaluation of the arithmetic expression(1)2) When the value of operand-2 is greater than zero, the results shall be determined as follows:a) When operand-2 is an integer and the following condition is true(operand-2 = 1)the equivalent expression shall be(operand-1)b) When operand-2 is an integer and the following condition is true(operand-2 = 2)the equivalent expression shall be(operand-1 * operand-1)c) When operand-2 is an integer and the following condition is true(operand-2 = 3)the equivalent expression shall be((operand-1 * operand-1) * operand-1)d) When operand-2 is an integer and the following condition is true(operand-2 = 4)the equivalent expression shall be((operand-1 * operand-1) * (operand-1 * operand-1))

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

182 ©ISO/IEC 2023

e) Otherwise, the equivalent arithmetic expression is defined by the implementor. Operands used in the development of that value shall be in SDIDI form. All additions, subtractions, multiplications and divisions performed in the development of the result shall be performed in accordance with the corresponding rules in ISO/IEC 60559:2020.3) When operand-2 is less than zero, the result shall be equivalent to the evaluation of the arithmetic expression(1 / (operand-1 ** FUNCTION ABS (operand-2)))4) When both operand-1 and operand-2 are equal to zero, the EC-SIZE-EXPONENTIATION exception condition is set to exist.
8.8.2 Boolean expressionsA boolean expression may be: — an identifier referencing a boolean data item,— a boolean literal,— the figurative constant ZERO (ZEROS, ZEROES),— the figurative constant ALL literal, where literal is a boolean literal,— a boolean expression preceded by a unary boolean operator,— a boolean expression and an integer operand separated by a boolean shift operator,— two boolean expressions separated by a binary boolean operator, or— a boolean expression enclosed in parentheses. The following are formation and evaluation rules for boolean expressions:1) A boolean expression shall begin with one of the following: — the symbol '('— an identifier that references a boolean data item— a boolean literal— the unary operator B-NOT.2) A boolean expression where the preceding operator is a boolean shift operator shall end with one of the following:— the symbol ')'— An integer operandOtherwise the expression shall end with one of the following:— the symbol ')'— an identifier that references a boolean data item— a boolean literal.3) There shall be a one-to-one correspondence between left and right parentheses such that each left parenthesis shall be to the left of its corresponding right parenthesis.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 183

4) The two operands in a binary boolean operation shall not both be the figurative constant ALL literal.5) The first operand in a boolean shift operation shall not be the figurative constant ALL literal. The second operand shall be an integer operand.6) The permissible combinations of operands, operators, and parentheses in a boolean expression are specified in Table 4, Combination of symbols in boolean expressions.
Table 4 — Combination of symbols in boolean expressions

7) Evaluation of a boolean expression shall proceed as follows: a) Expressions within parentheses shall be evaluated before the parenthesized expression is used in the evaluation of a more inclusive expression. Within parentheses, evaluation shall proceed from the least inclusive set of nested parentheses to the most inclusive set. b) The precedence of operations at the same level of inclusiveness, is:1st — negation (B-NOT) 2nd — conjunction (B-AND)3rd — exclusive disjunction (B-XOR) 4th — inclusive disjunction (B-OR) The precedence of boolean shift operations (B-SHIFT-L, B-SHIFT-R, B-SHIFT-LC and B-SHIFT-RC) is the same as that of the preceding operation, if any. If the boolean shift operation is not preceded by another operation, the precedence of that operation is the same as B-AND.

First Symbol

Second symbol

Identifier or
literal

B-AND
B-OR

B-XOR
B-SHIFT-L
B-SHIFT-R
B-SHIFT-
LC

 B-SHIFT-RC

B-NOT ()

Identifier or literal — P — — PB-AND, B-OR, B-XOR P — P P —B-SHIFT-L, B-SHIFT-R, B-SHIFT-LC, B-SHIFT-RC P — — — —
B-NOT P — — P —(P — P P —) — P — — PLegend: P indicates a permissible pair — indicates an invalid pair

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

184 ©ISO/IEC 2023

c) When the sequence of evaluation is not specified by parentheses, the evaluation of operations with the same precedence shall proceed from left to right. NOTE 1 Parentheses can be used to clarify the logic where consecutive operations of the same precedence are specified or to modify the precedence when it is necessary to deviate from the normal precedence. 8) Boolean shift operations shall be performed without regard for the usage of the first operand.Shift left boolean operations shall proceed from the leftmost boolean digit and continue to the penultimate rightmost boolean digit, replacing each boolean digit in turn by its immediate successor to the right. It the operation is a circular shift left, the original leftmost boolean digit shall be placed in the rightmost boolean position, otherwise the value of the rightmost boolean position becomes a boolean zero and the original leftmost Boolean digit is discarded.Shift right boolean operations shall proceed from the rightmost boolean digit and continue to the penultimate leftmost boolean digit, replacing each boolean digit in turn by its immediate successor to the left. If the operation is a circular shift right, the original rightmost boolean digit shall be placed in the leftmost boolean position, otherwise the value of the leftmost boolean position becomes a boolean zero and the original rightmost Boolean digit is discarded.If the second operand is greater than 1, the boolean shift operation is repeated until the number of iterations equals the number specified in the second operand.9) Binary boolean operations shall be performed without regard for the usage of the operands. The result of the evaluation of each boolean shift operation shall be a boolean value whose length shall be the number of boolean positions of the first item referenced in that operation. If the two operands are of equal length, the specified operation, conjoining or disjoining (inclusively or exclusively), shall proceed by operation on boolean values in corresponding boolean positions starting from the leftmost boolean position and continuing to the rightmost boolean position. If the operands are of unequal length, the operation shall proceed as though the shorter operand were extended on the right by a sufficient number of boolean zeros to make the operands of equal length.NOTE 2 Lengths are established for each boolean operation, including unary operations, in the order in which the operations are evaluated. If the operands of a Boolean operation are of zero-length, the result will be of zero-length.10) The result of the evaluation of each boolean operation shall be a boolean value whose length shall be the number of boolean positions of the larger item referenced in that operation.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 185

8.8.3 Concatenation expressionsA concatenation expression consists of two operands separated by the concatenation operator.
8.8.3.1 General format

8.8.3.2 Syntax rules1) Both operands shall be of the same class, either alphanumeric, boolean, or national, except that a figurative constant may be specified as one or both operands. Neither literal-1 nor literal-2 shall be a figurative constant that begins with the word ALL.2) For operands of class alphanumeric, the length of the value resulting from concatenation shall be less than or equal to 8,191 alphanumeric character positions.3) For operands of class boolean, the length of the value resulting from concatenation shall be less than or equal to 8,191 boolean character positions.4) For operands of class national, the length of the value resulting from concatenation shall be less than or equal to 8,191 national character positions.
8.8.3.3 General rules1) The class of the concatenation expression resulting from the concatenation operation shall be:a) when one of the operands is a figurative constant, the class of the literal or concatenation expression that constitutes the other operand, orb) when both of the operands are figurative constants, the class alphanumeric, orc) the same class as the operands.2) The value of a concatenation expression shall be the concatenation of the value of the literals, figurative constants, and concatenation expressions of which it is composed. If both literal-1 and literal-2 are specified and both are zero-length literals the value of the concatenation expression is a zero-length literal.3) A concatenation expression shall be equivalent to a literal of the same class and value, and may be used anywhere a literal of that class may be used.

literal-1concatenation-expression-1

 & literal-2

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

186 ©ISO/IEC 2023

8.8.4 Conditional expressions

8.8.4.1 GeneralConditional expressions identify conditions that are tested to enable selecting one of multiple processing alternatives depending upon the truth value of the condition. A conditional expression has a truth value represented by either true or false. There are two categories of conditions associated with conditional expressions: simple conditions and complex conditions. Each may be enclosed within any number of paired parentheses, in which case its category is not changed.
8.8.4.2 Simple relation conditions

8.8.4.2.1 GeneralA relation condition specifies a comparison of two operands. The relational operator that joins the two operands specifies the type of comparison. A relation condition shall have a truth value of 'true' if the specified relation exists between the two operands, and a truth value of 'false' if the relation condition does not exist. The simple conditions are the relation, boolean, class, condition-name, switch-status, sign, and omitted-argument conditions. A simple condition has a truth value of true or false. The inclusion in parentheses of simple conditions does not change the simple condition truth value.A relation condition involving operands of class boolean is a boolean relation condition; a relation condition involving operands of class message-tag, object, or pointer is a message-tag-object-or-pointer-reference relation condition; otherwise, the relation condition is a general-relation condition.Comparisons are defined for the following: 1) Two operands of class numeric.2) Two operands of class alphabetic.3) Two operands of class alphanumeric.4) Two operands of class boolean.5) Two operands of class national.6) Two operands where one is a numeric integer and the other is class alphanumeric or national.7) Two operands of different classes where each operand is from the set of classes alphanumeric, alphabetic, or national.8) Comparisons involving indexes or index data items. 9) Two operands of class message-tag.10) Two operands of class object.11) Two operands of class pointer where each operand is of the same category.12) Two strongly-typed operands of the same type.13) Two compatible variable-length groups.For comparison, an alphanumeric group item shall be treated as an elementary alphanumeric data item. A class alphabetic operand shall be treated as though it were an operand of class alphanumeric. A national group item or a bit group item shall be treated as an elementary national data item or an elementary bit data item, respectively.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 187

NOTE All comparisons involving numeric-edited data items are alphanumeric or national comparisons, including when the associated VALUE clause is a numeric literal. Users should be aware this means that algebraic signs in numeric-edited data items usually have counter-intuitive collating sequence ordering, also that two numerically equivalent values in numeric-edited data items will not compare as equal when their picture clauses are different.Comparison of a variable-length group with a compatible group is defined below in 8.8.4.2.17, Comparison of a variable-length group with a compatible group.The first operand is called the subject of the condition; the second operand is called the object of the condition. A relation condition shall contain at least one reference to an operand that is not a literal.
8.8.4.2.2 General formatFormat 1 (General-relation):

Format 2 (boolean):

identifier-1literal-1arithmetic-expression-1index-name-1

IS NOT GREATER THANIS NOT >IS NOT LESS THANIS NOT <IS NOT EQUAL TOIS NOT =IS <>IS GREATER THAN OR EQUAL TOIS >=IS LESS THAN OR EQUAL TOIS <=

identifier-2literal-2arithmetic-expression-2index-name-2

boolean-expression-1 IS NOT EQUAL TOIS NOT =IS <>

 boolean-expression-2

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

188 ©ISO/IEC 2023

Format 3 (message-tag-object-or-pointer-reference):

8.8.4.2.3 Syntax rulesFORMAT 11) If either identifier-1 or identifier-2 is a strongly-typed group, both operands shall be of the same type.2) All identifiers shall be of class alphabetic, alphanumeric, index, national, or numeric or shall be strongly-typed group items.3) All literals shall be of class alphanumeric, national, or numeric.4) Strongly-typed group items that contain elementary items of class boolean, message-tag, object, or pointer, may be compared only for equality or inequality.FORMAT 35) Identifier-3 and identifier-4 shall reference data items of class message-tag, object, or pointer, and shall be of the same category.
8.8.4.2.4 Comparison of numeric operandsFor operands whose class is numeric, a comparison is made with respect to the algebraic value of the operands regardless of the manner in which their usage is described. The length of the literal or arithmetic expression operands, in terms of the number of digits represented, is not significant. Zero is considered a unique value regardless of the sign; an operand having the value zero is equal to any other operand having the value zero, whether either operand is positive, negative, or unsigned.When native arithmetic is in effect, comparison proceeds by the rules of native arithmetic.When standard-binary arithmetic is in effect, the form of rounding used in the operation shall be as specified in 11.9.11, INTERMEDIATE ROUNDING clause. The comparison is performed as if each operand not already in the format of a standard-binary intermediate data item had been converted to that form, and the comparison made between the two corresponding standard-binary intermediate data items.When standard-decimal arithmetic is in effect, the form of rounding used in the operation shall be as specified in 11.9.11, INTERMEDIATE ROUNDING clause. The comparison is performed as if each operand not already in the format of a standard-decimal intermediate data item had been converted to that form, and the comparison made between the two corresponding standard-decimal intermediate data items.

identifier-3 IS [NOT] EQUAL TOIS [NOT] =IS <>

 identifier-4

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 189

8.8.4.2.5 Comparison of a numeric integer operand with an operand of class
alphanumeric or nationalThe numeric integer operand shall be an integer literal or an integer numeric data item of usage display or national. The other operand may be a literal or data item of class alphanumeric or national. The integer operand is treated as though it were moved, according to the rules of the MOVE statement, to an elementary data item of the same length in terms of character positions as the number of digits in the integer, and of the same class and usage as the alphanumeric or national operand specified as the other operand in the condition. Comparison then proceeds by the rules for comparison of that alphanumeric or national elementary item against the alphanumeric or national operand specified as the other operand in the condition.
8.8.4.2.6 Comparison of alphanumeric and national operandsTwo operands, one class alphanumeric and one class national, may be compared. The alphanumeric operand is treated as though it were converted and moved in accordance with the rules of the MOVE statement from an alphanumeric elementary data item to a temporary elementary data item of class national with the same length in terms of character positions as the alphanumeric operand. Comparison then proceeds with this temporary elementary national data item by the rules for comparison of two operands of class national.
8.8.4.2.7 Comparison of alphanumeric operands An operand of class alphanumeric may be compared to another operand of class alphanumeric or to another operand treated as class alphanumeric for the purposes of comparison. Comparison is made with respect to the collating sequence of characters specified for the current alphanumeric program collating sequence. The length of an operand is the number of alphanumeric character positions in the operand.Two kinds of comparison are defined: standard comparison and locale-based comparison. Locale-based comparison is used when the alphanumeric program collating sequence in effect is locale based; otherwise, standard comparison is used.When a standard comparison is specified, there are two cases to consider: operands of equal length and operands of unequal length.1) Operands of equal length. Comparison effectively proceeds by comparing alphanumeric characters in corresponding alphanumeric character positions starting from the high-order end and continuing until either a pair of unequal characters is encountered or the low-order end of the operand is reached, whichever comes first. The operands are determined to be equal if all pairs of corresponding alphanumeric characters are equal. Two zero-length operands are equal.The first pair of unequal characters encountered are compared to determine their relative position in the alphanumeric collating sequence. The operand that contains the character that is positioned higher in the alphanumeric collating sequence is the greater operand.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

190 ©ISO/IEC 2023

2) Operands of unequal length. If the operands are of unequal length, comparison proceeds as though the shorter operand were extended on the right by sufficient alphanumeric spaces to make the operands of equal length. The preceding rule for operands of equal length then apply.When local-based comparisons are specified, for purposes of comparison, trailing spaces are truncated from the operands except that an operand consisting of all spaces is truncated to a single space. NOTE Locale-based comparison is not necessarily a character-by-character comparison; extending the shorter operand with spaces as for non-locale based comparison could alter the culturally-expected results.If the locale does not specify a distinct alphanumeric collating sequence, class alphanumeric and alphabetic operands are mapped to their corresponding representation in the national character set for purposes of comparison; the correspondence between alphanumeric characters and national characters is defined by the implementor.Comparison then proceeds by the algorithm associated with the collating sequence defined by category LC_COLLATE from the current locale. This may be a culturally-sensitive comparison, and is not necessarily performed character-by-character. The determination of whether the relation condition is satisfied is based on the locale specification. Two zero-length operands are equal.If the locale does not define a collating sequence for all characters of the operands, the EC-LOCALE-INCOMPATIBLE exception condition is set to exist.
8.8.4.2.8 Comparison of boolean operands An operand of class boolean may be compared with another operand of class boolean. Comparison of operands of class boolean is a comparison of their boolean value, regardless of their usage. The length of an operand is the number of boolean positions in the operand. There are two cases to consider: operands of equal length and operands of unequal length. 1) Operands of equal length. Comparison effectively proceeds by comparing boolean values in corresponding boolean positions starting from the leftmost boolean position and continuing until either a pair of unequal boolean values is encountered or the rightmost boolean position of the operand is reached, whichever comes first. The operands are determined to be equal if all pairs of corresponding boolean values are equal. Two zero-length operands are equal.2) Operands of unequal length. If the operands are of unequal length, comparison proceeds as though the shorter operand were extended on the right by sufficient boolean zeros to make the operands of equal length. The preceding rule for operands of equal length then apply.
8.8.4.2.9 Comparison of national operands An operand of class national may be compared with another operand of class national. Comparison is made with respect to the collating sequence of characters specified for the current national program collating sequence. The length of an operand is the number of national character positions in the operand.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 191

Two kinds of comparison are defined: standard comparison and locale-based comparison. Locale-based comparison is used when the national program collating sequence in effect is locale based; otherwise, standard comparison is used.NOTE An alphanumeric and a national data item can be compared. The rules for comparison of alphanumeric and national operands specify that the alphanumeric operand is converted to national. Comparison then proceeds by the rules for comparison of two national items.
8.8.4.2.10 Standard comparison When a standard comparison is specified, there are two cases to consider: operands of equal length and operands of unequal length.1) Operands of equal length. Comparison effectively proceeds by comparing national characters in corresponding national character positions starting from the high-order end and continuing until either a pair of unequal characters is encountered or the low-order end of the operand is reached, whichever comes first. The operands are determined to be equal if all pairs of corresponding national characters are equal. Two zero-length operands are equal.The first pair of unequal characters encountered are compared to determine their relative position in the national collating sequence. The operand that contains the character that is positioned higher in the national collating sequence is the greater operand. 2) Operands of unequal length. If the operands are of unequal length, comparison proceeds as though the shorter operand were extended on the right by sufficient national spaces to make the operands of equal length. The preceding rule for operands of equal length then apply.
8.8.4.2.11 Locale-based comparisonWhen local-based comparisons are specified for purposes of comparison, trailing spaces are truncated from the operands except that an operand consisting of all spaces is truncated to a single space.NOTE Locale-based comparison is not necessarily a character-by-character comparison; extending the shorter operand with spaces as for non-locale based comparison could alter the culturally-expected results.Comparison then proceeds by the algorithm associated with the collating sequence defined by category LC_COLLATE from the current locale. This may be a culturally-sensitive comparison, and is not necessarily performed character-by-character. The determination of whether the relation condition is satisfied is based on the locale specification. Two zero-length operands are equal.If the locale does not define a collating sequence for all characters of the operands, the EC-LOCALE-INCOMPATIBLE exception condition is set to exist.
8.8.4.2.12 Comparison of strongly-typed group itemsTwo strongly typed group items are of the same type when their type definitions are equivalent according to 8.5.3.3, Strongly-typed group items. When this is not true, they are not considered to be equivalent, and any comparison is unequal.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

192 ©ISO/IEC 2023

When two strongly-typed group items are compared, each elementary item of the first operand is compared with the corresponding elementary item of the second operand, in accordance with the rules for comparison of elementary items and in the order in which the elementary items are specified in the strongly-typed group items.This comparison proceeds until a pair of elementary items is unequal or the final pair of elementary items is compared. The operand that contains the elementary item that is greater than the corresponding elementary item is determined to be the greater operand. Two strongly-typed group operands are determined to be equal if all pairs of corresponding elementary items are equal.
8.8.4.2.13 Comparisons involving index-names or index data itemsRelation tests may be made only between1) two index-names. The result is the same as if the corresponding occurrence numbers were compared.2) an index-name and a numeric data item or numeric literal. The occurrence number that corresponds to the value of the index-name is compared to the data item or literal.3) an index data item and an index-name or another index data item. The actual values are compared without conversion.
8.8.4.2.14 Comparisons of operands of class message-tagAn operand of class message-tag may be compared with another operand of class message-tag.The operands are equal if they reference the same message requestor or message server of the same name or one is NULL and the other is NULL.
8.8.4.2.15 Comparisons of operands of class objectAn operand of class object may be compared with another operand of class object.NOTE Comparison of predefined object references with themselves is allowed, although it does not make much sense to do so.The relation 'identifier-3 = identifier-4' has a true value if the object referenced by identifier-3 is the same object that is referenced by identifier-4; otherwise, the relation has a false value.
8.8.4.2.16 Comparison of pointer operandsThe operands are equal if they reference the same address.
8.8.4.2.17 Comparison of a variable-length group with a compatible groupA comparison of two compatible groups, one or both of which is a variable-length group, proceeds from left to right as described under 8.8.4.2.7, Comparison of alphanumeric operands except that:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 193

— when corresponding tables are encountered, they are compared as described in 14.6.9.3, Comparing two tables— when corresponding dynamic-length elementary items are encountered, the length is determined as described in 8.5.1.10.4, Operations on dynamic-length elementary items.After comparison of corresponding tables or dynamic-length elementary items, comparison continues with the next data item in each of the compatible groups. Determination of compatible groups and identification of corresponding tables and dynamic-length elementary items is described in 8.5.1.12, Variable-length groups.
8.8.4.3 Simple boolean condition

8.8.4.3.1 GeneralA boolean condition determines whether a boolean expression is true or false.
8.8.4.3.2 General format

8.8.4.3.3 Syntax rule1) Boolean-expression-1 shall reference only boolean items of length 1.
8.8.4.3.4 General rules1) Boolean-expression-1 evaluates true if the result of the expression is 1 and evaluates false if the result of the expression is 0.2) The condition NOT boolean-expression-1 evaluates to the reverse truth-value of boolean-expression-1.
8.8.4.4 Simple class condition

8.8.4.4.1 GeneralThe class condition determines whether an operand is numeric, alphabetic, alphabetic-lower, alphabetic-upper, boolean, has a representation of a specified numeric condition, or contains only the characters in the set of characters specified by the ALPHABET or CLASS clause as defined in the SPECIAL-NAMES paragraph of the environment division.NOTE Strongly typed group items have their own unique classes and categories and cannot be referenced in class conditions.

[NOT] boolean-expression-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

194 ©ISO/IEC 2023

8.8.4.4.2 General format

8.8.4.4.3 Syntax rules1) Identifier-1 shall not reference a data item of class index, message-tag, object, or pointer, nor a strongly-typed group, nor a variable-length group.2) Alphabet-name-1 shall not reference an alphabet associated with a locale.3) If the alphabet-name-1, ALPHABETIC, ALPHABETIC-LOWER, ALPHABETIC-UPPER, BOOLEAN, or class-name-1 phrase is specified, identifier-1 shall reference a data-item whose usage is display or national. If identifier-1 is a function-identifier, it shall reference an alphanumeric or national function.4) ALPHABETIC, ALPHABETIC-LOWER, ALPHABETIC-UPPER, or class-name-1 shall not be specified if the category of the data item referenced by identifier-1 is boolean, numeric, or numeric-edited.5) BOOLEAN shall not be specified if the category of the data item referenced by identifier-1 is numeric or numeric-edited.6) If FARTHEST-FROM-ZERO, IN-ARITHMETIC-RANGE, or NEAREST-TO-ZERO is specified, identifier-1 shall reference a data item whose category is numeric.7) If the FLOAT-INFINITY, FLOAT-NOT-A-NUMBER, FLOAT-NOT-A-NUMBER-QUIET, or FLOAT-NOT-A-NUMBER-SIGNALING phrase is specified, identifier-1 shall reference a data item described with a standard floating-point usage.

identifier-1 IS [NOT]

alphabet-name-1ALPHABETICALPHABETIC-LOWERALPHABETIC-UPPERBOOLEANclass-name-1FARTHEST-FROM-ZEROFLOAT-INFINITYFLOAT-NOT-A-NUMBERFLOAT-NOT-A-NUMBER-QUIETFLOAT-NOT-A-NUMBER-SIGNALINGIN-ARITHMETIC-RANGENEAREST-TO-ZERONUMERIC

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 195

8) If the NUMERIC phrase is specified, identifier-1 shall reference a data item whose usage is display or national or whose category is numeric.
8.8.4.4.4 General rules1) If the data item referenced by identifier-1 is a zero-length item, the truth value of the class condition without the word NOT is false.2) If the word NOT is specified, the truth value is reversed.3) If the data item referenced by identifier-1 is not a zero-length item, the truth value of the class condition without the word NOT is determined as follows:a) If alphabet-name-1 is specified, the condition is true if the content of the data item referenced by identifier-1 consists entirely of characters in the coded character set identified by alphabet-name-1 in the SPECIAL-NAMES paragraph.b) If ALPHABETIC is specified, the condition is true in the following circumstances:1. If a locale is in effect for character classification, the condition is true if the content of the data item referenced by identifier-1 consists only of characters identified as alphabetic in locale category LC_CTYPE of the current locale.2. If a locale is not in effect for character classification, the condition is true if the content of the data item referenced by identifier-1 consists only of a combination of the uppercase letters A, B, C, ..., Z, and space; or a combination of the lowercase letters a, b, c, ..., z and space; or any combination of the uppercase letters and lowercase letters and space.c) If ALPHABETIC-LOWER is specified, the condition is true in the following circumstances:1. If a locale is in effect for character classification, the condition is true if the content of the data item referenced by identifier-1 consists only of characters identified as lowercase alphabetic in locale category LC_CTYPE of the current locale.2. If a locale is not in effect for character classification, the condition is true if the content of the data item referenced by identifier-1 consists only of a combination of the lowercase letters a, b, c, ..., z, and space.d) If ALPHABETIC-UPPER is specified, the condition is true in the following circumstances:1. If a locale is in effect for character classification, the condition is true if the content of the data item referenced by identifier-1 consists only of characters identified as uppercase alphabetic in locale category LC_CTYPE of the current locale.2. If a locale is not in effect for character classification, the condition is true if the content of the data item referenced by identifier-1 consists only of a combination of the uppercase letters A, B, C, ..., Z, and space.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

196 ©ISO/IEC 2023

e) If BOOLEAN is specified, the condition is true if the content of the data item referenced by identifier-1 consists entirely of the boolean values '0' and '1'.f) If class-name-1 is specified, the condition is true if the content of the data item referenced by identifier-1 consists entirely of the characters listed in the definition of class-name-1 in the SPECIAL-NAMES paragraph.g) If FARTHEST-FROM-ZERO is specified, the condition is true if the content of the data item referenced by identifier-1 is the numeric value farthest from zero that may be contained in that data item, whether that value is positive or negative.h) If FLOAT-INFINITY is specified, the condition is true if the content of the data item referenced by identifier-1 is one of the valid representations of positive infinity or negative infinity as described in ISO/IEC 60559:2020, Clause 3.i) If FLOAT-NOT-A-NUMBER is specified, the condition is true if the content of the data item referenced by identifier-1 is one of the valid representations of either a quiet NaN or a signaling NaN as described in ISO/IEC 60559:2020, Clause 3.j) If FLOAT-NOT-A-NUMBER-QUIET is specified, the condition is true if the content of the data item referenced by identifier-1 is one of the valid representations of a quiet NaN as described in ISO/IEC 60559:2020, Clause 3.k) If FLOAT-NOT-A-NUMBER-SIGNALING is specified, the condition is true if the content of the data item referenced by identifier-1 is one of the valid representations of a signaling NaN as described in ISO/IEC 60559:2020, Clause 3.l) If IN-ARITHMETIC-RANGE Is specified, the condition is true if the numeric content of the data item referenced by identifier-1 is neither farther from zero nor closer to zero than is permitted for the form of an intermediate data item appropriate to the mode of arithmetic in effect.m) If NEAREST-TO-ZERO is specified, the condition is true if the content of the data item referenced by identifier-1 is the nonzero numeric value nearest to zero that may be contained in that data item, whether that value is positive or negative.n) If NUMERIC is specified,1. If the category of the data item referenced by identifier-1 is numeric,a. If the usage of the data item referenced by identifier-1 is implicitly or explicitly display or national, the condition is true if the presence or absence of an operational sign in the content of the data item referenced by identifier-1 is in agreement with the data description of identifier-1 and if the content, except for the operational sign, consists entirely of the characters 0, 1, 2, 3, ..., 9. Valid operational signs are defined in 13.18.52, SIGN clause.b. If the usage of the data item referenced by identifier-1 is any standard floating-point usage, the condition is true only if the content of the data item referenced by identifier-1 represents a finite numeric value according to the specifications for that usage.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 197

c. Otherwise, the condition is true if the content of the data item referenced by identifier-1 consists entirely of a valid representation for the usage and, if a PICTURE clause is specified, the numeric value is within the range of values implied by the PICTURE clause.2. If the category of the data item referenced by identifier-1 is not numeric, the condition is true if the content of the data item referenced by identifier-1 consists entirely of the characters 0, 1, 2, 3, ..., 9.
8.8.4.5 Simple condition-name condition (conditional variable)

8.8.4.5.1 GeneralIn a condition-name condition, a conditional variable is tested to determine whether or not its value is equal to one of the values associated with condition-name-1. A conditional variable is defined in 8.4.4, Condition-name.
8.8.4.5.2 General format

8.8.4.5.3 General rules1) If condition-name-1 is associated with one or more ranges of values, the conditional variable is tested to determine whether its value is within the specified range or ranges, including the end values.2) The rules for comparing a conditional variable with a condition-name value are the same as those specified for relation conditions.3) The result of the test is true if one of the values corresponding to condition-name-1 equals the value of its associated conditional variable.
8.8.4.6 Simple switch-status condition

8.8.4.6.1 GeneralA switch-status condition determines the on or off status of an implementor-defined external switch. The switch-name and the on or off value associated with the condition shall be named in the SPECIAL-NAMES paragraph of the environment division.
8.8.4.6.2 General format

8.8.4.6.3 General rule1) The result of the test is true if the switch is set to the specified position corresponding to condition-name-1.

condition-name-1

condition-name-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

198 ©ISO/IEC 2023

8.8.4.7 Simple sign condition

8.8.4.7.1 GeneralThe sign condition determines whether or not the algebraic value of an arithmetic expression is less than, greater than, or equal to zero.
8.8.4.7.2 General format

Format 1 (expression)

Format 2 (standard-float)

8.8.4.7.3 Syntax rulesFORMAT 11) Arithmetic-expression-1 shall be any single numeric data item described with a usage other than a standard floating-point usage, or any form of arithmetic expression.NOTE Arithmetic-expression-1 can consist of a single data item described with a standard floating-point usage enclosed in parentheses. FORMAT 22) Data-name-1 shall be the name of a single data item in the data division described with a standard floating-point usage, and that name shall not be enclosed in parentheses.
8.8.4.7.4 General rulesFORMAT 11) Arithmetic-expression-1 is specified, it is evaluated according to the rules of arithmetic in effect, and the result of that arithmetic expression is a numeric value.a) If the POSITIVE phrase is specified, the result is true if the value is greater than zero, and false if the value is zero or less than zero.

arithmetic-expression-1 IS [NOT] POSITIVENEGATIVEZERO

data-name-1 IS [NOT] POSITIVENEGATIVEZERO

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 199

b) If the NEGATIVE phrase is specified, the result is true if the value is less than zero, and false if it is zero or greater than zero.c) If the ZERO phrase is specified, the result is true if the value is zero, and false otherwise.FORMAT 22) The content of the data item identified by data-name-1 is evaluated according to the specifications for the particular basic floating-point interchange format, as specified in ISO/IEC 60559:2020, Clause 3, that corresponds to the specifications in the USAGE clause with which data-name-1 is described, to determine the result returned as follows:NOTE The specifications of ISO/IEC 60559:2020 are such that a data item described with a standard floating-point usage may return a true value in either a POSITIVE or NEGATIVE sign test and also in a ZERO sign test. The POSITIVE and NEGATIVE sign tests for such data items represent the sign of the content even when that content is a representation of infinity or a representation of a NaN, neither of which would return a true value in a numeric class test.a) If the POSITIVE phrase is specified, the result is true if the sign of the content of the data item identified by data-name-1 is positive as specified for its basic floating-point interchange format, and false otherwise, regardless of whether the content of that item would evaluate to true in a NUMERIC class test or a ZERO sign test.b) If the NEGATIVE phrase is specified, the result is true if the sign of the content of the data item identified by data-name-1 is negative as specified for its basic floating-point interchange format, and false otherwise, regardless of whether the content of that item would evaluate to true in a NUMERIC class test or a ZERO sign test.c) If the ZERO phrase is specified, the result is true if the content of the data item identified by data-name-1 is a valid representation of the numeric value zero as specified for its basic floating-point interchange format, and false otherwise, regardless of whether the sign of the content of data-name-1 is positive or negative.
8.8.4.8 Simple omitted argument condition

8.8.4.8.1 GeneralThe omitted-argument condition determines whether an argument was provided to a function, method, or program.
8.8.4.8.2 General format

8.8.4.8.3 Syntax rule1) Data-name-1 shall be a formal parameter defined in the source element in which this condition is specified.
data-name-1 IS [NOT] OMITTED

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

200 ©ISO/IEC 2023

8.8.4.8.4 General rules1) The result of the OMITTED test is true:a) if the OMITTED phrase, rather than an identifier or literal, is specified as the argument corresponding to data-name-1 in the statement that activated this program, function, or method; or,b) the argument corresponding to data-name-1 was a trailing argument that was omitted from the activating statement; or,c) if the argument corresponding to data-name-1 is itself a formal parameter for which the omitted-argument condition is true.2) When used, NOT and the keyword OMITTED specify one condition to be executed for truth value.
8.8.4.9 Complex conditionsA complex condition is formed by combining simple conditions and/or complex conditions with logical connectors (logical operators 'AND', 'OR' and ‘EXCLUSIVE-OR’ or ‘XOR’) or by negating these conditions with logical negation (the logical operator 'NOT'). The truth value of a complex condition, whether parenthesized or not, is the truth value that results from the interaction of the stated logical operators on its constituent conditions.The logical operators and their meanings are:

8.8.4.10 Complex negated conditions

8.8.4.10.1 GeneralA condition is negated by use of the logical operator 'NOT', which reverses the truth value of the condition to which it is applied. Including a negated condition in parentheses does not change its truth value.

Logical
Operator

Meaning

AND Logical conjunction; the truth value is true if both of the conjoined conditions are true; false if one or both of the conjoined conditions is false.EXCLUSIVE-OR, XOR Logical inclusive OR; the truth value is true if one but not both of the included conditions is true; false if both included conditions are false or both included conditions are trueOR Logical inclusive OR; the truth value is true if one or both of the included conditions is true; false if both included conditions are false.NOT Logical negation or reversal of truth value; the truth value is true if the condition is false; false if the condition is true.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 201

NOTE The truth value of a negated condition is true if the truth value of the condition being negated is false; the truth value of a negated condition is false if the truth value of the condition being negated is true.
8.8.4.10.2 General format

8.8.4.11 Complex Combined conditions

8.8.4.11.1 GeneralA combined condition results from connecting conditions with one of the logical operators 'AND', 'OR', ‘EXCLUSIVE-OR’, or ‘XOR’.NOTE The words XOR and EXCLUSIVE-OR are equivalent, either can be used to indicate an exclusive-or combined condition as referenced by 8.7.6, Logical operators.
8.8.4.11.2 General format

8.8.4.11.3 Precedence of logical operators and the use of parenthesesThe precedence of logical operators determines the conditions to which logical operators apply, unless the precedence is overridden by explicit parentheses. The order of precedence of logical operators is 'NOT', 'AND', ‘EXCLUSIVE-OR’ or ‘XOR’, 'OR'. Explicit parentheses in a complex condition alter the order of evaluation of the conditions, as described in 8.8.4.13, Order of evaluation of conditions.NOTE condition-1 OR NOT condition-2 AND condition-3' has the meaning 'condition-1 OR ((NOT condition-2) AND condition-3)'. ’condition-1 XOR condition-2’ has the meaning ‘(NOT (condition-1 and condition-2) AND NOT (NOT condition-1 and NOT condition-2)’. ’condition-1 OR condition-2 XOR condition-3’ has the meaning ‘condition-1 OR (condition-2 XOR condition-3) since XOR is higher in precedence than OR’Parentheses can be used to alter the meaning. For example, '(condition-1 OR (NOT condition-2)) AND condition-3' evaluates differently than 'condition-1 OR NOT condition-2 AND condition-3'.Table 5, Combinations of conditions, logical operators, and parentheses, indicates the ways in which conditions and logical operators may be combined and parenthesized. There shall be a one-to-one

NOT condition-1

condition-1 ANDOREXCLUSIVE-ORXOR

 condition-2

 ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

202 ©ISO/IEC 2023

correspondence between left and right parentheses such that each left parenthesis is to the left of its corresponding right parenthesis.
Table 5 — Combinations of conditions, logical operators, and parentheses

8.8.4.12 Abbreviated combined relation conditions

8.8.4.12.1 GeneralWhen simple or negated simple relation conditions are combined with logical connectives in a consecutive sequence such that a succeeding relation condition contains a subject or subject and relational operator that is common with the preceding relation condition, and no parentheses are used within such a consecutive sequence, any relation condition except the first may be abbreviated by:1) The omission of the subject of the relation condition, or2) The omission of the subject and relational operator of the relation condition.Within a sequence of relation conditions, both forms of omission may be used.

Given the
following
element:

In a conditional
expression:

In a left-to-right sequence of elements:

May
element
be first?

May
element
be last?

Element, when not
first, may be
immediately

preceded by only:

Element, when not
last, may be
immediately

followed by only:simple-condition Yes Yes EXCLUSIVE-OR or XOR, OR, NOT, AND, (EXCLUSIVE-OR or XOR, OR, AND,)EXCLUSIVE-OR or XOR, OR or AND No No simple-condition,) simple-condition, NOT, (
NOT Yes No EXCLUSIVE-OR or XOR, OR, AND, (simple-condition, (
(Yes No EXCLUSIVE-OR or XOR, OR, NOT, AND, (simple-condition, NOT, () No Yes simple-condition,) EXCLUSIVE-OR or XOR, OR, AND,)NOTE The element pairs 'OR NOT' and ‘EXCLUSIVE-OR NOT’ or ’XOR NOT’ are permissible while the pairs 'NOT OR' and ‘NOT EXCLUSIVE-OR or NOT XOR’ are not permissible; the pair 'NOT (' is permissible while the pair 'NOT NOT' is not permissible.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 203

8.8.4.12.2 General format

where simple-relational-operator and extended-relational-operator are described in 8.7.5, Relational operators
8.8.4.12.3 Syntax rules1) Relation-condition-1 shall not be a boolean relation condition.2) The result of implied insertion shall comply with the rules of Table 5, Combinations of conditions, logical operators, and parentheses.
8.8.4.12.4 General rule1) The effect of using abbreviations is as if the last preceding stated subject were inserted in place of the omitted subject, and the last stated relational operator were inserted in place of the omitted relational operator. The insertion of an omitted subject and/or relational operator terminates once a complete simple condition is encountered within a complex condition.NOTE When NOT appears in an abbreviated combined relation condition, it could be as a logical operator preceding the explicit subject of relation-condition-1, or it could be as a part of an extended-relational-operator. However, NOT cannot immediately precede an extended-relational operator. The interaction of these rules often lead to results that are not intuitive and therefore it should be avoided. Some examples of such usage with the expanded equivalent expression follow:Abbreviated combined relation condition Expanded equivalenta > b AND NOT < c OR d ((a > b) AND (a NOT < c)) OR (a NOT < d)a NOT EQUAL b OR c (a NOT EQUAL b) OR (a NOT EQUAL c)NOT a = b OR c (NOT (a = b)) OR (a = c)NOT (a GREATER b OR < c) NOT ((a GREATER b) OR (a < c))NOT (a NOT > b AND c AND NOT d) NOT (((a NOT > b) AND (a NOT > c)) AND (NOT (a NOT > d)))NOT (a NOT > b XOR c AND NOT d) NOT ((a NOT > b) XOR ((a NOT > c) AND NOT (a NOT > d)))

relation-condition-1 ANDOREXCLUSIVE-ORXOR

 NOTsimple-relational-operatorextended-relational-operator

 object-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

204 ©ISO/IEC 2023

8.8.4.13 Order of evaluation of conditionsParentheses, both explicit and implicit, denote a level of inclusiveness within a complex condition. Two or more conditions connected by only the logical operator 'AND', only the logical operator ‘EXCLUSIVE-OR’ or ‘XOR’, or only the logical operator 'OR' at the same level of inclusiveness establish a hierarchical level within a complex condition. An entire complex condition can be considered to be a nested structure of hierarchical levels with the entire complex condition itself being the most inclusive hierarchical level. Within this context, the evaluation of the conditions within an entire complex condition begins at the left of the entire complex condition and proceeds according to the following rules recursively applied where necessary:1) The constituent connected conditions within a hierarchical level are evaluated in order from left to right, and evaluation of that hierarchical level terminates as soon as a truth value for it is determined regardless of whether all the constituent connected conditions within that hierarchical level have been evaluated.2) Values are established for arithmetic expressions and functions if and when the conditions containing them are evaluated. Similarly, negated conditions are evaluated if and when it is necessary to evaluate the complex condition that they represent. (See 8.8.1, Arithmetic expressions.)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 205

8.9 Reserved wordsThe following is the list of reserved words:ACCEPTACCESSACTIVE-CLASSADDADDRESSADVANCINGAFTERALIGNEDALLALLOCATEALPHABETALPHABETICALPHABETIC-LOWERALPHABETIC-UPPERALPHANUMERICALPHANUMERIC-EDITEDALSOALTERNATEANDANYANYCASEAREAREAAREASASASCENDINGASSIGNATB-ANDB-NOTB-ORB-SHIFT-LB-SHIFT-RB-SHIFT-LCB-SHIFT-RCBYB-XORBASEDBEFOREBINARYBINARY-CHARBINARY-DOUBLE

BINARY-LONGBINARY-SHORTBITBLANKBLOCKBOOLEANBOTTOMCALLCANCELCFCHCHARACTERCHARACTERSCLASSCLASS-IDCLOSECODECODE-SETCOLCOLLATINGCOLSCOLUMNCOLUMNSCOMMACOMMITCOMMONCOMPCOMPUTATIONALCOMPUTECONDITIONCONFIGURATIONCONSTANTCONTAINSCONTENTCONTINUECONTROLCONTROLSCONVERTINGCOPYCORRCORRESPONDINGCOUNT

CRTCURRENCYCURSORDATADATA-POINTERDATEDAYDAY-OF-WEEKDEDECIMAL-POINTDECLARATIVESDEFAULTDELETEDELIMITEDDELIMITERDEPENDINGDESCENDINGDESTINATIONDETAILDISPLAYDIVIDEDIVISIONDOWNDUPLICATESDYNAMICECEDITINGELSEENDEND-ACCEPTEND-ADDEND-CALLEND-COMPUTEEND-DELETEEND-DISPLAYEND-DIVIDEEND-EVALUATEEND-IFEND-MULTIPLYEND-OF-PAGEEND-PERFORM

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

206 ©ISO/IEC 2023

END-RECEIVEEND-READEND-RETURNEND-REWRITEEND-SEARCHEND-SENDEMD-STARTEND-STRINGEND-SUBTRACTEND-UNSTRINGEND-WRITEENVIRONMENTEOEOPEQUALERROREVALUATEEXCEPTIONEXCEPTION-OBJECTEXCLUSIVE-OREXITEXTENDEXTERNALFACTORYFARTHEST-FROM-ZEROFALSEFDFILEFILE-CONTROLFILLERFINALFINALLYFIRSTFLOAT-BINARY-32FLOAT-BINARY-64FLOAT-BINARY-128FLOAT-DECIMAL-16FLOAT-DECIMAL-34FLOAT-EXTENDEDFLOAT-INFINITYFLOAT-LONGFLOAT-NOT-A-NUMBERFLOAT-NOT-A-NUMBER- QUIET

FLOAT-NOT-A-NUMBER- SIGNALINGFLOAT-SHORTFOOTINGFORFORMATFREEFROMFUNCTIONFUNCTION-IDFUNCTION-POINTERGENERATEGETGIVINGGLOBALGOGOBACKGREATERGROUPGROUP-USAGEHEADINGHIGH-VALUEHIGH-VALUESi-OI-OICONTROLIDENTIFICATIONIFININ-ARITHMETIC-RANGEINDEXINDEXEDINDICATEINHERITSINITIALINITIALIZEINITIATEINPUTINPUT-OUTPUTINSPECTINTERFACEINTERFACE-IDINTOINVALIDINVOKEIS

JUSTJUSTIFIEDKEYLASTLEADINGLEFTLENGTHLESSLIMITLIMITSLINAGELINAGE-COUNTERLINELINE-COUNTERLINESLINKAGELOCAL-STORAGELOCALELOCATIONLOCKLOW-VALUELOW-VALUESMERGEMESSAGE-TAGMETHOD-IDMINUSMODEMOVEMULTIPLYNATIONALNATIONAL-EDITEDNATIVENEAREST-TO-ZERONEGATIVENESTEDNEXTNONOTNULLNUMBERNUMERICNUMERIC-EDITED

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 207

OBJECTOBJECT-COMPUTEROBJECT-REFERENCEOCCURSOFOFFOMITTEDONOPENOPTIONALOPTIONSORORDERORGANIZATIONOTHEROUTPUTOVERFLOWOVERRIDEPACKED-DECIMALPAGEPAGE-COUNTERPERFORMPFPHPICPICTUREPLUSPOINTERPOSITIVEPRESENTPRINTINGPROCEDUREPROGRAMPROGRAM-IDPROGRAM-POINTERPROPERTYPROTOTYPE

QUOTEQUOTESRAISERAISINGRANDOMRDREADRECEIVERECORDRECORDSREDEFINESREELREFERENCERELATIVERELEASEREMAINDERREMOVALRENAMESREPLACEREPLACINGREPORTREPORTINGREPORTSREPOSITORYRESERVERESETRESUME RETRYRETURNRETURNINGREWINDREWRITERFRHRIGHTROLLBACKROUNDEDRUN

SAMESCREENSDSEARCHSECTIONSELECTSENDSELFSENTENCESEPARATESEQUENCESEQUENTIALSETSHARINGSIGNSIZESORTSORT-MERGESOURCESOURCE-COMPUTERSOURCESSPACESPACESSPECIAL-NAMESSTANDARDSTANDARD-1STANDARD-2STARTSTATUSSTOPSTRINGSUBTRACTSUMSUPERSUPPRESSSYMBOLICSYNCSYNCHRONIZEDSYSTEM-DEFAULT

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

208 ©ISO/IEC 2023

NOTE Words can be added or deleted from this list for a specific compilation group by use of the COBOL-WORDS directive.

TABLETALLYINGTERMINATETESTTHANTHENTHROUGHTHRUTIMETIMESTOTOPTRAILINGTRUETYPETYPEDEFUNITUNIVERSALUNLOCKUNSTRINGUNTILUPUPONUSAGEUSEUSER-DEFAULT USING

VAL-STATUSVALIDVALIDATEVALIDATE-STATUSVALUEVALUESVARYINGWHENWITHWORKING-STORAGEWRITEXORZEROZEROESZEROS+–*/**><<>=>=<=&*>::>>

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 209

8.10 Context-sensitive wordsThe following are context-sensitive words and are reserved in the specified language construct or context. If a context-sensitive word is used where the context-sensitive word is permitted in the general format, the word is treated as a keyword; otherwise it is treated as a user-defined word:
Context-sensitive word Language construct or context

ACTIVATING MODULE-NAME intrinsic functionANUM CONVERT intrinsic functionAPPLY I-O-CONTROL paragraphARITHMETIC OPTIONS paragraphATTRIBUTE SET statementAUTO screen description entryAUTOMATIC LOCK MODE clauseAWAY-FROM-ZERO ROUNDED phraseBACKGROUND-COLOR screen description entryBACKWARD INSPECT statementBELL screen description entry and SET attribute statementBINARY-ENCODING USAGE clause and FLOAT-DECIMAL clauseBLINK screen description entry and SET attribute statementBYTE CONVERT intrinsic functionBYTES RECORD clauseBYTE-LENGTH constant entryCAPACITY OCCURS clauseCENTER COLUMN clauseCLASSIFICATION OBJECT-COMPUTER paragraphCURRENT MODULE-NAME intrinsic functionCYCLE EXIT statementDECIMAL-ENCODING USAGE clause and FLOAT-DECIMAL clauseEOL ERASE clause in a screen description entryEOS ERASE clause in a screen description entryENTRY-CONVENTION OPTIONS paragraphERASE screen description entryEXPANDS class-specifier and interface-specifier of the REPOSITORY paragraph

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

210 ©ISO/IEC 2023

FLOAT-BINARY OPTIONS paragraphFLOAT-DECIMAL OPTIONS paragraphFOREGROUND-COLOR screen description entryFOREVER RETRY phraseFULL screen description entryHEX CONVERT intrinsic functionHIGH-ORDER-LEFT FLOAT-BINARY clause, FLOAT-DECIMAL clause, and USAGE clauseHIGH-ORDER-RIGHT FLOAT-BINARY clause, FLOAT-DECIMAL clause, and USAGE clauseHIGHLIGHT screen description entry and SET attribute statementIGNORING READ statementIMPLEMENTS FACTORY paragraph and OBJECT paragraphINITIALIZED ALLOCATE statement and OCCURS clauseINTERMEDIATE OPTIONS paragraphINTRINSIC function-specifier of the REPOSITORY paragraphLC_ALL SET statementLC_COLLATE SET statementLC_CTYPE SET statementLC_MESSAGES SET statementLC_MONETARY SET statementLC_NUMERIC SET statementLC_TIME SET statementLOWLIGHT screen description entry and SET attribute statementMANUAL LOCK MODE clauseMULTIPLE LOCK ON phraseNAT CONVERT intrinsic functionNEAREST-AWAY-FROM-ZERO INTERMEDIATE ROUNDING clause and ROUNDED phraseNEAREST-EVEN INTERMEDIATE ROUNDING clause and ROUNDED phraseNEAREST-TOWARD-ZERO INTERMEDIATE ROUNDING clause and ROUNDED phraseNONE DEFAULT clauseNORMAL STOP statement

Context-sensitive word Language construct or context

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 211

NUMBERS COLUMN clause and LINE clauseONLY Object-view, SHARING clause, SHARING phrase, and USAGE clausePARAGRAPH EXIT statementPREFIXED DYNAMIC LENGTH STRUCTURE clausePREVIOUS READ statementPROHIBITED INTERMEDIATE ROUNDING clause and ROUNDED phraseRECURSIVE PROGRAM-ID paragraphRELATION VALIDATE-STATUS clauseREQUIRED screen description entryREVERSE-VIDEO screen description entry and SET attribute statementROUNDING OPTIONS paragraphSECONDS RETRY phrase, CONTINUE statementSECURE screen description entrySHORT DYNAMIC LENGTH STRUCTURE clauseSIGNED DYNAMIC LENGTH STRUCTURE clause and USAGE clauseSTACK MODULE-NAME intrinsic functionSTANDARD-BINARY ARITHMETIC clauseSTANDARD-DECIMAL ARITHMETIC clauseSTATEMENT RESUME statementSTEP OCCURS clauseSTRONG TYPEDEF clauseSTRUCTURE DYNAMIC LENGTH STRUCTURE clauseSYMBOL CURRENCY clauseTOP-LEVEL MODULE-NAME intrinsic functionTOWARD-GREATER ROUNDED phraseTOWARD-LESSER ROUNDED phraseTRUNCATION INTERMEDIATE ROUNDING clause and ROUNDED phraseUCS-4 ALPHABET clauseUNDERLINE screen description entry and SET attribute statementUNSIGNED USAGE clauseUTF-8 ALPHABET clause

Context-sensitive word Language construct or context

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

212 ©ISO/IEC 2023

All exception-names are context-sensitive because they may appear only following: RAISE, RAISING (in GOBACK and EXIT PROGRAM), USE EXCEPTION, WHEN phrase of the PERFORM statement, and in the TURN compiler directive. The list of exception-names is given in 14.6.13.1, Exception conditions.NOTE Words can be added or deleted from this list for a specific compilation group by use of the COBOL-WORDS directive.

UTF-16 ALPHABET clauseYYYYDDD ACCEPT statementYYYYMMDD ACCEPT statement
Context-sensitive word Language construct or context

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 213

8.11 Intrinsic function namesThe following is the list of intrinsic function names.ABSACOSANNUITYASINATANBASECONVERTBOOLEAN-OF-INTEGER BYTE-LENGTHCHARCHAR-NATIONALCOMBINED-DATETIMECONCATCONVERTCOSCURRENT-DATEDATE-OF-INTEGERDATE-TO-YYYYMMDDDAY-OF-INTEGERDAY-TO-YYYYDDDDISPLAY-OFEEXCEPTION-FILEEXCEPTION-FILE-NEXCEPTION-LOCATIONEXCEPTION-LOCATION-NEXCEPTION-STATEMENTEXCEPTION-STATUSEXPEXP10FACTORIALFIND-STRINGFORMATTED-CURRENT-DATEFORMATTED-DATEFORMATTED-DATETIMEFORMATTED-TIMEFRACTION-PARTHIGHEST-ALGEBRAICINTEGERINTEGER-OF-BOOLEAN INTEGER-OF-DATEINTEGER-OF-DAY

INTEGER-OF-FORMATTED-DATEINTEGER-PARTLENGTHLOCALE-COMPARELOCALE-DATELOCALE-TIMELOCALE-TIME-FROM-SECONDSLOGLOG10LOWER-CASELOWEST-ALGEBRAICMAXMEANMEDIANMIDRANGEMINMODMODULE-NAMENATIONAL-OFNUMVALNUMVAL-CNUMVAL-FORDORD-MAXORD-MINPIPRESENT-VALUERANDOMRANGEREMREVERSESECONDS-FROM-FORMATTED-TIMESECONDS-PAST-MIDNIGHTSIGNSINSMALLEST-ALGEBRAICSQRTSTANDARD-COMPARESTANDARD-DEVIATIONSUBSTITUTESUM

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

214 ©ISO/IEC 2023

NOTE Intrinsic function names can be added or deleted from this list for a specific compilation group by use of the COBOL-WORDS directive.

TANTEST-DATE-YYYYMMDDTEST-DAY-YYYYDDDTEST-FORMATTED-DATETIMETEST-NUMVALTEST-NUMVAL-CTEST-NUMVAL-FTRIMUPPER-CASEVARIANCEWHEN-COMPILEDYEAR-TO-YYYY

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 215

8.12 Compiler-directive wordsThe following words are reserved in compiler directives:

In addition to the above list, all of the exception-names specified in 14.6.13.1, Exception conditions, are reserved in the context of compiler directives.

ALLANDASB-ANDB-NOTB-ORB-SHIFT-LB-SHIFT-RB-SHIFT-LCB-SHIFT-RCB-XORCALL-CONVENTIONCHECKINGCOBOLCOBOL-WORDSCOMPILE-TIME- ARITHMETIC-EXPRESSIONSCORRESPONDINGDE-EDITINGDEFINEDEFINEDDISPLAYDIVIDEELSEEND-EVALUATEEND-IFEQUALEQUATEEVALUATEEXCLUSIVE-OREXTERNAL-FILE-FILE- STATUSFIXEDFLAG-02FLAG-14

FORMATFREEFUNCTION-ARGUMENTGREATERIFIMPISI-O-DECLARATIVEI-O-STATUS-04I-O-STATUS-07LEAP-SECONDLESSLISTINGLOCATIONMOVEMOVE-TO-SAME-NAMENOTNUMVALOFFONOROTHEROVERRIDEPAGEPARAMETERPOPPROPAGATEPUSHREAD-PREVIOUSREF-MOD-ZERO-LENGTHRESERVE

SETSIZESOURCESTANDARD-1STANDARD-2SUBSTITUTETHANTHROUGHTHRUTOTRUETURNUNDEFINEUPONVALUE-EDITINGVALUE-FIG-CON-LENGTHVALUE-ZEROWHENWITHWRITE-END-OF-PAGEXORZERO-LENGTH+-*/<=>=<><>=()

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

216 ©ISO/IEC 2023

8.13 External repositoryThe external repository contains all information required for activating programs, functions, or methods and for checking conformance. This information includes:— the externalized name of the source unit— the type of the source unit - program, function, class, or interface— the description of the parameters of the source unit, if any, and the manner of receiving parameters (by reference or by value) and whether they are optional or not— the description of the returning item of the source unit, if any— the exceptions that may be raised by the runtime element, if any— the entry convention of the source unit, if any— the object properties of the source unit, if any— the methods contained in the source unit, if any, and details about the method's externalized name, parameters, returning item, and entry convention— type declarations required for the description of parameters and returning items— whether the DECIMAL-POINT IS COMMA clause is specified in the source unit— any currency symbols and their corresponding currency strings defined in the source unit— any external locale identification for locales associated with formal parameters or returning items of the source unit— any other information that the implementor requiresThis information about a source unit, excluding the externalized name of the source unit, is called its signature. Whether the information is taken from a prototype or a definition, the information stored in the external repository about the signature of a program or a function is the same.The implementor shall provide a mechanism that allows the user to specify whether to update the external repository when a compilation unit is compiled.The implementor shall provide a mechanism that allows the user to specify whether to flag differences in prototypes and definitions in the compilation group from the information in the external repository.The details on the association of the name of a source unit with information in the external repository are specified in 12.3.8, REPOSITORY paragraph.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 217

9 I-O, objects, and user-defined functions

9.1 Files

9.1.1 Physical and logical filesThe physical aspects of a file describe the data as it appears on the input or output media and include such features as:1) The grouping of logical records within the physical limitations of the file medium. 2) The means by which the file shall be identified.The conceptual, or logical, characteristics of a file are the explicit definition of each logical entity within the file itself.It is important to distinguish between a physical record and a logical record. A COBOL logical record is a group of related information, uniquely identifiable, and treated as a unit. COBOL input or output statements refer to one logical record at a time.A physical record is a physical unit of information transferred to or recorded on an output device or transferred from an input device. The size of a physical record is hardware dependent and bears no direct relationship to the size of the file of information contained on a device.A logical record may be contained within a single physical unit; or several logical records may be contained within a single physical unit; or a logical record may require more than one physical unit to contain it. There are several source language methods available for describing the relationship of logical records and physical units. When a permissible relationship has been established, control of the accessibility of logical records as related to the physical unit is provided by the interaction of the runtime module with the processor. In this document, references to records mean to logical records, unless the term 'physical record' is specifically used. Similarly, references to files mean to the logical characteristics of a file, unless 'physical file' is used. For each file connector there is one associated logical file that is referenced by the file-name that refers to that file connector, even though there may be several logical files associated with one physical file.When a logical record is transferred to or from a physical unit, any translation required by the presence of a CODE-SET or FORMAT clause in the file description is accomplished. Padding characters are added or deleted as necessary.
9.1.2 Record areaThe record area is a storage area associated with a file in which logical records from that file are made accessible to a runtime element. The record area is made accessible to the runtime element at the completion of a successfully executed OPEN statement. For files open in the input mode, the logical record is available in the record area after execution of a successful read. For files open in the extend or output mode, the logical record is available until execution of a successful write or rewrite. For files open in the I-O mode, the logical record is available after execution of a successful read until the execution of either a read or successful rewrite.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

218 ©ISO/IEC 2023

NOTE All record description entries subordinate to a file description entry (FD or SD) implicitly redefine the same storage area, as specified in 13.18.33, Level-number, General rule 3.
9.1.3 File connectorA file connector is a conceptual entity used by the run unit to connect to a physical file and to reflect the status of input-output operations. The file connector is identified using a file-name.A file connector has several attributes that are specified by phrases and clauses in the file description entry and the file control entry for the associated file-name and by the execution of input-output statements. These attributes are: organization (sequential, indexed, or relative); access mode (sequential, dynamic, or random); lock mode (automatic, manual, or none); locking mode (single record locking, multiple record locking, or none); in an open mode (input, output, i-o, extend); sharing mode (sharing with no other, sharing with read only, sharing with all other, implementor-defined, or no sharing); and whether or not it is a report file connector. It also contains information about the file position indicator, the key of reference, the I-O status value, the current volume pointer, and file and record locks.A file connector is either internal or external as described in 8.6.3, External and internal items. For internal file connectors, one file connector is associated with each file description entry. For external file connectors, there is only one file connector that is associated with the run unit no matter how many file description entries describe the same file-name.
9.1.4 Open modeA file connector is open when its open mode is either input, output, i-o, or extend. When a file connector is open, it is the linkage between the logical file and the physical file.A file connector is placed in an open mode by the execution of a successful OPEN statement that references the associated file-name. The OPEN statement also associates the file connector with a physical file. When a CLOSE statement references the associated file-name, the file connector is no longer associated with the physical file and the file connector is no longer in an open mode. In the following cases, the COBOL runtime system executes an implicit CLOSE statement without any optional phrases for a file connector that is in the open mode:— When the run unit terminates.— For initial file connectors described in a program when a GOBACK or an EXIT PROGRAM statement is executed in a called program in which they are described.— For file connectors in the program to which a CANCEL statement is executed or in any program contained in that program.— For file connectors in an object when the object is deleted.NOTE Since the actual close of a file connector in an object that is destroyed can occur during garbage collection, it is possible that the file connector can remain open for a significant period after the last reference to the object in a run unit no longer exists.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 219

9.1.5 Sharing file connectorsTwo runtime elements in a run unit may reference common file connectors in the following circumstances:1) An external file connector may be referenced from any runtime element that describes that file connector.2) If a program is contained within another program, both programs may refer to a common file connector by referring to an associated global file-name either in the containing program or in any program that directly or indirectly contains the containing program.
9.1.6 Fixed file attributesA physical file has several attributes that apply to the file at the time it is created and cannot be changed throughout the lifetime of the file. The primary attribute is the organization of the file, that describes its logical structure. There are three organizations: sequential, relative, and indexed. Other fixed attributes of the physical file provided through COBOL are prime record key, alternate record keys, SUPPRESS WHEN attribute, code set, the minimum and maximum logical record size in bytes, the record type (fixed or variable), the collating sequence of the keys for indexed files, the minimum and maximum physical record size in bytes, and the record delimiter. The implementor shall specify whether the ability to share a physical file is a fixed file attribute.
9.1.7 Organization

9.1.7.1 GeneralThere are three file organizations: sequential, relative, and indexed.
9.1.7.2 SequentialSequential files are organized so that each record, except the last, has a unique successor record; each record, except the first, has a unique predecessor record. The successor relationships are established by the order of execution of WRITE statements when the physical file is created. Once established, successor relationships do not change except in the case where records are added to the end of a physical file.A sequential physical file that is on randomly accessible mass storage has the same logical structure as a physical file on any sequential medium; however, logical records that are mapped to physical records on a sequential physical file on randomly accessible mass storage may be updated in place. When this technique is used, the replacing physical record shall have the same size as the original physical record.Two types of sequential files are recognized. In record sequential files the length of each record is determined by any information the implementor may add to the record on the physical storage medium (such as record length headers). The length of the record used by the COBOL programmer does not reflect these additions. In line sequential files the length of each record is determined by the number of characters between the preceding line delimiter and the following line delimiter or the end of file if no line delimiter is present, or in the case of the first logical record the start of the file and the first line delimiter.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

220 ©ISO/IEC 2023

9.1.7.3 RelativeRelative files are organized so that each record may be stored or retrieved by providing the value of the record's relative record number. A relative file shall be associated with a relative physical file that is on randomly accessible mass storage.Conceptually, a file with relative organization is a serial string of areas, each capable of holding a logical record. Each of these areas is denominated by a relative record number. Each logical record in a relative file is identified by the relative record number of its storage area.NOTE For example, the tenth record is the one addressed by relative record number 10 and is in the tenth record area, whether or not records have been written in any of the first through the ninth record areas.In order to achieve more efficient access to records in a relative file, the number of bytes reserved in a physical record on randomly accessible mass storage to store a particular logical record may be different from the number of bytes in the description of that record in the data division.
9.1.7.4 IndexedIndexed files are organized so that each record may be stored, retrieved, or deleted by providing the value of a specified key in that record. An indexed file shall be associated with an indexed physical file that is on a mass storage device. For each key data item defined for the records of a file, an index is maintained. Each such index represents the set of values from the corresponding key data item in each record. Each index is a mechanism that provides access to any record in the file.Each indexed file has a primary index that represents the prime record key of each record in the file. Each record is inserted in the file, changed, or deleted from the file based solely upon the value of its prime record key. The prime record key of each record in the file shall be unique, and it shall not be changed when updating a record. The prime record key is declared in the RECORD KEY clause of the file control entry for the file.Alternate record keys provide alternate means of retrieval for the records of a file. Such keys are named in the ALTERNATE RECORD KEY clause of the file control entry. When the DUPLICATES phrase is specified in the ALTERNATE RECORD KEY clause, the value of a particular alternate record key need not be unique within the file.Both the prime record and any alternate record keys are made up from one or more portions of the record area associated with the file. For each key, the number of such components, their length, and their relative positions within the record area are fixed file attributes and shall not be changed once the physical file has been created.
9.1.8 Access modes

9.1.8.1 GeneralThe ACCESS MODE clause of the file description entry specifies the manner in which the runtime element operates upon records within a file. The access mode may be sequential, random, or dynamic.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 221

For files that are organized as relative or indexed, any of the three access modes may be used to access the file regardless of the access mode used to create the physical file. A file with sequential organization may be accessed only in sequential mode.
9.1.8.2 Sequential access modeFor sequential organization the order of sequential access when NEXT is specified or implied on a READ statement is the order in which the records were originally written to the physical file. When PREVIOUS is specified on a READ statement the order is the reverse of the order in which the records were originally written. The START statement may be used to position the file at the beginning or the end for subsequent retrievals.For relative organization the order of sequential access when NEXT is specified or implied on a READ statement is ascending based on the value of the relative record number. When PREVIOUS is specified on a READ statement the order is descending based on the value of the relative record number. The START statement may be used to establish a starting point for a series of subsequent sequential retrievals, either in a forward or reverse direction.For indexed organization the order of sequential access when NEXT is specified or implied on a READ statement is ascending based on the value of the key of reference according to the collating sequence of the physical file. Any of the keys associated with the file may be established as the key of reference during the processing of the file. The order of retrieval from a set of records that have duplicate key of reference values is the original order of arrival of those records into that set. When PREVIOUS is specified on a READ statement the order is descending based on the value of the key of reference according to the collating sequence of the physical file. The order of retrieval from a set of records that have duplicate key of reference values is the reverse of the original order of arrival of those records into that set. The START statement may be used to establish a starting point for a series of subsequent sequential retrievals, either in a forward or reverse direction.
9.1.8.3 Random access modeWhen a file is accessed in random mode, input-output statements are used to access the records in a programmer-specified order. The random access mode may be used only with relative or indexed file organizations. For a file with relative organization, the programmer specifies the desired record by placing its relative record number in a relative key data item. With the indexed organization, the programmer specifies the desired record by placing the value of one of its record keys in a record key or an alternate record key data item.
9.1.8.4 Dynamic access modeWith dynamic access mode, the programmer may change at any time between sequential access and random access, using appropriate forms of input-output statements. The dynamic access mode may be used only on files with relative or indexed organizations.
9.1.9 Reel and unitThe terms 'reel' and 'unit' are synonymous. They are applicable only to files with sequential organization that are associated with a physical file that may be contained on multiple physical devices. Treatment of

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

222 ©ISO/IEC 2023

such files is logically equivalent to the treatment of a sequential file that is associated with a physical file that is wholly contained on one physical device.NOTE An example of a physical file stored on multiple physical devices is a physical file that is contained on multiple tapes. Another is one that is stored on multiple removable disk packs.
9.1.10 Current volume pointerThe current volume pointer is a conceptual entity used in this document to facilitate exact specification of the current physical volume of a sequential file. The status of the current volume pointer is affected by the CLOSE, OPEN, READ, and WRITE statements.
9.1.11 File position indicatorThe file position indicator is a conceptual entity that exists for each file connector that is open in the i-o mode or input mode, and is used to facilitate exact specification of the record to be accessed during certain sequences of input-output operations. The setting of the file position indicator is affected only by the CLOSE, OPEN, READ, and START statements.The file position indicator contains the value of the current key within the key of reference and primary key for an indexed file, the record number of the current record for a sequential file, the relative record number of the current record for a relative file, or indicates one of the following conditions for the file connector:1) No valid record position has been established.2) An optional input file is not present.3) No next or previous logical record exists.
9.1.12 Input-output exception processingWhen execution of an input-output statement raises an exception condition, the transfer of control and the continuation of execution depend on a complex set of conditions. To help describe these conditions the term ‘applicable exception processing statements (or statement)’ is used. These statements are the default that happen when the explicit phrases AT END, AT EOP, AT END-OF-PAGE, ON EXCEPTION, or INVALID KEY are not specified or applicable. The term is defined as any of the following:1) Statements in a WHEN phrase of an active PERFORM statement where that WHEN phrase is specified with an exception-name, a file-name, or an open option as specified in 14.9.28, PERFORM statement, General rule 17.NOTE EC-ALL and EC-I-O would match any input-output exception condition.2) Statements in a file-exception or exception-name format of a USE declarative as specified in General rule 3 of the USE statementThe first one in the list that matches is the one selected. Any others that match are ignored.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 223

9.1.13 I-O status

9.1.13.1 GeneralThe I-O status is a two-character conceptual entity to indicate the status of an input-output operation. The value of the I-O status is set during the execution of a CLOSE, DELETE, OPEN, READ, REWRITE, START, UNLOCK or WRITE statement and prior to the execution of any imperative statement associated with that input-output statement or prior to the execution of any applicable exception processing statements. The value of the I-O status is made available through the use of the FILE STATUS clause in the file control entry for the file or through the use of the EXCEPTION-FILE or EXCEPTION-FILE-N function.The I-O status also determines whether an applicable exception processing statement is executed.Certain classes of I-O status values indicate fatal exception conditions. These are: any that begin with the digit 3, 4, or 7, and any that begin with the digit 9 that the implementor defines as fatal. If the value of the I-O status for an input-output operation indicates a fatal exception condition, the implementor determines what action is taken after the execution of any applicable exception processing statement, or if none applies, after completion of the normal input-output control system error processing. The implementor may either continue or terminate the execution of the run unit. If the implementor chooses to continue execution of the run unit, control is transferred to the end of the statement that produced the fatal exception condition unless the rules for that statement define other behavior. Any NOT AT END or NOT INVALID KEY phrase specified for that statement is ignored.Any I-O status associated with an unsuccessful completion or a nonzero successful completion is associated with an exception condition. Whether or not the exception condition is raised depends on whether or not checking for that exception condition is enabled. The exception condition depends on the first character of the I-O status value that results after the execution of an input-output statement. The exception-name for successful completion with an I-O status value that is not ‘00’ is EC-I-O-WARNING. The exception-names for unsuccessful completion and the first digit of their corresponding I-O status values are:EC-I-O-AT-END '1'EC-I-O-INVALID-KEY '2'EC-I-O-PERMANENT-ERROR '3'EC-I-O-LOGIC-ERROR '4'EC-I-O-RECORD-OPERATION '5'EC-I-O-FILE-SHARING '6'EC-I-O-RECORD-CONTENT ‘7’EC-I-O-IMP '9'If the first character of the resulting I-O status value is one of the above values or the I-O status value starts with a ‘0’ and the second character is not ‘0’, the associated exception condition is set to exist. If the exception condition EC-I-O-AT-END or EC-I-O-INVALID-KEY exists and the input-output statement that caused the exception condition to exist is specified with an AT END or INVALID KEY phrase respectively, no other applicable exception processing statements shall be executed. If the statement is a DELETE FILE statement with the ON EXCEPTION phrase specified, then the only exception processing statements to be executed are those specified within the ON EXCEPTION phrase. Otherwise, the exception condition that exists determines whether any applicable exception processing statements

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

224 ©ISO/IEC 2023

shall be executed according to the rules in 9.1.12, Input-output exception processing, 14.9.28, PERFORM statement, or 14.9.49, USE statement.I-O status expresses one of the following conditions upon completion of the input-output operation:— Successful completion. The input-output statement was successfully executed.— Implementor-defined successful completion. A condition specified by the implementor occurred and the input-output statement was successfully executed.— At end. A sequential READ statement was unsuccessfully executed as a result of an at end condition.— Invalid key. The input-output statement was unsuccessfully executed as a result of an invalid key condition.— Permanent error. The input-output statement was unsuccessfully executed as the result of an error that precluded further processing of the file. Any specified exception procedures are executed. The permanent error condition remains in effect for all subsequent input-output operations on the file unless an implementor-defined technique is invoked to correct the permanent error condition.— Logic error. The input-output statement was unsuccessfully executed as a result of an improper sequence of input-output operations that were performed on the file or as a result of violating a limit defined by the user.— Record operation conflict. The input-output statement was unsuccessfully executed as a result of the record being locked by another file connector.— File sharing conflict. The input-output statement was unsuccessfully executed as a result of the file being locked by another file connector.— Implementor-defined unsuccessful completion. The input-output statement was unsuccessfully executed as a result of a condition that is specified by the implementor.— Record content error. The input-output statement was unsuccessfully executed as a result of the record content not conforming to specified requirements.9.1.13.2 through 9.1.13.11 specify the values placed in the I-O status for the previously named conditions resulting from the execution of an input-output operation. If more than one value applies, the implementor determines which of the applicable values to place in the I-O status.
9.1.13.2 Successful completion1) I-O status = 00. The input-output statement is successfully executed and no further information is available concerning the input-output operation.2) I-O status = 02. The input-output statement is successfully executed but a duplicate key is detected.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 225

a) For a READ statement with the NEXT phrase specified or implied, the key value for the current key of reference is equal to the value of the same key in the next record in the physical file.b) For a READ statement with the PREVIOUS phrase specified, the key value for the current key of reference is equal to the value of the same key in the prior record in the physical file.c) For a REWRITE or WRITE statement, the record just written created a duplicate key value for at least one alternate record key for which duplicates are allowed.3) I-O status = 04. A READ statement is successfully executed but the physical record from the file is shorter than or longer than the minimum or maximum length of records allowed for the fixed file attributes for that file.4) I-O status = 05a) For an OPEN statement, it is successfully executed but the file is described as optional and the physical file is not present at the time the OPEN statement is executed. If the open mode is I-O or extend, the physical file has been created.b) For a DELETE FILE statement, the referenced file is not available.5) I-O status = 06. A READ statement for a line sequential file has successfully executed but a line delimiter or the end-of-file has not been detected.6) I-O status = 07. An OPEN or CLOSE statement is successfully executed but a CLOSE statement with the NO REWIND, REEL/UNIT, or FOR REMOVAL phrase or an OPEN statement with the NO REWIND phrase references a physical file on a non-reel/unit medium.7) I-O status = 09. A READ statement for a line sequential file has successfully executed but the record contains one or more characters that are not in the implementor-defined character set for a line sequential file.
9.1.13.3 Implementor-defined successful completion1) I-O status = 0x. An implementor-defined condition exists. The value of x is specified by the implementor and may be any of the uppercase letters 'A' through 'M' or lowercase letters 'a' through 'm', where the range of letters is defined by the sequence of Latin letters shown in Table 1, COBOL character repertoire. This condition shall not duplicate any condition specified by another I-O status value.NOTE It is implementor dependent whether or not upper and lower case versions of letters in this context are equivalent.
9.1.13.4 At end condition with unsuccessful completion 1) I-O status = 10. A sequential READ statement is attempted and no next or prior logical record exists in the physical file because:a) NEXT was specified or implied and the end of the physical file has been reached, or

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

226 ©ISO/IEC 2023

b) PREVIOUS was specified and the beginning of the physical file has been reached, orc) a sequential READ statement is attempted for the first time on a file described as optional and the physical file is not present.2) I-O status = 14. A sequential READ statement is attempted for a relative file and the number of significant digits in the relative record number is larger than the size of the relative key data item described for the file.
9.1.13.5 Invalid key condition with unsuccessful completion1) I-O status = 21. A sequence error exists for a sequentially accessed indexed file. The prime record key value has been changed by the runtime element between the successful execution of a READ statement through a file connector and the execution of the next REWRITE statement for that file through the same file connector, or the ascending sequence requirements for successive record key values are violated. (See 14.9.51, WRITE statement.)2) I-O status = 22. An attempt is made either:a) to write a record that would create a duplicate key in a physical relative file.b) to write a record that would create a duplicate prime record key in a physical indexed file, or c) to write or rewrite a record that would create a duplicate alternate record key when the DUPLICATES phrase is not specified for that alternate record key in the physical file.3) I-O status = 23. This condition exists because:a) an attempt is made to randomly access a record that does not exist in the physical file; orb) a START or random READ statement is attempted on a file described as optional and the physical file is not present; orc) a START statement is attempted with an invalid key length specification; ord) a START statement is attempted on a sequential file that has no records or that does not support the ability to position at the specified record.4) I-O status = 24. An attempt is made to write outside the externally-defined boundaries of a physical relative or indexed file. The implementor specifies the manner in which these boundaries are defined. Or, a sequential WRITE statement is attempted for a relative file and the number of significant digits in the relative record number is larger than the size of the relative key data item described for the file.
9.1.13.6 Permanent error condition with unsuccessful completion1) I-O status = 30. A permanent error exists and no further information is available concerning the input-output operation.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 227

2) I-O Status = 31. A permanent error exists during execution of an OPEN statement because the content of the data item referenced by the data-name specified in the USING phrase of the file control entry is not consistent with the specification for the device-name or literal in the ASSIGN clause of that file control entry.3) I-O status = 34. A permanent error exists because of a boundary violation; an attempt is made to write outside the externally-defined boundaries of a physical sequential file. The implementor specifies the manner in which these boundaries are defined.4) I-O status = 34, A permanent error exists because of a boundary violation:a) An attempt is made to write outside the externally-defined boundaries of a physical sequential file. The implementor specifies the manner in which these boundaries are defined.b) A READ statement is unsuccessfully executed because the records are variable in length because of an OCCURS DEPENDING ON clause in the record in the associated record description entry and the associated DEPENDING ON item contains a value that makes the number of bytes in the record exceed the value specified or implied by the file description entry.5) I-O status = 35. A permanent error exists because an OPEN statement with the INPUT, I-O, or EXTEND phrase is attempted on a file that is not described as optional and the physical file is not present.6) I-O status = 37. A permanent error exists because of one of the following reasons:a) For an OPEN statement1. the EXTEND or OUTPUT phrase is specified but the file will not support write operations.2. the I-O phrase is specified but the file will not support the input and output operations that are permitted for the organization of that file when opened in the I-O mode. 3. the INPUT phrase is specified but the file will not support read operations.b) A permanent error exists because an OPEN statement or DELETE FILE statement is attempted on a file and insufficient authority exists to access the file.The ability to detect this is processor dependent.7) I-O status = 39. The OPEN or DELETE FILE statement is unsuccessful because a conflict has been detected between the fixed file attributes and the attributes specified for that file in the source unit.
9.1.13.7 Logic error condition with unsuccessful completion1) I-O status = 41. An OPEN statement or a DELETE FILE statement that is attempted for a file connector in an open mode.2) I-O status = 42. A CLOSE or UNLOCK statement is attempted for a file connector that is not in an open mode.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

228 ©ISO/IEC 2023

3) I-O status = 43. For a mass storage file in the sequential access mode, the last input-output statement executed for the associated file through a file connector prior to the execution of a DELETE RECORD or REWRITE statement through the same file connector was not a successfully executed READ statement.4) I-O status = 44. A boundary violation exists because:a) an attempt is made to write or rewrite a record that is larger than the largest or smaller than the smallest record allowed by the RECORD IS VARYING clause of the associated file-name, orb) an attempt is made to rewrite a record to a sequential file and the record is not the same size as the record being replaced, orc) an attempt is made to write or rewrite a record that is larger than the largest or smaller than the smallest record allowed by the fixed-or-variable-length format of the RECORD clause when the implementor has specified that variable-length records are produced, ord) for a line sequential file, an attempt is made to rewrite a record where an I-O status = ‘06’ occurred while executing a read on the record.5) I-O status = 45. Record identification failure. The input-output statement was unsuccessful because no record description entry was selected for processing with the FORMAT clause or the CODE-SET clause.6) I-O status = 46. A sequential READ statement is attempted referencing a file connector open in the input or I-O mode and no valid next record has been established because:a) The preceding START statement referencing that file connector was unsuccessful, orb) The preceding READ statement referencing that file connector was unsuccessful.7) I-O status = 47. The execution of a READ or START statement is attempted referencing a file connector that is not open in the input or I-O mode.8) I-O status = 48. The execution of a WRITE statement is attempted referencing a file connector that is not open in the correct open mode as follows:a) If the access mode is sequential, the file connector is not open in the extend or output mode.b) If the access mode is dynamic or random, the file connector is not open in the I-O or output mode.9) I-O status = 49. The execution of a DELETE RECORD or REWRITE statement is attempted referencing a file connector that is not open in the I-O mode.
9.1.13.8 Record operation conflict condition with unsuccessful completion1) I-O status = 51. The input-output statement is unsuccessful due to an attempt to access a record that is currently locked by another file connector.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 229

2) I-O status = 52. The input-output statement is unsuccessful due to a deadlock. The implementor shall specify under what conditions a deadlock is detected.3) I-O status = 53. The input-output statement is unsuccessful because the statement requested a record lock, but this run unit holds the maximum number of locks allowed by this implementation.4) I-O status = 54. The input-output statement is unsuccessful because the statement requested a record lock, but this file connector holds the maximum number of locks allowed by this implementation.
9.1.13.9 File sharing conflict condition with unsuccessful completion1) I-O status = 61. A file sharing conflict condition exists because an OPEN statement is attempted on a physical file and that physical file is already open by another file connector in a manner that conflicts with this request. The possible violations are:a) An attempt is made to open a physical file that is currently open by another file connector in the sharing with no other mode.b) An attempt is made to open a physical file in the sharing with no other mode and the physical file is currently open by another file connector.c) An attempt is made to open a physical file for I-O or extend and the physical file is currently open by another file connector in the sharing with read only mode.d) An attempt is made to open a physical file in the sharing with read only mode and the physical file is currently open by another file connector in the I-O or extend mode.e) An attempt is made to open a physical file in the output mode and the physical file is currently open by another file connector.2) I-O status = 62. A file sharing conflict condition exists because a DELETE FILE statement is attempted on a physical file and that physical file is currently open by another file connector.
9.1.13.10 Record with invalid content with unsuccessful completion1) I-O status =71. An attempt was made to rewrite or write a record to a line sequential file and the record area contains one or more characters not in the implementor-defined character set for the file. The write or rewrite operation was unsuccessful and the record area remains unchanged.
9.1.13.11 Implementor-defined condition with unsuccessful completion1) I-O status = 9x. An implementor-defined condition exists. This condition shall not duplicate any other condition specified by another I-O status value. The value of x is defined by the implementor.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

230 ©ISO/IEC 2023

9.1.14 Invalid key conditionThe invalid key condition may occur as a result of the execution of a DELETE RECORD, READ, REWRITE, START, or WRITE statement. When the invalid key condition occurs, execution of the input-output statement that recognized the condition is unsuccessful and the file is not affected.If the invalid key condition exists after the execution of the input-output operation specified in an input-output statement, the following actions occur in the order shown:1) The I-O status of the file connector associated with the statement is set to a value indicating the invalid key condition as described in 9.1.13.5, Invalid key condition with unsuccessful completion, and, if enabled, the EC-I-O-INVALID-KEY exception condition is set to exist.2) If the INVALID KEY phrase is specified in the input-output statement, any applicable exception processing statements are not executed, and control is transferred to the imperative-statement specified in the INVALID KEY phrase. If control is returned from the INVALID KEY phrase, control is then transferred to the end of the input-output statement.3) If the INVALID KEY phrase is not specified in the input-output statement, any applicable exception processing statements are executed, and control is transferred according to the rules for those statements. If control is returned from those statements or there are no applicable exception processing statements, control is transferred to the end of the input-output statement.4) If the INVALID KEY phrase is not specified in the input-output statement and there are no applicable exception processing statements, control is transferred to the end of the input-output statement.If the invalid key condition does not exist after the execution of the input-output operation specified by an input-output statement, the INVALID KEY phrase is ignored, if specified. The I-O status of the file connector associated with the statement is updated and the following actions occur:1) If the I-O status indicates an unsuccessful completion that is not an invalid key condition, control is transferred according to the rules of any applicable exception processing statements associated with an EC-I-O exception condition that was raised. If control is returned from those statements, then control is transferred to the end of the input-output statement.2) If the I-O status indicates a successful completion, control is transferred to the end of the input-output statement or to the imperative-statement specified in the NOT INVALID KEY phrase if it is specified. In the latter case, if control is returned from the NOT INVALID KEY phrase, control is then transferred to the end of the input-output statement.
9.1.15 Sharing modeThe sharing mode indicates whether a file is to participate in the sharing and record locking, and specifies the degree of file sharing (or non-sharing) to be permitted for the file. The sharing mode specifies the types of operations that may be performed on the shared physical file through other file connectors throughout the duration of this OPEN.The SHARING phrase on an OPEN statement overrides the SHARING clause in the file control entry for establishing the sharing mode. If there is no SHARING phrase on the OPEN statement, the sharing mode

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 231

is determined by the SHARING clause in the file control entry. If no specification is made in either location, the implementor defines the sharing mode in which the file is opened; the implementor-defined sharing mode may be one of the modes specified in this Working Draft International Standard or may be a mode completely specified by the implementor. The rules are the same for a given standard sharing mode regardless of whether the sharing mode is specified on the OPEN statement, specified in the file control paragraph, or specified as the default by the implementor.Other facilities may specify some degree of file sharing, however, their interaction with COBOL file sharing is defined by the implementor.NOTE These facilities can include a job control language or another programming language. Implementors are encouraged to honor file and record locks in a multi-language environment. The implementor can document the file sharing and record locking facility in a way that programs written in other languages might make use of it, if it is possible for these programs to do so.A shared physical file shall reside on a device that allows concurrent access to the file. The implementor shall specify which devices allow concurrent access to a physical file.Before access to a shared physical file is allowed through an OPEN statement, the sharing mode and the open mode of that OPEN statement shall be allowed by all other file connectors that are currently associated with the physical file, as described in 9.1.13, I-O status; 14.9.27, OPEN statement; and Table 19, Opening available shared files that are currently open by another file connector.The sharing mode controls access to a physical file as follows:1) The sharing with no other mode specifies exclusive access to a physical file. Associating this file connector with the physical file will be unsuccessful if the physical file is currently open through other file connectors. If the OPEN statement is successful, subsequent requests to open the physical file through other file connectors before this file connector is closed will be unsuccessful. Record locks are ignored.2) The sharing with read only mode restricts concurrent access to a physical file through file connectors other than this one, to input mode. Associating this file connector with the physical file will be unsuccessful if the physical file is associated with another file connector whose open mode is other than input. If the OPEN statement is successful, subsequent requests to open the physical file through other file connectors in a mode other than input before this file connector is closed will be unsuccessful. Record locks are in effect.3) The sharing with all other mode allows concurrent access to a physical file through other file connectors specifying input, I-O, or extend mode, subject to any further restrictions that apply. Record locks are in effect.Multiple paths of access may exist in the same runtime element, contained elements, separate runtime elements within the same run unit, or runtime elements in different run units.The successful opening of a file establishes a file lock for the applicable sharing rules, thereby preventing other run units from opening that file with incompatible sharing rules. The file lock is removed by an explicit or implicit CLOSE statement executed for that file connector, except where the file is subject to an active APPLY COMMIT clause. In the case of a file subject to commit and rollback, where a file has been closed and not reopened prior to a commit, the file lock is removed by the COMMIT statement. In the case

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

232 ©ISO/IEC 2023

of a file subject to commit and rollback, where a file was not open prior to the previous commit or if none the start of the run unit and was subsequently opened, the file lock is released by the ROLLBACK statement.
9.1.16 Record lockingRecord locking provides the capability of controlling concurrent access to logical records in a shared file. Two modes of locking are available, AUTOMATIC and MANUAL. Single-record locking or multiple-record locking is available for both AUTOMATIC and MANUAL locking.For automatic single-record locking, the runtime system controls the setting and releasing of locks. For automatic multiple-record locking, the runtime system controls the setting of locks, and the application controls the releasing of locks by the execution of an explicit UNLOCK statement.For manual single-record and multiple-record locking, the application controls the setting and releasing of locks by the use of locking phrases on input-output statements and the use of the UNLOCK statement.While locked by a given file connector, a record is not accessible to another file connector in the same or a different run unit, except by the execution of a READ statement with the IGNORING LOCK phrase. A locked record may be re-accessed by the same file connector that holds the lock.Except for files subject to commit and rollback, all record locks established for a file are released by the execution of an explicit or implicit CLOSE statement for the file. For files subject to commit and rollback the LOCK clause and the UNLOCK statement shall not be specified and instead an implicit LOCK MODE IS AUTOMATIC WITH LOCK ON MULTIPLE RECORDS is applied automatically. A COMMIT statement releases all record locks for files subject to commit and rollback. It also deactivates any APPLY COMMIT clauses in initial programs that have been exited and runtime elements that have been canceled. A ROLLBACK statement releases all record locks for files subject to commit and rollback issued since the last successful COMMIT statement or, if no COMMIT statements had been executed, the start of the run unit. It also deactivates any APPLY COMMIT clauses in initial programs that have been exited and runtime elements that have been canceled.The implementor may specify circumstances other than a locked logical record that result in the return of a locked record status.NOTE Examples of such circumstances are the locking of records while an index is being organized and the locking of a physical block containing a locked logical record. By defining the physical file to contain one logical record per physical record, users can avoid the situation where a record locked status occurs for a record because it is contained in a block in which a different record is locked.
9.1.17 Logical unit of workA logical unit of work is a set of program instructions used to perform a self-contained task within a run unit, organized so that the files and data involved are in a consistent state both before and after their

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 233

execution. The files and data are protected from the activity of other run units that wish to access any of the same records and data during the execution of that set of program instructions.
9.1.18 Commit and Rollback

9.1.18.1 GeneralThis feature allows run units to commit all changes made to files at multiple stages of execution and to save specified data items after each commit for potential restoration in the event of a rollback. Commits are intended to be made after the successful completion of programmer defined logical units of work, such as the processing of a logical unit of work involving several files for which this facility has been specified by one or more APPLY COMMIT clauses, where the changes to the records in those files are interdependent for that unit of work. Rollbacks are intended to be used after errors have been detected, to restore all changes to those files to the state they were in immediately after the previous commit or the start of the run unit if there were no previous commits, they also similarly restore the contents of any data items specified in the APPLY COMMIT clauses.
9.1.18.2 Files and data items to be includedThe APPLY COMMIT clause of the I-O-CONTROL paragraph is used to specify the files and data items for which commit and rollback is to be used. Apart from sort-merge files and report writer files, any type of file on a mass storage device may be specified. Multiple runtime elements of a run unit may have APPLY COMMIT clauses in effect, all of which are activated as and when they are invoked and remain active unless the containing runtime element is both canceled or restored to an initial state, and there has been a COMMIT or a ROLLBACK statement.
9.1.18.3 Committing changes to filesThe COMMIT statement is used to permanently commit any changes made to the files subject to APPLY COMMIT clauses at that point, so that they will remain in that state even in the event of subsequent abnormal termination. The related file status settings are also saved, as are any data-items referenced by the linage and record clauses of the file descriptions. The commit also saves the current contents of all data items specified on all active APPLY COMMIT clauses, for potential use in a subsequent rollback. The commit also releases all record locks for the files to which it applies.
9.1.18.4 Rolling back changes to files and data itemsThe ROLLBACK statement is used to restore files and data items subject to APPLY COMMIT clauses to the state at which they were in at the point of the previous COMMIT statement or, if none had been executed, the beginning of the run unit. Any related file status settings are also restored, as are any data-items referenced by the linage and record clauses of the file descriptions. If any of the runtime elements had been canceled since the previous COMMIT statement, then any data items in those runtime elements and any contained runtime elements subject to any APPLY COMMIT clauses are not restored, unless they are external items for which another defining entry subject to an active APPLY COMMIT clause still exists in a runtime element for which the initial attribute has not been specified or that runtime element has not yet been exited. The rollback also releases all record locks for the files to which it applies.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

234 ©ISO/IEC 2023

9.1.18.5 Run unit terminationWhen a run unit terminates normally, all file changes are permanently committed. When a run unit terminates abnormally, all file changes made since the previous commit or, if none, the beginning of the run unit are rolled back for all files for which there are active APPLY COMMIT clauses. In both cases all file and record locks are then released and the contents of any data items specified on APPLY COMMIT clauses are released in the same way as though they had not been specified on APPLY COMMIT clauses.
9.1.18.6 Object orientationAPPLY COMMIT clauses, and the COMMIT and ROLLBACK statements are not permitted in factory and object classes, nor in any of their methods nor in any runtime elements that they invoke. Data items containing object references are not permitted in APPLY COMMIT clauses.
9.1.18.7 Exception conditionsThe exception condition EC-FLOW-APPLY is raised when an APPLY COMMIT clause is attempted to be activated in a runtime element that is invoked by a recursive runtime element, or under the control of the MERGE or SORT file statements.The exception conditions EC-FLOW-COMMIT and EC-FLOW-ROLLBACK are raised when either of the statements COMMIT or ROLLBACK are attempted to be executed in a procedure or runtime element that is invoked while a merge or a file sort is active. EC-FLOW-COMMIT and EC-FLOW-ROLLBACK are also raised if a commit or rollback is attempted to be executed while under the control of a recursive runtime element.
9.1.19 Sort fileA sort file is a collection of records to be sorted by a SORT statement. The rules for blocking and for allocation of internal storage are peculiar to the SORT statement. The RELEASE and RETURN statements imply nothing with respect to buffer areas, blocks, or reels. A sort file, then, can be considered as an internal file that is created (RELEASE statement) from the input file, processed (SORT statement), and then made available (RETURN statement) to the output file.A sort file is named by a file control entry and is described by a sort-merge file description entry. The only statements that may reference a sort file are the RELEASE, RETURN, and SORT statements.
9.1.20 Merge fileA merge file is a collection of records to be merged by a MERGE statement. The rules for blocking and for allocation of internal storage are peculiar to the MERGE statement. The RETURN statement implies nothing with respect to buffer areas, blocks, or reels. A merge file, then, can be considered as an internal file that is created from input files by combining them (MERGE statement) as the file is made available (RETURN statement) to the output file.A merge file is named by a file control entry and is described by a sort-merge file description entry. The only statements that may reference a merge file are the RETURN and MERGE statements.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 235

9.1.21 Dynamic file assignment Dynamic file assignment allows the user to defer until runtime the association between a file connector and a physical file. This feature may also be used to associate one file connector with different physical files during execution of a run unit. It is specified by the USING phrase of the ASSIGN clause on the file control entry. The USING phrase references an alphanumeric data item whose content at the time an OPEN, SORT, or MERGE statement for that file is executed uniquely identifies the specific physical file to be accessed.
9.1.22 Report fileA report file is an output file having sequential organization whose file description entry contains a REPORT clause.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

236 ©ISO/IEC 2023

9.2 Screens

9.2.1 Terminal screenA terminal provides I-O via a screen and a keyboard. A screen is considered a grid of rows and columns, where the size of a column is one fixed-size alphanumeric character position. There is a one-to-one correspondence between a column and a character in the computer's alphanumeric coded character set. There is a fixed correspondence, specified by the implementor, between a column and a character in the computer's national coded character set.NOTE 1 This Working Draft International Standard does not specify the manner of presenting data on a screen in a proportional font.A screen contains one or more fields during each input or output operation. A field may range in size from one character to the maximum number of characters permitted on the screen. Each field represents an elementary screen item. One or more fields may be logically grouped together into a group screen item; such fields need not be contiguous. A group screen item may contain other group screen items. The fields within a group screen item are ordered for the purposes of determining the next field and the previous field operations during terminal input. The order of fields is determined by the order of declaration of screen items in a screen description entry.NOTE 2 A group screen item, unlike a group data item, is never treated as a single contiguous string of characters of a particular category.A screen has visible attributes associated with each display location.
9.2.2 Function keysA function key has a function key number associated with it that is returned to the run unit when it is pressed.The implementor may define context-dependent function keys to carry out a particular function in a specific context. If any context-dependent function key is defined, the implementor shall specify the function number that is returned for each context-dependent function key.The implementor shall specify the method, if one exists, for enabling and disabling function keys and context-dependent function keys.
9.2.3 CRT statusThe CRT status is a four-character conceptual entity whose value is set to indicate the status of a terminal input-output operation during the execution of an ACCEPT screen statement and prior to the execution of any imperative statement associated with any ON EXCEPTION or NOT ON EXCEPTION clauses for that ACCEPT statement. The value of the CRT status is available through the use of the CRT STATUS clause in the SPECIAL-NAMES paragraph.The following is a list of the values placed in the CRT status for the conditions resulting from the execution of an input operation.1) Successful completion with normal termination:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 237

CRT status = 0000. The input statement was successfully executed. Termination was achieved by the operator pressing the enter key or entering data into the last character of a screen item for which the AUTO clause is specified and for which no logical next field exists.2) Successful completion with termination by a function key keystroke:a) CRT status = 1xxx. The input statement was successfully executed. Termination was achieved by the operator pressing a function key. The number of the function key that was pressed is given by the numeric value of xxx.b) CRT status = 2xxx. The input statement was successfully executed. Termination was achieved by the operator pressing a context-dependent function key. The number of the function assigned to the key that was pressed is given by the numeric value of xxx.3) Unsuccessful completion with standard-defined condition. Further terminal I-O statements are not precluded:a) CRT status = 8000. The ACCEPT screen statement was unsuccessful because no input screen item was located at a valid screen position.b) CRT status = 8001. The ACCEPT screen statement was unsuccessful because inconsistent data was entered into a screen item and allowed to remain there.NOTE On some implementations, this will not occur because the operator is forced to correct the data before execution will continue.4) Unsuccessful completion with implementor-defined condition:a) CRT status = 9xxx. An implementor-defined condition exists. The numeric value xxx is defined by the implementor.
9.2.4 CursorCharacter addressable terminals use the concept of a cursor to indicate the position on the screen at which keyboard operations will be displayed. This is generally indicated by the position of a visible cursor symbol.During execution of a DISPLAY screen statement, the position and visibility of the cursor is undefined.During execution of an ACCEPT screen statement, the position and visibility of the cursor is defined only during the period that the keyboard is synchronously enabled for operator input; the cursor shall be visible and shall indicate the position on the screen at which keyboard input will be displayed.During execution of an ACCEPT screen statement, the cursor is initially positioned at the first elementary screen item in the screen description entry whose specification includes a TO or USING phrase, unless the CURSOR clause is specified in the SPECIAL-NAMES paragraph, in which case the cursor is positioned as specified in that clause.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

238 ©ISO/IEC 2023

Once the keyboard is enabled for operator input, the operator may move the cursor to elementary screen items whose specification includes a TO or USING clause. Depending on the screen description entry for the item, the operator may move the cursor to characters within the displayed item.The implementor shall specify any keys that change the position of the cursor and the associated cursor movement.
9.2.5 Cursor locatorThe cursor locator is a six-character conceptual entity whose value is set by the runtime element to indicate the position of the visible cursor on the display screen when the keyboard becomes synchronously enabled during execution of an ACCEPT screen statement. The position is relative to the top left hand corner of the screen.Upon successful termination of execution of an ACCEPT screen statement, the cursor locator is set to indicate the position of the visible cursor at the time the operator presses the terminator key or a function key. If the execution of the ACCEPT statement was unsuccessful, the value of the cursor locator is undefined.The cursor locator is made available to the runtime element through the use of the CURSOR clause in the SPECIAL-NAMES paragraph. The first three characters represent a three-digit number giving the line number, the topmost line being 001. The second three characters represent a three-digit number giving the column number, the first column number being 001. If the position of the visible cursor is at a line or column number that is greater than 999, the value of the cursor locator is undefined.
9.2.6 Current screen itemDuring the execution of an ACCEPT statement, one or more elementary input screen items can be displayed on the terminal display. The operator is able to move the cursor between the screen items using context-dependent cursor positioning keys. The cursor may also move automatically from one screen item to another when the screen item becomes full or the last character in the screen item is keyed. The screen item in which the cursor is located is the current screen item. Any data keyed by the operator is assigned to the current screen item and might cause the display of the current screen item to change.
9.2.7 Color numberColor is one of the attributes that may be specified for screen items. For a monochrome terminal, the color attributes are mapped onto other attributes by the implementor.A color is selected by specifying an integer that represents the color. The colors and their associated color numbers are:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 239

NOTE The colors above are a rough guide; the actual color depends on the terminal capabilities and can be affected by other considerations such as the HIGHLIGHT attribute. For example, the value 6 might appear as brown, but when HIGHLIGHT is also specified it might appear as yellow. The value 0 might appear as black, but when HIGHLIGHT is also specified it might appear as gray.

blackbluegreencyanredmagentabrown/yellowwhite

01234567

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

240 ©ISO/IEC 2023

9.3 Objects

9.3.1 Objects and classesAn object is an information processing unit consisting of data and methods. Methods are units of code that act on the data of objects. Each object contains its own instance of data and file connectors and shares the methods that are defined for that object with other objects of its class.A class is the template from which objects are made. The source unit that defines the template is a class definition, which specifies the characteristics of data and the methods of an object. A class may describe a factory object, which is an object used to create instance objects, or an instance object, which is an object that has been created by the factory object. There is at most one runtime instance of a factory object for a given class in a given run unit. There may be any number of instances of an instance object in a given run unit at any given time.
9.3.2 Object referencesAn object reference is an implicitly- or explicitly-defined data item containing an object reference value that uniquely references an object for the lifetime of the object. Implicitly-defined object references are the predefined object references and object references returned from an object property, an object-view, an inline method invocation, or a function. Explicitly-defined object references are data items defined by a data description entry specifying a USAGE OBJECT REFERENCE clause.No two distinct objects have the same object reference value and every object has at least one object reference.
9.3.3 Predefined object referencesA predefined object reference is an implicitly-generated data item referenced by one of the identifiers EXCEPTION-OBJECT, NULL, SELF, and SUPER. Each predefined object reference has a specific meaning, as described in 8.4.3, Identifiers.
9.3.4 MethodsThe procedural code in an object is placed in methods. Each method has its own method-name and its own data division and procedure division. When a method is invoked, the procedural code it contains is executed. A method is invoked by specifying an identifier that references the object and the name of the method. A method may specify parameters and a returning item. A method always possesses the recursive attribute and may call itself.
9.3.5 Polymorphism

9.3.5.1 GeneralPolymorphism is a feature of object orientation that provides a mechanism for selecting and invoking a method from multiple methods with the same externalized name. COBOL supports two types of polymorphism: class polymorphism and parametric polymorphism.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 241

9.3.5.2 Class polymorphismIn COBOL, the ability for an object reference to contain references to objects of different classes allows a method invocation on that object reference to be bound to one of many possible methods. Sometimes the method can be identified before execution, but in general, the method cannot be identified until runtime.A data item may be declared to contain references to objects of a given class or any sub-class of that class; a data item may also be declared to contain references to objects that implement a given interface. When a given interface is used, the classes of the objects may be completely unrelated as long as they implement the given interface.
9.3.5.3 Parametric polymorphismParametric polymorphism, sometimes called method overloading, allows methods within a class to have the same method name, differing in the number and type of parameters. The most appropriate method for any particular invocation is chosen during method resolution. Each method has a method resolution signature that is matched against the parameters of the invocation. The method resolution signature contains all of the information necessary to resolve the identity of the method invoked. The method resolution signature consists of:1) The method name2) The expected calling convention3) The DECIMAL-POINT IS COMMA clause4) The CURRENCY SIGN clause5) The LOCALE clause6) A description of each parameter, and of the returning item. This description consists of the following clauses:a) ALIGNED clauseb) ANY-LENGTH clausec) BLANK WHEN ZERO claused) DYNAMIC-LENGTH clausee) JUSTIFIED clausef) PICTURE clauseg) SIGN clauseh) USAGE clause

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

242 ©ISO/IEC 2023

7) If the parameter is a variable-length group, sufficient information to determine if this group would match the group is specified in the invoke statement.Parametric polymorphism is an optional feature in this Working Draft International Standard. When parametric polymorphism is provided, the manner of method resolution may be as defined in 9.3.6, Method invocation, or may be based on a methodology used in the processor's object management system.
9.3.6 Method invocationThe procedural code in a method is executed by invoking the method either with an INVOKE statement, an inline method invocation, or a reference to an object property. The method implementation that is bound to the invocation depends on the class, at runtime, of the object on which the method is invoked. In particular, it is not necessarily the class specified statically in the definition of the object reference; it is the class of the actual object referenced at runtime that is used in resolving a method invocation to a particular method implementation.If an invocation specifies the object using an object reference, then:1) if the identified object is a factory object, the method invocation will resolve to a factory method 2) otherwise, the resolution will be to an instance method.Additionally, if an invocation specifies the object using SUPER, the invocation will resolve to a method by using a restricted search, as specified in 8.4.3.8, SELF and SUPER. If an invocation specifies the object using a class name, the factory object of the specified class is used as the object on which the method is invoked, and the method invocation will resolve to a factory method.Method resolution proceeds as follows:1) if a method with the method-name specified in the invocation is defined in the class of the object and that method is an exact match between the method invocation and the method resolution signature as specified below, that method is bound;2) otherwise, each inherited class upward in the hierarchy of inheritance is inspected in the order in which the hierarchy is specified in the INHERITS clause until either a method with the method-name specified in the invocation is defined in the inspected class and is an exact match, or all inherited classes have been inspected without finding such a method. If a method is found, that method is bound;3) otherwise, if one or more methods with the method-name specified in the invocation is defined in the class of the object and one or more of those methods match between the method invocation and the method resolution signature, that method is bound as specified below;4) otherwise, each inherited class upward in the hierarchy of inheritance is inspected in the order in which the hierarchy is specified in the INHERITS clause until either one or more methods with the method-name specified in the invocation is defined in the inspected class and one or more of those methods match between the method invocation and the method resolution signature, or all inherited

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 243

classes have been inspected without finding such a method. If a method is found, that method is bound;5) otherwise, if any invocation parameter is a literal, steps 3 and 4 are repeated, ignoring the requirements specified in 4c, 4d, 5c and 5d below that the SET and MOVE statements not cause truncation;6) otherwise, the EC-OO-METHOD exception condition is set to exist.For a method invocation to match the method resolution signature of a method, the following shall be true:1) The number of invocation parameters shall be equal to the number of parameters defined in the invoked method. If the number of parameters in the invocation is less than the number of parameters in the invoked method, and all parameters to the right of the parameter in the position that corresponds to the number of parameters in the invocation are described with the OPTIONAL phrase, the invocation and the invoked method shall be considered to have an equal number of parameters. If there is a returning item in the invocation there shall be a returning item in the invoked method, if there is no returning item in the invocation there shall be no returning item in the invoked method.2) The same calling convention shall be in effect for the invocation as is in effect for the invoked method.3) For each parameter of the invocation that is passed by reference there shall be a corresponding parameter in the invoked method that:a) is specified with the BY REFERENCE phraseb) if the passed parameter is specified with the OMITTED phrase, shall be specified with the OPTIONAL phrase. No further checking is performed on this parameter and this parameter is considered to match exactly.c) is the same class and categoryd) if the parameter in the invoked method is an object reference, the corresponding parameter shall follow these rules:1. If the parameter in the invoked method is a universal object reference, the corresponding parameter in the invocation is a universal object reference.2. If the parameter in the invoked method is described with an interface-name, the corresponding parameter is described with the same interface- name.3. If the parameter in the invoked method is described with an object-class-name, the corresponding parameter in the invocation is described with the same object-class-name, and the presence or absence of the FACTORY and ONLY phrases is the same in both descriptions.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

244 ©ISO/IEC 2023

4. If the parameter in the invoked method is described with the ACTIVE-CLASS phrase and FACTORY phrase is not specified, the corresponding parameter shall evaluate to an object reference of the same class specified in the invocation.5. If the parameter in the invoked method is described with the ACTIVE-CLASS and FACTORY phrases, the corresponding parameter shall evaluate to an object reference to the factory of the class specified in the invocation.e) If the parameter in the invoked method is not an object reference, the corresponding parameter has the same ALIGNED, ANY LENGTH, BLANK WHEN ZERO, DYNAMIC LENGTH, JUSTIFIED, PICTURE, SIGN, and USAGE clauses, with the following additional constraints:1. Currency symbols match if and only if the corresponding currency strings are the same.2. Period picture symbols match if and only if the DECIMAL-POINT IS COMMA clause is in effect for both or for neither of these interfaces. Comma picture symbols match if and only if the DECIMAL-POINT IS COMMA clause is in effect for both or for neither of these interfaces.3. Locale specifications in the PICTURE clauses match if and only if:a. both specify the same SIZE phrase in the LOCALE phrase of the PICTURE clause, andb. both specify the LOCALE phrase without a locale-name or both specify the LOCALE phrase with the same external identification, where the external identification is the external-locale-name or literal value associated with the locale-name in the LOCALE clause of the SPECIAL-NAMES paragraph.4) For each parameter that is passed by content there shall be a corresponding parameter in the invoked method that:a) is specified with the BY REFERENCE phraseb) if the passed parameter is specified with the OMITTED phrase, shall be specified with the OPTIONAL phrase. No further checking is performed on this parameter and this parameter is considered to match exactly.c) if the parameter in the invoked method is class index, object, or pointer, may be a receiving data item in a SET statement with the parameter of the invocation as a sending data item. If the sending data item is a literal, the SET statement shall not cause truncation. d) if the parameter in the invoked method is not class index, object, or pointer, may be a receiving data item in a MOVE statement with the parameter of the invocation as a sending data item. If the sending data item is a literal, the MOVE statement shall not cause truncation.5) For each parameter that is passed by value there shall be a corresponding parameter in the invoked method that:a) is specified with the BY VALUE phrase

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 245

b) if the passed parameter is specified with the OMITTED phrase, shall be specified with the OPTIONAL phrase. No further checking is performed on this parameter and this parameter is considered to match exactly.c) if the parameter in the invoked method is class index, object, or pointer, may be a receiving data item in a SET statement with the parameter of the invocation as a sending data item. If the sending data item is a literal, the SET statement shall not cause truncation.d) if the parameter in the invoked method is not class index, object, or pointer, may be a receiving data item in a MOVE statement with the parameter of the invocation as a sending data item. If the sending data item is a literal, the MOVE statement shall not cause truncation.6) If the invocation specifies a returning item and the returning item is usage OBJECT REFERENCE, POINTER or INDEX, there shall be a corresponding specification in the invoked method that may be a sending item in a SET statement with the returning item as the receiving item.7) If the invocation specifies a returning item and the returning item is not usage OBJECT REFERENCE, POINTER or INDEX, there shall be a corresponding specification in the invoked method that may be a sending item in a MOVE statement with the returning item as the receiving item.Additionally, for each parameter that is passed by value or by content, and for the returning item, the following criteria are considered an exact match:1) the parameter or returning item in the invocation and the corresponding parameter or returning item in the invoked method are the same class and category.2) if the parameter or returning item in the invoked method is an object reference, the corresponding parameter or returning item shall follow these rules:a) If the parameter or returning item in the invoked method is a universal object reference, the corresponding parameter or returning item in the invocation is a universal object reference.b) If the parameter or returning item in the invoked method is described with an interface-name, the corresponding parameter or returning item in is described with the same interface- name.c) If the parameter or returning item in the invoked method is described with an object-class-name, the corresponding parameter or returning item in the invocation is described with the same object-class-name, and the presence or absence of the FACTORY and ONLY phrases is the same in both descriptions.d) If the parameter in the invoked method is described with the ACTIVE-CLASS phrase and FACTORY phrase is not specified, the corresponding parameter shall evaluate to an object reference of the same class specified in the invocation.e) If the parameter in the invoked method is described with the ACTIVE-CLASS and FACTORY phrases, the corresponding parameter shall evaluate to an object reference to the factory of the class specified in the invocation.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

246 ©ISO/IEC 2023

3) if the parameter or returning item in the invoked method is not an object reference, the corresponding parameter or returning item has the same ANY LENGTH, BLANK WHEN ZERO, DYNAMIC LENGTH, JUSTIFIED, PICTURE, SIGN, and USAGE clauses, with the following additional constraints:a) Currency symbols match if and only if the corresponding currency strings are the same.b) Period picture symbols match if and only if the DECIMAL-POINT IS COMMA clause is in effect for both or for neither of these interfaces. Comma picture symbols match if and only if the DECIMAL-POINT IS COMMA clause is in effect for both or for neither of these interfaces.c) Locale specifications in the PICTURE clauses match if and only if:1. both specify the same SIZE phrase in the LOCALE phrase of the PICTURE clause, and2. both specify the LOCALE phrase without a locale-name or both specify the LOCALE phrase with the same external identification, where the external identification is the external-locale-name or literal value associated with the locale-name in the LOCALE clause of the SPECIAL-NAMES paragraph.For the purpose of determining an exact match, an alphanumeric, boolean, or national literal is considered to be equivalent to a data item with no PICTURE clause and a VALUE clause that specifies that literal. If the literal is a numeric literal: the implied usage is DISPLAY; the implied picture clause consists of the same number of picture symbol characters '9' as there are digits in the literal; the presence or absence of signs is the same; the decimal separator is the same; and the decimal separator is in the same position within the picture character-string as in the literal.All parameters passed by reference are exact matches. A method invocation is considered to match exactly if all parameters match exactly.If two or more methods in a class match, preference is given to the method that has the greatest number of parameters that match exactly. If the number of parameters that match exactly are equal, preference is given first to the methods with the least number of exact matches due to omitted optional parameters, second to those methods where the returning item is an exact match, and then to the first method defined in the class or interface.
9.3.7 Method prototypesMethod definitions within an interface definition define method prototypes. Method prototypes do not specify procedural code, but rather they specify the details needed to interface with and check the conformance of a method.
9.3.8 Conformance and interfaces

9.3.8.1 GeneralThe term 'conformance' is used in this document with several different meanings. In the context of object orientation, the term 'conformance' is used to describe a relationship between object interfaces, and it

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 247

is the basis of such fundamental features as inheritance, interface definitions, and conformance checking.NOTE Conformance checking is done at compile time only, except that conformance checking for object views and methods using universal object references is done at runtime.
9.3.8.2 Conformance for object orientation

9.3.8.2.1 GeneralConformance for objects allows an object to be used according to an interface other than the interface of its own class. Conformance is a unidirectional relation from one interface to another interface and from an object to an interface.
9.3.8.2.2 InterfacesEvery object has an interface consisting of the names and parameter specifications for each method supported by the object, including inherited methods. Each class has two interfaces: an interface for the factory object and an interface for the instance objects.Interfaces may also be defined independently from a specific class by specifying method prototypes in an interface definition.
9.3.8.2.3 Conformance between interfacesIf two interfaces are of the same interface, they conform to each other.If interface-1 and interface-2 are different interfaces, interface-1 conforms to interface-2 if and only if the entry conventions for interface-1 and interface-2 are the same and for every method in interface-2 there is a method in interface-1 with the same name that satisfies the following conditions:1) The number of parameters are the same, with consistent BY REFERENCE and BY VALUE specifications.2) If the formal parameter of the method in interface-2 is an object reference, the corresponding parameter in interface-1 is an object reference following these rules:a) If the parameter in interface-2 is a universal object reference, the corresponding parameter in interface-1 is a universal object reference.b) If the parameter in interface-2 is described with an interface-name, the corresponding parameter in interface-1 is described with the same interface- name.c) If the parameter in interface-2 is described with an object-class-name, the corresponding parameter in interface-1 is described with the same object-class-name, and the presence or absence of the FACTORY and ONLY phrases is the same in both interfaces.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

248 ©ISO/IEC 2023

d) If the parameter in interface-2 is described with the ACTIVE-CLASS phrase, the corresponding parameter in interface-1 is described with the ACTIVE-CLASS phrase, and the presence or absence of the FACTORY phrase is the same in both interfaces.3) If the formal parameter of the method in interface-2 is not an object reference, the corresponding formal parameter in interface-1 has the same ALIGNED, ANY LENGTH, BLANK WHEN ZERO, DYNAMIC LENGTH, JUSTIFIED, PICTURE, SIGN, and USAGE clauses, with the following exceptions:a) Currency symbols match if and only if the corresponding currency strings are the same.b) Period picture symbols match if and only if the DECIMAL-POINT IS COMMA clause is in effect for both or for neither of these interfaces. Comma picture symbols match if and only if the DECIMAL-POINT IS COMMA clause is in effect for both or for neither of these interfaces.Additionally, locale specifications in the PICTURE clauses match if and only if:— both specify the same SIZE phrase in the LOCALE phrase of the PICTURE clause, and— both specify the LOCALE phrase without a locale-name or both specify the LOCALE phrase with the same external identification, where the external identification is the external-locale-name or literal value associated with the locale-name in the LOCALE clause of the SPECIAL-NAMES paragraph.4) The presence or absence of the procedure division RETURNING phrase is the same.5) If the returning item of the method of interface-2 is an object reference, the corresponding returning item in interface-1 is an object reference following these rules:a) If the returning item in interface-2 is a universal object reference, the corresponding returning item in interface-1 is an object reference.b) If the returning item in interface-2 is described with an interface-name that identifies the interface int-r, the corresponding returning item in interface-1 is either of the following:1. an object reference described with an interface-name that identifies int-r or an interface described with an INHERITS clause that references int-r,2. an object reference described with an object-class-name, subject to the following rules: a. if described with the FACTORY phrase, the factory object of the specified class shall be described with an IMPLEMENTS clause that references int-r,b. if described without the FACTORY phrase, the instance objects of the specified class shall be described with an IMPLEMENTS clause that references int-r.c) If the returning item in interface-2 is described with an object-class-name, the corresponding returning item in interface-1 is an object reference, subject to the following rules:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 249

1. If the returning item in interface-2 is described with the ONLY phrase, the returning item in interface-1 shall be described with the ONLY phrase and the same object-class-name.2. If the returning item in interface-2 is described without the ONLY phrase, the returning item in interface-1 shall be described with the same object-class-name or a subclass of that object-class-name.3. The presence or absence of the FACTORY phrase shall be the same.d) If the returning item in interface-2 is described with the ACTIVE-CLASS phrase, the corresponding returning item in interface-1 is described with the ACTIVE-CLASS phrase, and the presence or absence of the FACTORY phrase is the same.If the description of the returning item of a method in interface-1 directly or indirectly references interface-2, the description of the returning item of the corresponding method in interface-2 shall not directly or indirectly reference interface-1.6) If the returning item of the method of interface-2 is not an object reference, the corresponding returning item has the same ALIGNED, ANY LENGTH, BLANK WHEN ZERO, DYNAMIC LENGTH, JUSTIFIED, PICTURE, SIGN, and USAGE clauses, with the following exceptions:a) Currency symbols match if and only if the corresponding currency strings are the same.b) Period picture symbols match if and only if the DECIMAL-POINT IS COMMA clause is in effect for both or for neither of these interfaces. Comma picture symbols match if and only if the DECIMAL-POINT IS COMMA clause is in effect for both or for neither of these interfaces.Additionally, locale specifications in the PICTURE clauses match if and only if:— both specify the same SIZE phrase in the LOCALE phrase of the PICTURE clause, and— both specify the LOCALE phrase without a locale-name or both specify the LOCALE phrase with the same external identification, where the external identification is the external-locale-name or literal value associated with a locale-name in the LOCALE clause of the SPECIAL-NAMES paragraph.7) If either of the corresponding formal parameters or returning items in interface-1 or interface-2 is a strongly-typed group item, both are of the same type.8) The presence or absence of the OPTIONAL phrase is the same for corresponding parameters.9) If the RAISING phrase is specified in the procedure division header of the method in interface-1, the corresponding method in interface-2 specifies the RAISING phrase following these rules:a) If an exception-name is specified in the RAISING phrase in interface-1, the corresponding RAISING phrase in interface-2 specifies the same exception-name.b) If an object-class-name is specified in the RAISING phrase in interface-1, the corresponding RAISING phrase in interface-2 specifies one of the following:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

250 ©ISO/IEC 2023

— the same object-class-name or the name of a superclass of the class identified by that object-class-name, including the FACTORY phrase if and only if the RAISING phrase in interface-1 specifies the FACTORY phrase,— the name of an interface implemented by the factory object of that class, if the RAISING phrase in interface-1 specifies the FACTORY phrase,— the name of an interface implemented by the instance object of that class, if the RAISING phrase in interface-1 does not specify the FACTORY phrase.c) If an interface-name is specified in the RAISING phrase in interface-1, the corresponding RAISING phrase in interface-2 specifies the same interface-name or the name of an interface inherited by that interface.An alphanumeric group item that is not strongly typed is, for the purpose of conformance checking, considered to be equivalent to an elementary alphanumeric data item of the same length.Variable-length groups conform if they are compatible groups, and all variable-length data items correspond to variable-length data items as specified in 8.5.1.12, Variable-length groups.
9.3.8.2.4 Conformance for parameterized classes and parameterized interfacesWhen using a parameterized class or interface, the class or interface is treated as if the actual parameter classes or interfaces were substituted for the parameters throughout the class definition or interface definition.
9.3.9 Class inheritanceClass inheritance is a mechanism for using the interface and implementation of one or more classes as the basis for another class. The inheriting class, also known as a subclass, inherits from one or more classes, known as superclasses. The subclass has all the methods defined for the inherited class definition or definitions, including any methods that the inherited definition or definitions inherited. The subclass has all the data definitions defined for the inherited class or classes, including any data definitions that the inherited class or classes inherited.NOTE This does not mean that the actual source code that describes the data is accessible or that the data items described in that source code can be directly referenced in the subclass. It means that the subclasses are treated as if their source code had a copy of the superclass definitions; in other words, the inherited data items are considered to be defined in the subclass.The inherited data definitions define data for every instance object of the subclass and for its factory object. Each instance object has its own copy of inherited data, distinct from the copy belonging to an instance object of an inherited class. Each factory object has its own copy of inherited data, distinct from the copy belonging to a factory object of an inherited class. Names and attributes of inherited data items are not visible in the inheriting class. The inherited object data is initialized when an object is created. The inherited factory data is allocated independently from the factory data of the inherited class or classes and is initialized when the factory of the subclass is created. The inherited factory data is accessible only via methods and properties specified in the factory definition of the class that describes the data. The inherited object data is accessible only via methods and properties specified in the object definition of the class that describes the data. The subclass inherits all the file definitions in the same way as the data

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 251

definitions, subject to the same provisions as data definitions. The subclass may define methods in addition to or in place of the inherited methods and may specify data definitions and file definitions in addition to, but not in place of, the inherited data definitions and file definitions.The interface of a subclass shall always conform to the interface of the inherited classes, although the subclass may override some of the methods of the inherited class to provide different implementations.If a class is defined with the FINAL clause, that class shall not be used as a superclass. If a method is defined with the FINAL clause, that method shall not be overridden in a subclass.User-defined words in an inherited class are not visible in the subclass. Any such word may be used as any type of user-defined word in the subclass definition.
9.3.10 Interface inheritanceInterface inheritance is a mechanism for using one or more interface definitions as the basis for another interface. The inheriting interface has all the method specifications defined for the inherited interface definition or definitions, including any method specifications that the inherited definition or definitions inherited. The inheriting interface may define new methods augmenting the set of inherited method specifications. The inheriting interface shall always conform to each of the inherited interfaces.
9.3.11 Interface implementationInterface implementation is a mechanism for using one or more interface definitions as the basis for a class. The implementing class shall implement all the method specifications defined for the implemented interface definition or definitions, including any method specifications that the implemented definition or definitions inherited. The interface of the factory object of the implementing class shall conform to the interfaces to be implemented by the factory object, and the interface of the instance objects of the implementing class shall conform to the interfaces to be implemented by the instance object.
9.3.12 Parameterized classesA parameterized class is a generic or skeleton class that has formal parameters that will be replaced by one or more object-class-names or interface-names. When it is expanded by substituting specific object-class-names or interface-names as actual parameters, a class is created that functions as a non-parameterized class.An expansion of a parameterized class is treated in all respects the same as if it were a class that is not a parameterized class.When a class is specified as the parameterized class in an EXPANDS phrase in the REPOSITORY paragraph, a new class (an instance of a parameterized class) is created based on the specification of the parameterized class. This class has its own factory object and is completely separate from any other instance of the same parameterized class.Within a run unit, two classes with the same externalized object-class-name that are created by expanding the same parameterized class with the same actual parameters are the same class instance. If two classes expand a parameterized class with different actual parameters, they are not the same class instance and shall not have the same externalized object-class-name.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

252 ©ISO/IEC 2023

9.3.13 Parameterized interfacesA parameterized interface is a generic or skeleton interface that has formal parameters that will be replaced by one or more object-class-names or interface-names. When it is expanded by substituting specific object-class-names or interface-names as actual parameters, an interface is created that functions as a non-parameterized interface.An expansion of a parameterized interface is treated in all respects as if it were an interface that is not parameterized.When an interface is specified as the parameterized interface in an EXPANDS phrase in the REPOSITORY paragraph, a new interface (an instance of a parameterized interface) is created based on the specification of the parameterized interface.Within a run unit, two interfaces with the same externalized interface-name that are created by expanding the same parameterized interface with the same actual parameters are the same interface instance. If two interfaces expand a parameterized interface with different actual parameters, they are not the same interface instance and shall not have the same externalized interface-name.
9.3.14 Object life cycle

9.3.14.1 GeneralThe life cycle for an object begins when it is created and ends when it is destroyed.
9.3.14.2 Life cycle for factory objectsA factory object is created before it is first referenced by a run unit.A factory object is deleted after it is last referenced by a run unit.
9.3.14.3 Life cycle for instance objectsAn instance object is created as the result of the NEW method being invoked on a factory object.An instance object is destroyed either when it is determined that the object cannot take part in the continued execution of the run unit, or when the run unit terminates, whichever occurs first.The timing and algorithm for the mechanism that determines whether or not an instance object can take part in the continued execution of the run unit is implementor-defined.NOTE The process of determining whether or not an instance object can take part in continued execution and reclaiming resources unique to the object is generally referred to as garbage collection.
9.4 User-defined functionsA user-defined function is an entity that is defined by the user by specifying a FUNCTION-ID paragraph rather than a PROGRAM-ID paragraph. The rules and behavior of a user-defined function are similar to those for a program except that a user-defined function returns a value as specified by the RETURNING

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 253

phrase in the procedure division header. Also, arguments and returned values for user-defined functions may not use the word ALL as a subscript. In addition, a user defined function always possesses the recursive attribute and may call itself. A user-defined function is invoked by specifying a function identifier as described in 8.4.3.2, Function-identifier.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

254 ©ISO/IEC 2023

10 Structured compilation group

10.1 GeneralA structured compilation group consists of zero, one, or more compilation units that have been processed by text manipulation. A structured compilation group may contain compiler directives affecting compilation processing or source listings, as specified in Clause 7, Compiler directing facility. Text manipulation compiler directives may be logically represented in a structured compilation group but have no effect on compilation processing.
10.2 Compilation unitsA compilation unit is one of the following:— a program-prototype definition— a function-prototype definition— a program definition for an outermost program, including its nested programs— a class definition— an interface definition— a function definition Successful compilation of each compilation unit that is a program definition, a function definition, or a class definition results in executable code that, when included in a run unit, constitutes a runtime module.A compilation unit may contain one or more source units, depending on the type of definition.The compilation units in a compilation group may be all or part of a run unit or may be unrelated compilation units.
10.3 Source unitsA source unit begins with an identification division and ends with an end marker or the end of the compilation group. A source unit includes any contained source units. The following are source units:— an outermost program-definition, including its contained program-definitions— a contained program-definition, including its contained program-definitions— a program-prototype-definition— a function-definition— a function-prototype-definition— a class-definition, including its factory definition and instance definition— a factory definition, including its method definitions— an instance definition, including its method definitions— a method definition— an interface definition, including its method prototypesA source unit may contain one or more divisions, specified in the following order:1) identification division

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 255

2) environment division3) data division4) procedure divisionThe beginning of a division is indicated by its division header or, in the case of the identification division when its header is omitted, by one of the paragraph headers permitted in the identification division.The end of a division is indicated by the beginning of the next division, an end marker for the source unit, or the end of the compilation group.
10.4 Contained source unitsSource units may be contained directly or indirectly.The factory definition and instance definition in a class definition are directly contained within that class definition. The methods within a factory definition or an instance definition are directly contained within that factory definition or instance definition, respectively.Program-definitions within another program-definition may be contained directly or indirectly. A program definition directly contains another program-definition that is immediately nested within it. A program-definition indirectly contains another program-definition when there is one or more levels of nesting between the two of them.When source units are contained within other source units, names of resources described in the containing source unit may be referenced in the contained source unit in accordance with the rules specified in 8.4.6, Scope of names.The executable code resulting from compilation of a contained source unit is considered inseparable from the executable code resulting from compilation of the containing source unit.
10.5 Source elements and runtime elementsA source element is a source unit excluding any contained source units.NOTE In the example:

PROGRAM-ID. A.
...
PROGRAM-ID. B.
...

PROGRAM-ID. C.
...
END PROGRAM C.

END PROGRAM B.
END PROGRAM A.Program B is directly contained in Program A; Program C is directly contained in Program B; and Program C is indirectly contained in Program A. Program C is a source element; Program B, devoid of Program C, is a source element; and Program A, devoid of programs B and C, is a source element.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

256 ©ISO/IEC 2023

A runtime element is the result of successful compilation of a function, a method, or a program containing a procedure division and consists of executable code included in a run unit.
10.6 COBOL compilation group

10.6.1 General format

where program-prototype is:

where function-prototype is:

program-prototypefunction-prototypeprogram-definitionfunction-definitionclass-definitioninterface-definition

 ...

 IDENTIFICATION DIVISION. PROGRAM-ID. program-prototype-name-1 [AS literal-1] IS PROTOTYPE. options-paragraph environment-division data-division [procedure-division]END PROGRAM program-prototype-name-1.
 IDENTIFICATION DIVISION. FUNCTION-ID. function-prototype-name-1 [AS literal-1] IS PROTOTYPE. options-paragraph environment-division data-division [procedure-division]END FUNCTION function-prototype-name-1.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 257

where program-definition is:

where function-definition is:

 IDENTIFICATION DIVISION.
PROGRAM-ID. program-name-1 [AS literal-1]

 IS COMMONINITIALRECURSIVE

 PROGRAM .

 options-paragraph environment-division data-division procedure-division [program-definition] ... END PROGRAM program-name-1.
 IDENTIFICATION DIVISION. FUNCTION-ID. user-function-name-1 [AS literal-1]. options-paragraph environment-division data-division [procedure-division]END FUNCTION user-function-name-1.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

258 ©ISO/IEC 2023

where class-definition is:

where factory-definition is:

where instance-definition is:

[IDENTIFICATION DIVISION.]CLASS-ID. object-class-name-1 [AS literal-1] [IS FINAL] [INHERITS FROM { object-class-name-2 } ...] [USING { parameter-name-1 } ...] .[options-paragraph][environment-division][factory-definition][instance-definition]END CLASS object-class-name-1.
[IDENTIFICATION DIVISION.]FACTORY. [IMPLEMENTS { interface-name-1 }][options-paragraph][environment-division][data-division][procedure-division]END FACTORY.
[IDENTIFICATION DIVISION.]OBJECT. [IMPLEMENTS { interface-name-2 }][options-paragraph][environment-division][data-division][procedure-division]END OBJECT.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 259

where interface-definition is:

where method-definition is:

NOTE Method-definition is included here for completeness, because it is a type of source element. Method-definition is referenced in the general format of Clause 14, Procedure division. A method-definition in a class-definition defines a method. A method-definition in an interface-definition defines a method prototype.where the following meta-language terms are described in the indicated subclauses:
Term Subclausedata-division 13, Data division environment-division 12, Environment division options-paragraph 11.9, OPTIONS paragraph procedure-division 14, Procedure division
10.6.2 Syntax rules1) Within a compilation group, function-prototypes and program-prototypes shall precede all other types of source units.

[IDENTIFICATION DIVISION.]INTERFACE-ID. interface-name-1 [AS literal-1] [INHERITS FROM { interface-name-2 } ...] [USING { parameter-name-1 } ...] .[options-paragraph][environment-division][procedure-division]END INTERFACE interface-name-1.
[IDENTIFICATION DIVISION.]

METHOD-ID. method-name-1 [AS literal-1]GETSET

 PROPERTY property-name-1

 [OVERRIDE] [IS FINAL] .

[options-paragraph][environment-division][data-division][procedure-division]END METHOD [method-name-1] .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

260 ©ISO/IEC 2023

2) If a compilation group contains both a program definition and a program prototype definition with the same externalized name, the signatures of these two compilation units shall be the same.3) If a compilation group contains both a function definition and a function prototype definition with the same externalized name, the signatures of these two compilation units shall be the same.4) The following restrictions apply to program prototypes, function prototypes, and method prototypes:a) The identification division shall not contain an ARITHMETIC clause.b) The environment division shall not contain an object-computer paragraph.c) The only clauses that may be specified in the SPECIAL-NAMES paragraph are the ALPHABET clause, the CURRENCY clause, the DECIMAL-POINT clause, the LOCALE clause, and the SYMBOLIC-CHARACTERS clause.d) The environment division shall not contain an input-output section.e) The data division may contain only a linkage section.f) The procedure division shall contain only a procedure division header.5) Compiler directives may appear in a structured compilation group as specified in 7.3, Compiler directives.
10.6.3 General rule1) Compilation of a program prototype definition or a function prototype definition generates information required for the external repository, as specified in 8.13, External repository.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 261

10.7 End markers

10.7.1 GeneralEnd markers indicate the end of a definition.
10.7.2 General format

10.7.3 Syntax rules1) An end marker shall be present in every source unit that contains, is contained in, or precedes another source unit.2) Program-name-1 shall be identical to the program-name declared in a preceding PROGRAM-ID paragraph.3) If a PROGRAM-ID paragraph declaring a specific program-name is stated between the PROGRAM-ID paragraph and the END PROGRAM marker for program-name-1, then an END PROGRAM marker referencing program-name shall precede the END PROGRAM marker referencing program-name-1.4) Object-class-name-1 shall be identical to the object-class-name declared in the corresponding CLASS-ID paragraph.5) Method-name-1 shall be identical to the method-name declared in the corresponding METHOD-ID paragraph. If the PROPERTY phrase is specified in the METHOD-ID paragraph, method-name-1 shall be omitted.6) Interface-name-1 shall be identical to the interface-name declared in the corresponding INTERFACE-ID paragraph.7) User-function-name-1 shall be identical to the user-function-name declared in the corresponding FUNCTION-ID paragraph.8) Program-prototype-name-1 shall be identical to the program-prototype-name declared in the corresponding PROGRAM-ID paragraph.

END
PROGRAM program-prototype-name-1PROGRAM program-name-1CLASS object-class-name-1FACTORYFUNCTION function-prototype-name-1FUNCTION user-function-name-1OBJECTMETHOD [method-name-1]INTERFACE interface-name-1

.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

262 ©ISO/IEC 2023

9) Function-prototype-name-1 shall be identical to the function-prototype-name declared in the corresponding FUNCTION-ID paragraph.
10.7.4 General rule1) An end marker indicates the end of the specified source unit.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 263

11 Identification division

11.1 GeneralThe identification division identifies the program, function, class, factory object, object, method, or interface.The paragraph header identifies the type of information contained in the paragraph.
11.2 Identification division structure

11.2.1 General format

where the following meta-language terms are described in the indicated subclauses:
Term Subclauseclass-id-paragraph 11.3, CLASS-ID paragraph factory-paragraph 11.4, FACTORY paragraph function-id-paragraph 11.5, FUNCTION-ID paragraph interface-id-paragraph11.6, INTERFACE-ID paragraph method-id-paragraph 11.7, METHOD-ID paragraph object-paragraph 11.8, OBJECT paragraph options-paragraph 11.9, OPTIONS paragraph program-id-paragraph 11.10, PROGRAM-ID paragraph

[IDENTIFICATION DIVISION.]program-id-paragraphfunction-id-paragraphclass-id-paragraphfactory-paragraphobject-paragraphmethod-id-paragraphinterface-id-paragraph

[options-paragraph]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

264 ©ISO/IEC 2023

11.3 CLASS-ID paragraph

11.3.1 GeneralThe CLASS-ID paragraph indicates that this identification division is introducing a class definition and specifies the name that identifies the class and assigns class attributes to the class.
11.3.2 General format

11.3.3 Syntax rules1) Literal-1 shall be an alphanumeric literal or a national literal and shall not be a figurative constant.2) Object-class-name-2 shall be the name of a class specified in the REPOSITORY paragraph of this source element.3) Object-class-name-2 shall not be the name of the class declared by this class definition.4) Object-class-name-2 shall not inherit from object-class-name-1 directly or indirectly.5) Object-class-name-2 shall not be the name of a class defined with the FINAL clause.6) If two or more different methods with the same name are inherited, none of them may be specified with the FINAL clause. If the same method is inherited from one superclass through two or more intermediate superclasses, it may be specified with the FINAL clause.7) A given class name shall not appear more than once in an INHERITS clause.8) Parameter-name-1 shall be a name specified in a class-specifier or an interface-specifier in the REPOSITORY paragraph of this class definition.9) A given parameter-name shall not appear more than once in a USING clause.
11.3.4 General rules1) Object-class-name-1 names the class declared by this class definition. However, literal-1, if specified, is the name of the class that is externalized to the operating environment.2) The INHERITS clause specifies the names of classes that are inherited by object-class-name-1 according to 9.3.9, Class inheritance.3) If the FINAL clause is specified, the class shall not be the superclass for any other class.

CLASS-ID. object-class-name-1 [AS literal-1] [IS FINAL] [INHERITS FROM { object-class-name-2 } ...] [USING { parameter-name-1 } ...] .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 265

4) If the same class is inherited more than once, then only one copy of the data for that class is added to object-class-name-1.NOTE While the same class cannot be directly inherited more than once, a class can be indirectly inherited multiple times. For example, suppose class D inherits from classes B and C, and classes B and C both inherit from class A. In this example, class D indirectly inherits class A twice, since class A is both a superclass of B, as well as a superclass of C.5) The USING clause specifies that this is a parameterized class. Parameter-name-1 is the name given to the formal parameter. See 9.3.12, Parameterized classes, for details of the behavior of a parameterized class. 6) Parameter-name-1 may be specified within this class definition only where an object-class-name or an interface-name is permitted.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

266 ©ISO/IEC 2023

11.4 FACTORY paragraph

11.4.1 GeneralThe FACTORY paragraph indicates that this identification division is introducing a factory definition.
11.4.2 General format

11.4.3 Syntax rules1) Interface-name-1 shall be the name of an interface specified in the REPOSITORY paragraph of the containing class definition.2) Each method prototype in each implemented interface shall be such that the factory interface of this class conforms to all implemented interfaces.
11.4.4 General rules1) The IMPLEMENTS clause specifies the names of the interfaces that are implemented by the factory object of the containing class according to 9.3.11, Interface implementation.2) A factory object implements an interface int-1 in the following cases:a) the factory object is defined with an IMPLEMENTS clause specifying int-1,b) the factory object implements an interface that inherits int-1,c) the class containing the factory object inherits a class whose factory object implements int-1.

FACTORY. [IMPLEMENTS { interface-name-1 }]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 267

11.5 FUNCTION-ID paragraph

11.5.1 GeneralThe FUNCTION-ID paragraph specifies the name by which a function is identified and assigns selected attributes to that function.
11.5.2 General formatFormat 1 (definition):
Format 2 (prototype):
11.5.3 Syntax rule1) Literal-1 shall be an alphanumeric literal or a national literal and shall be neither a figurative constant nor a zero-length literal.
11.5.4 General rulesFORMAT 11) User-function-name-1 names the function declared by this function definition. However, literal-1, if specified, is the name of the function that is externalized to the operating environment.FORMAT 22) Function-prototype-name-1 names the function prototype declared by this definition. However, literal-1, if specified, is the name of the function prototype that is externalized to the operating environment.

FUNCTION-ID. user-function-name-1 [AS literal-1] .
FUNCTION-ID. function-prototype-name-1 [AS literal-1] IS PROTOTYPE.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

268 ©ISO/IEC 2023

11.6 INTERFACE-ID paragraph

11.6.1 GeneralThe INTERFACE-ID paragraph indicates that this identification division is introducing an interface definition, specifies the name that identifies the interface, and assigns interface attributes to the interface.
11.6.2 General format

11.6.3 Syntax rules1) Literal-1 shall be an alphanumeric literal or a national literal and shall be neither a figurative constant nor a zero-length literal.2) Interface-name-2 shall be the name of an interface specified in the REPOSITORY paragraph of this source element.3) Interface-name-2 shall not inherit directly or indirectly from interface-name-1.4) Parameter-name-1 shall be a name specified in a class-specifier or an interface-specifier in the REPOSITORY paragraph of this interface definition.5) If a given method-name is inherited from more than one interface, the method prototype in each inherited interface shall be such that this interface conforms to all inherited interfaces.6) A given interface-name shall not appear more than once in an INHERITS clause.7) A given parameter-name shall not appear more than once in a USING clause.
11.6.4 General rules1) Interface-name-1 names the interface declared by this interface definition. However, literal-1, if specified, is the name of the interface that is externalized to the operating environment.2) The INHERITS clause specifies the names of interfaces that are inherited by interface-name-1 according to 9.3.10, Interface inheritance.3) The USING clause specifies that this is a parameterized interface. Parameter-name-1 is the name given to the formal parameter.4) Parameter-name-1 shall be specified within this interface definition only where an object-class-name or an interface-name is permitted.

INTERFACE-ID. interface-name-1 [AS literal-1] [INHERITS FROM { interface-name-2 } ...] [USING { parameter-name-1 } ...] .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 269

11.7 METHOD-ID paragraph

11.7.1 GeneralThe METHOD-ID paragraph indicates that this identification division is introducing a method definition, specifies the name that identifies the method or method prototype, and assigns method attributes to the method.
11.7.2 General format

11.7.3 Syntax rules1) Literal-1 shall be an alphanumeric literal or a national literal and shall be neither a figurative constant nor a zero-length literal.2) The OVERRIDE phrase shall not be specified in a method prototype.3) If the OVERRIDE phrase is specified, there shall be a method with the same method resolution signature as the method declared by this method definition defined in a superclass. The method in the superclass shall not be defined with the FINAL clause.4) If the OVERRIDE phrase is not specified:a) if this method definition is contained in a class definition, no inherited method shall have the same method resolution signature as the method declared by this method definitionb) if this method definition is contained in an interface definition, no inherited method prototype shall have the same method resolution signature as the method prototype declared by this method definition.5) If property-name-1 is specified as a data-name in the working-storage section of the containing object definition, the PROPERTY clause shall not be specified in the data description entry of that data-name.6) If the GET phrase is specified, then the method shall have no USING phrase parameters specified in the procedure division header and shall have a single RETURNING phrase. The returning item shall not be an object reference described with the ACTIVE-CLASS phrase.7) If the SET phrase is specified, then the method shall have a single USING parameter specified in the procedure division header and no RETURNING phrase. The USING parameter shall not be an object reference described with the ACTIVE-CLASS phrase.”

METHOD-ID. method-name-1 [AS literal-1]GETSET

 PROPERTY property-name-1

 [OVERRIDE] [IS FINAL] .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

270 ©ISO/IEC 2023

8) The FINAL clause shall not be specified in a method prototype.9) If method-name-1 or literal-1 is the same as a method-name inherited or implemented by the containing definition, the parameter declarations, returning item, and exceptions that may be raised on the procedure division header shall obey the rules of conformance according to 9.3.8.2.3, Conformance between interfaces, such that the interface described by the factory or instance definition containing this method definition conforms to the interface described by the factory or instance definition containing the inherited or implemented method definition.
11.7.4 General rules1) The name of the method declared by this method definition is determined as follows:a) If the PROPERTY clause is specified, the name is implementor-defined.b) Otherwise, the name is method-name-1. However, literal-1, if specified, is the name of method that is externalized to the operating environment.2) The OVERRIDE phrase indicates that this method overrides the inherited method.3) The FINAL clause indicates that this method shall not be overridden in any subclasses.4) The name of this method may be referenced in the invocation of a method for an object of the class in which this method is defined.5) If a given user-defined word is defined in the data division of this method definition and in the data division of the containing object definition, the use of that word in this method refers to the declaration in this method. The declaration in the containing object definition is inaccessible to this method.6) If the GET phrase is specified, this method is a get property method for property-name-1.7) If the SET phrase is specified, this method is a set property method for property-name-1.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 271

11.8 OBJECT paragraph

11.8.1 GeneralThe OBJECT paragraph indicates that this identification division is introducing an instance object definition.
11.8.2 General format

11.8.3 Syntax rules1) Interface-name-1 shall be the name of an interface specified in the REPOSITORY paragraph of the containing class definition.2) Each method prototype in each implemented interface shall be such that the object interface of this class conforms to all implemented interfaces.
11.8.4 General rules1) The IMPLEMENTS clause specifies the names of the interfaces that are implemented by the object of the containing class according to 9.3.11, Interface implementation.2) An instance object implements an interface intf-1 in the following cases: a) the instance object is defined with an IMPLEMENTS clause specifying intf-1, b) the instance object implements an interface that inherits intf-1,c) the class containing the instance object inherits a class whose instance object implements intf-1.

OBJECT. [IMPLEMENTS { interface-name-1 }]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

272 ©ISO/IEC 2023

11.9 OPTIONS paragraph

11.9.1 GeneralThe OPTIONS paragraph specifies information for use by the compiler in generating executable code for a source unit.
11.9.2 General format

11.9.3 Syntax rule1) If any of the clauses are specified, then there shall be a terminating separator period.
11.9.4 General rule1) The clauses in the OPTIONS paragraph apply to the source element in which they are specified and to all source elements contained in that source element unless overridden by a clause in an OPTIONS paragraph in a contained source element.
11.9.5 ARITHMETIC clauseThe ARITHMETIC clause specifies the method used in developing the intermediate results.
11.9.5.1 General format

11.9.5.2 General rules1) If the NATIVE phrase is specified, the techniques used in handling arithmetic expressions and intrinsic functions shall be those specified by the implementor, and the techniques used in handling arithmetic statements and the SUM clause shall be those specified for native arithmetic in 8.8.1.3, Native arithmetic.

OPTIONS.[arithmetic-clause][default-rounded-clause][entry-convention-clause][float-binary-clause][float-decimal-clause][initialize-clause][intermediate-rounding-clause][.]

ARITHMETIC IS NATIVESTANDARD-BINARYSTANDARD-DECIMAL

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 273

2) If the STANDARD-BINARY phrase is specified, the techniques used in handling arithmetic expressions, arithmetic statements, the SUM clause, and integer and numeric functions shall be as described for standard-binary arithmetic in 8.8.1.4, Standard-binary arithmetic.NOTE 1 Implementors are strongly encouraged to provide support for the STANDARD-DECIMAL phrase of the ARITHMETIC clause.NOTE 2 The STANDARD-BINARY mode of arithmetic is an obsolete feature.Unlike other obsolete features, it is intended that interest in this facility will be reevaluated during the next revision of standard COBOL and before any final decision is made on whether or not to remove it from the next revision.3) If the STANDARD-DECIMAL phrase is specified, the techniques used in handling arithmetic expressions, arithmetic statements, the SUM clause, and integer and numeric functions shall be as described for standard-decimal arithmetic in 8.8.1.5, Standard-decimal arithmetic.4) If the ARITHMETIC clause is not specified in this source element or a containing source element, it is as if the ARITHMETIC clause were specified with the NATIVE phrase.
11.9.6 DEFAULT ROUNDED clause

11.9.6.1 GeneralThe DEFAULT ROUNDED clause specifies the type of rounding that applies when ROUNDED phrases of arithmetic statements, SOURCE clauses, and SUM clauses do not specify a rounding mode.
11.9.6.2 General format

11.9.6.3 General rules1) The DEFAULT ROUNDED clause specifies the type of rounding that applies to any explicit ROUNDED phrase that does not include an explicit MODE phrase. The meaning of the rounding types associated with the DEFAULT ROUNDED clause is described in 14.7.4, ROUNDED phrase.

DEFAULT ROUNDED MODE IS
AWAY-FROM-ZERONEAREST-AWAY-FROM-ZERONEAREST-EVENNEAREST-TOWARD-ZEROPROHIBITEDTOWARD-GREATERTOWARD-LESSERTRUNCATION

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

274 ©ISO/IEC 2023

2) If the DEFAULT ROUNDED clause is not specified, DEFAULT ROUNDED MODE IS NEAREST-AWAY-FROM-ZERO is implied.NOTE NEAREST-AWAY-FROM-ZERO is the rounding mode provided by the ROUNDED phrase in earlier COBOL standards.
11.9.7 ENTRY-CONVENTION clause

11.9.7.1 GeneralThe ENTRY-CONVENTION clause specifies the information to be used when activating a runtime element.
11.9.7.2 General format

11.9.7.3 Syntax rule1) The ENTRY-CONVENTION clause may be specified only in a class definition, a function definition, a function-prototype definition, an interface definition, a program prototype definition, or a program definition that is not contained within another program.
11.9.7.4 General rules1) The ENTRY-CONVENTION clause specifies the convention to be used for activating the runtime element corresponding to the source element in which this clause is specified.NOTE All information required to interact successfully with a runtime element can be made available to the compiler via this entry convention association; this includes items such as name case sensitivity, how arguments are passed, and stack management.2) When COBOL is specified, the naming convention and mapping of method-names and program-names are as specified in 8.3.2.2, User-defined words; other aspects of the entry convention are implementor-defined.3) When entry-convention-name-1 is specified, the meaning of the entry convention is implementor-defined.4) When ENTRY-CONVENTION is not specified, the entry convention used is as follows:a) If a class definition includes the INHERITS clause, the entry convention is inherited from the first class specified in the INHERITS clause.b) If an interface definition includes the INHERITS clause, the entry convention is inherited from the first interface specified in the INHERITS clause.

ENTRY-CONVENTION IS COBOLentry-convention-name-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 275

c) In all other cases, the entry convention is COBOL.
11.9.8 FLOAT-BINARY clause

11.9.8.1 GeneralThe FLOAT-BINARY clause specifies the endianness that is implied for data items described with standard binary floating-point usages.
11.9.8.2 General format

11.9.8.3 Syntax rules1) When the FLOAT-BINARY clause is not specified, the implementor shall specify whether the HIGH-ORDER-LEFT phrase or the HIGH-ORDER-RIGHT phrase is implied for the data description entry of any data item described with a standard binary floating-point usage in which an endianness-phrase is not specified.2) When the HIGH-ORDER-LEFT phrase is specified, the HIGH-ORDER-LEFT phrase is implied for the USAGE clause in the data description entry of any data item described with a standard binary floating-point usage in which an endianness-phrase is not specified.3) When the HIGH-ORDER-RIGHT phrase is specified, the HIGH-ORDER-RIGHT phrase is implied for the USAGE clause in the data description entry of any data item described with a standard binary floating-point usage in which an endianness-phrase is not specified.
11.9.9 FLOAT-DECIMAL clause

11.9.9.1 GeneralThe FLOAT-DECIMAL clause specifies the encoding and the endianness that is implied for data items described with standard decimal floating-point usages.
11.9.9.2 General format

FLOAT-BINARY DEFAULT IS HIGH-ORDER-LEFTHIGH-ORDER-RIGHT

FLOAT-DECIMAL DEFAULT IS encoding-phraseendianness-phrase

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

276 ©ISO/IEC 2023

where encoding-phrase is:

where endianness-phrase is:

11.9.9.3 Syntax rules1) When the BINARY-ENCODING phrase is specified, the BINARY-ENCODING phrase is implied for the USAGE clause in the data description entry of any data item described with a standard decimal floating-point usage in which an encoding-phrase is not specified.2) When the DECIMAL-ENCODING phrase is specified, the DECIMAL-ENCODING phrase is implied for the USAGE clause in the data description entry of any data item described with a standard decimal floating-point usage in which an encoding-phrase is not specified.3) When neither the BINARY-ENCODING phrase nor the DECIMAL-ENCODING phrase is specified in the FLOAT-DECIMAL clause, the implementor shall specify which phrase is implied for the data description entry of any data item described with a standard decimal floating-point usage in which an encoding-phrase is not specified.4) When the HIGH-ORDER-LEFT phrase is specified, the HIGH-ORDER-LEFT phrase is implied for the USAGE clause in the data description entry of any data item described with a standard decimal floating-point usage in which an endianness-phrase is not specified.5) When the HIGH-ORDER-RIGHT phrase is specified, the HIGH-ORDER-RIGHT phrase is in effect for the USAGE clause in the data description entry of any data item described with a standard decimal floating-point usage in which an endianness-phrase is not specified.6) When neither the HIGH-ORDER-LEFT phrase nor the HIGH-ORDER-RIGHT phrase is specified in the FLOAT-DECIMAL clause, the implementor shall specify which phrase is implied for the data description entry of any data item described with a standard decimal floating-point usage in which an endianness-phrase is not specified.
11.9.10 INITIALIZE clause

11.9.10.1 GeneralThe INITIALIZE clause specifies that during program initialization of allocation of space the background is set to a specified character.

BINARY-ENCODINGDECIMAL-ENCODING

HIGH-ORDER-LEFTHIGH-ORDER-RIGHT

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 277

11.9.10.2 General format

11.9.10.3 Syntax rule1) Literal-1 shall specify a one-byte hexadecimal-alphanumeric literal.
11.9.10.4 General rules1) If ALL is specified, LOCAL-STORAGE, SCREEN, and WORKING-STORAGE apply.2) If LOCAL-STORAGE is specified, all data items in the local-storage section are initialized as indicated in the rules for initial state.3) If SCREEN is specified, all data items in the screen section are initialized as indicated in the rules for initial state.4) If WORKING-STORAGE is specified, all data items in the working-storage section are initialized as indicated in the rules for initial state.5) The character following ‘TO’ creates the specified-fill-character.a) If BINARY ZEROES is specified, a string of binary zeros is the specified-fill-character.b) If HIGH-VALUES is specified, the alphanumeric high value character is the specified-fill-character.c) If literal-1 is specified, that literal is the specified-fill-character.d) If LOW-VALUES is specified, the alphanumeric low value character is the specified-fill-character.e) If SPACES is specified, the alphanumeric space is the specified-fill-character.6) The initializing of the data items takes place immediately after the space is allocated. If the INITIALIZE clause is not specified, the content of data items that do not have predefined initialization values (such as VALUE clauses) is undefined or specified by the implementor.NOTE Data items without predefined settings will probably not have initial values that are valid for those data items.7) External items in the Working-storage section are not initialized when runtime elements are put into the initial state, except for those with the CONSTANT RECORD clause.

INITIALIZE ALLLOCAL-STORAGESCREENWORKING-STORAGE

SECTION TO
BINARY ZEROESHIGH-VALUESliteral-1LOW-VALUESSPACES

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

278 ©ISO/IEC 2023

11.9.11 INTERMEDIATE ROUNDING clauseThe INTERMEDIATE ROUNDING clause specifies the rounding rules that are to be applied during the production of intermediate results in arithmetic statements and arithmetic expressions.
11.9.11.1 General format

11.9.11.2 General rules1) If native arithmetic is in effect, the rounding rules that apply to intermediate data items are defined by the implementor.2) If standard-binary arithmetic is in effect:a) If the INTERMEDIATE ROUNDING clause is not specified, the NEAREST-EVEN phrase is implied.b) The NEAREST-AWAY-FROM-ZERO phrase shall not be specified.c) If the NEAREST-EVEN phrase is specified or implied, the intermediate data item shall be rounded to the nearest value that can be represented exactly in SBIDI form in which the rightmost bit is zero.d) If the PROHIBITED phrase is specified and the intermediate value cannot be represented exactly in SBIDI form, the EC-SIZE-TRUNCATION exception condition is set to exist and the results of the operation are undefined. e) If the TRUNCATION phrase is specified and an intermediate value cannot be represented exactly in SBIDI form, the value shall be rounded to the nearest value that can be represented exactly in that format that is nearer to zero than the intermediate value.NOTE The STANDARD-BINARY mode of arithmetic is an obsolete feature.3) If standard-decimal arithmetic is in effect:a) If the INTERMEDIATE ROUNDING clause is not specified, the NEAREST-AWAY-FROM-ZERO phrase is implied.b) If the NEAREST-AWAY-FROM-ZERO phrase is specified, and an intermediate data item cannot be represented exactly in SDIDI form, the value is rounded to the nearest value that can be represented in that format. If two such values are equally near, the value farther from zero is chosen.

INTERMEDIATE ROUNDING IS NEAREST-AWAY-FROM-ZERONEAREST-EVENPROHIBITEDTRUNCATION

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 279

c) If the NEAREST-EVEN phrase is specified or implied, the intermediate data item shall be rounded to the nearest value that can be represented exactly in SDIDI form. If two such values are equally near, the value in which the rightmost digit of the significand is even shall be delivered.d) If the PROHIBITED phrase is specified and an intermediate value cannot be represented exactly in SDIDI form, the EC-SIZE-TRUNCATION exception condition is set to exist and the results of the operation are undefined.e) If the TRUNCATION phrase is specified and an intermediate data item cannot be represented exactly in SDIDI form, the value shall be the nearest value in that format that is nearer to zero than the intermediate value.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

280 ©ISO/IEC 2023

11.10 PROGRAM-ID paragraph

11.10.1 GeneralThe PROGRAM-ID paragraph specifies the name by which a program is identified and assigns selected program attributes to that program.The PROGRAM-ID paragraph specifies the name by which a program prototype is identified.
11.10.2 General formatFormat 1 (definition):

Format 2 (prototype):
11.10.3 Syntax rulesALL FORMATS1) Literal-1 shall be an alphanumeric literal or a national literal and shall be neither a figurative constant nor a zero-length literal.FORMAT 12) Literal-1 shall not be specified in a program that is contained within another program.3) A program contained within another program shall not be assigned the same name as that of any other program contained within the outermost program that contains this program.4) The COMMON clause may be specified only if the program is contained within another program.5) The INITIAL clause shall not be specified if any program that directly or indirectly contains this program is a recursive program.6) The RECURSIVE clause shall not be specified if any program that directly or indirectly contains this program is an initial program.

PROGRAM-ID. program-name-1 [AS literal-1] IS

COMMONINITIALRECURSIVE

 PROGRAM .

PROGRAM-ID. program-prototype-name-1 [AS literal-1] IS PROTOTYPE .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 281

11.10.4 General rulesFORMAT 11) Program-name-1 names the program declared by this program definition. Literal-1, if specified, is the name of the program that is externalized to the operating environment.2) The COMMON clause specifies that the program is common. A common program is contained within another program but may be called from programs other than that containing it as stated in 8.4.6, Scope of names.3) The INITIAL clause specifies that the program is initial program. When an initial program is activated, the data items and file connectors contained in it and any program contained within it are set to their initial states.4) The RECURSIVE clause specifies that the program and any programs contained within it are recursive. The program may be called while it is active and may call itself. If the RECURSIVE clause is not specified in a program or implied for a program, the program shall not be called while it is active.5) Additional rules concerning initial and recursive programs are given in 8.6.6, Common, initial, and recursive attributes.FORMAT 26) Program-prototype-name-1 identifies the program prototype. However, literal-1, if specified, is the name of the program prototype that is externalized to the operating environment.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

282 ©ISO/IEC 2023

12 Environment division

12.1 GeneralThe environment division specifies those aspects of a data processing problem that are dependent upon the physical characteristics of a specific computer. This division allows specification of the configuration of the compiling computer and the object computer. In addition, information relative to input-output control, special hardware characteristics, and control techniques can be given.
12.2 Environment division structure

12.2.1 General format

ENVIRONMENT DIVISION.[configuration-section][input-output-section]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 283

12.3 Configuration section

12.3.1 GeneralThe configuration section specifies aspects of the data processing system that are dependent on the specific system as well as special control techniques and a means of associating a local name with an external resource. This section is divided into paragraphs: — the SOURCE-COMPUTER paragraph, which describes the computer configuration on which the source element is compiled; — the OBJECT-COMPUTER paragraph, which describes the computer configuration on which the runtime module produced by the compiler is to be run;— the SPECIAL-NAMES paragraph, which provides a means for specifying the currency sign, choosing the decimal point, specifying symbolic-characters, relating system-names to user-specified mnemonic-names, relating alphabet-names to character sets or collating sequences, and relating class-names to sets of characters; and — the REPOSITORY paragraph, which provides a means for associating a local name with an external resource and specifying which intrinsic function names become reserved words for this source unit.
12.3.2 General format

12.3.3 Syntax rules1) The configuration section shall not be specified in a program that is contained within another program.2) The configuration section shall not be specified in a method definition.3) The SOURCE-COMPUTER, OBJECT-COMPUTER, and REPOSITORY paragraphs shall not be specified in a factory definition or an instance definition.
12.3.4 General rule1) The entries explicitly or implicitly specified in the configuration section of a source unit that contains other source units apply to each directly or indirectly contained source unit.

CONFIGURATION SECTION.[source-computer-paragraph][object-computer-paragraph][special-names-paragraph][repository-paragraph]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

284 ©ISO/IEC 2023

NOTE The functionality established in the CONFIGURATION SECTION applies to this source unit and all contained source units. The ability to reference explicitly any data item referenced in the CONFIGURATION SECTION is dependent upon the scope of that data item.
12.3.5 SOURCE-COMPUTER paragraph

12.3.5.1 GeneralThe SOURCE-COMPUTER paragraph provides a means of describing the computer upon which the compilation unit is to be compiled.
12.3.5.2 General format

12.3.5.3 Syntax rule1) If computer-name-1 is not specified, the second period in the General format may be omitted.
12.3.5.4 General rules1) All clauses of the SOURCE-COMPUTER paragraph apply to the source unit in which they are explicitly or implicitly specified and to any source unit contained within that source unit.2) When the SOURCE-COMPUTER paragraph is not specified and the source unit is not contained within a source unit including a SOURCE-COMPUTER paragraph, the computer on which the source unit is being compiled is the source computer.3) When the SOURCE-COMPUTER paragraph is specified, but computer-name-1 is not specified, the computer upon which the source unit is being compiled is the source computer.

SOURCE-COMPUTER. [computer-name-1] .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 285

12.3.6 OBJECT-COMPUTER paragraph

12.3.6.1 GeneralThe OBJECT-COMPUTER paragraph provides a means of describing the computer on which the runtime module created by the compiler is to be executed.
12.3.6.2 General format

where locale-phrase-1 is:

where locale-phrase-2 is:

12.3.6.3 Syntax rules1) Alphabet-name-1 shall reference an alphabet that defines an alphanumeric collating sequence.2) Alphabet-name-2 shall reference an alphabet that defines a national collating sequence.3) Locale-name-1 and locale-name-2 shall be locale names defined in the SPECIAL-NAMES paragraph.

OBJECT-COMPUTER.

[computer-name-1]
CHARACTER CLASSIFICATION IS locale-phrase-1 [locale-phrase-2]FOR ALPHANUMERIC IS locale-phrase-1FOR NATIONAL IS locale-phrase-2

PROGRAM COLLATING SEQUENCE IS alphabet-name-1 [alphabet-name-2]FOR ALPHANUMERIC IS alphabet-name-1FOR NATIONAL IS alphabet-name-2

.

locae-name-1LOCALESYSTEM-DEFAULTUSER-DEFAULT

locale-name-2LOCALESYSTEM-DEFAULTUSER-DEFAULT

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

286 ©ISO/IEC 2023

4) If neither computer-name-1 nor any of the optional clauses is specified, the second period in the General format may be omitted.
12.3.6.4 General rules1) All clauses of the OBJECT-COMPUTER paragraph apply to the source unit in which they are explicitly or implicitly specified and to any source unit contained within that source unit.2) Computer-name-1 may provide a means for identifying equipment configuration, in which case computer-name-1 and its implied configuration are specified by each implementor. 3) When the OBJECT-COMPUTER paragraph is specified, but computer-name-1 is not specified, the object computer is defined by the implementor.4) When the OBJECT-COMPUTER paragraph is not specified and the source unit is not contained within a source unit including an OBJECT-COMPUTER paragraph, the object computer is defined by the implementor.5) When the CHARACTER CLASSIFICATION clause is specified, the initial character classification is as follows:a) If locale-name-1 is specified, the initial alphanumeric character classification is the character classification associated with locale-name-1.b) If LOCALE is specified as locale-phrase-1, the initial alphanumeric character classification is the character classification associated with the current locale.c) If SYSTEM-DEFAULT is specified as locale-phrase-1, the initial alphanumeric character classification is the character classification associated with the system default locale.d) If USER-DEFAULT is specified as locale-phrase-1, the initial alphanumeric character classification is the character classification associated with the user default locale.e) If locale-phrase-1 is not specified, the initial alphanumeric character classification is the character classification associated with the computer's coded character set in effect for alphanumeric characters at runtime.f) If locale-name-2 is specified, the initial national character classification is the character classification associated with locale-name-2.g) If LOCALE is specified as locale-phrase-2, the initial national character classification is the character classification associated with the current locale.h) If SYSTEM-DEFAULT is specified as locale-phrase-2, the initial national character classification is the character classification associated with the system default locale.i) If USER-DEFAULT is specified as locale-phrase-2, the initial national character classification is the character classification associated with the user default locale.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 287

j) If locale-phrase-2 is not specified, the initial national character classification is the character classification associated with the computer's coded character set in effect for national characters at runtime.6) When the CHARACTER CLASSIFICATION clause is not specified and the source unit is not contained within a source unit for which a CHARACTER CLASSIFICATION clause is specified, the initial character classifications are the character classifications associated with the computer's coded character set in effect for alphanumeric and national characters at runtime.7) When the CHARACTER CLASSIFICATION clause is specified, the cultural convention specification LC_CTYPE from the specified locales are used for:a) the uppercase and lowercase mappings of characters for the UPPER-CASE and LOWER-CASE intrinsic functions.b) the classification of characters for class tests ALPHABETIC, ALPHABETIC-LOWER, ALPHABETIC-UPPER, and for the class test specifying an alphabet-name that is associated with a locale in the SPECIAL-NAMES paragraph.8) The character classifications explicitly or implicitly established by the OBJECT-COMPUTER paragraph are effective with the initial state of the runtime modules to which they apply. If locale-name-1 or locale-name-2 is specified, the associated character classification is defined by category LC_CTYPE in the locale identified by that locale-name.9) When the PROGRAM COLLATING SEQUENCE clause is specified, the initial alphanumeric program collating sequence is the collating sequence associated with alphabet-name-1 and the initial national program collating sequence is the collating sequence associated with alphabet-name-2. When alphabet-name-1 is not specified, the initial alphanumeric program collating sequence is the native alphanumeric collating sequence; when alphabet-name-2 is not specified, the initial national program collating sequence is the native national collating sequence.10) When the PROGRAM COLLATING SEQUENCE clause is not specified and the source unit is not contained within a source unit for which a PROGRAM COLLATING SEQUENCE clause is specified, the initial program collating sequences are the native alphanumeric collating sequence and the native national collating sequence. 11) The alphanumeric program collating sequence and national program collating sequence are used to determine the truth value of any alphanumeric comparisons and national comparisons, respectively, that are:a) Explicitly specified in relation conditions.b) Explicitly specified in condition-name conditions.c) Implicitly specified by the presence of a CONTROL clause in a report description entry.When alphabet-name-1 or alphabet-name-2, or both, is associated with a locale, locale category LC_COLLATE is used to carry out these comparisons.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

288 ©ISO/IEC 2023

12) The alphanumeric program collating sequence and national program collating sequence explicitly or implicitly established by the OBJECT-COMPUTER paragraph are effective with the initial state of the runtime modules to which they apply. If alphabet-name-1 or alphabet-name-2 references a locale, the associated collating sequence is defined by category LC_COLLATE in the specific locale associated with that alphabet-name or, if none, in the locale current at the time the collating sequence is used at runtime13) The alphanumeric program collating sequence and national program collating sequence are applied to alphanumeric and national sort or merge keys, respectively, unless the sort or merge collating sequence has been modified by execution of a SET statement or a COLLATING SEQUENCE phrase is specified in the respective SORT or MERGE statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 289

12.3.7 SPECIAL-NAMES paragraph

12.3.7.1 GeneralThe SPECIAL-NAMES paragraph provides a means for:— specifying currency signs and symbols,— choosing the decimal point,— specifying symbolic-characters,— relating dynamic-length-structure-names to the structure of a dynamic-length elementary item,— relating system-names to user-specified mnemonic-names,— relating locale-names to the external identification of locales,— relating alphabet-names to character sets or collating sequences or both,— relating class-names to a set of characters,— relating an ordering table name to a cultural ordering table,— relating a data item to the cursor position of a character addressable terminal, and— relating a data item to the status of a terminal input-output operation.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

290 ©ISO/IEC 2023

12.3.7.2 General format

SPECIAL-NAMES.[alphabet-name-clause] ...
CLASS class-name-1 FOR ALPHANUMERICNATIONAL

 IS literal-5 THROUGHTHRU

 literal-6

 ... [IN alphabet-name-4]

[CRT STATUS IS data-name-2] CURRENCY SIGN IS literal-7 [WITH PICTURE SYMBOL literal-8] ...CURSOR IS data-name-1] [DECIMAL-POINT IS COMMA][dynamic-length-structure-clause] ...
LOCALE locale-name-1 IS external-locale-name-1literal-4

 ...

switch-name-1
IS mnemonic-name-1 ON STATUS IS condition-name-1OFF STATUS IS condition-name-2ON STATUS IS condition-name-1OFF STATUS IS condition-name-2

feature-name-1 IS mnemonic-name-2device-name-1 IS mnemonic-name-3

 ...

[symbolic-characters-clause] ...[ORDER TABLE ordering-name-1 IS literal-9] .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 291

where alphabet-name-clause is:

where literal-phrase is:

where dynamic-length-structure-clause is:

ALPHABET
alphabet-name-1 [FOR ALPHANUMERIC] IS

LOCALE [locale-name-2]NATIVESTANDARD-1STANDARD-2code-name-1{ literal-phrase } ...

alphabet-name-2 FOR NATIONAL IS
LOCALE [locale-name-2]NATIVEUCS-4UTF-8UTF-16code-name-2{ literal-phrase } ...

literal-1 THROUGHTHRU

 literal-2

 { ALSO literal-3 } ...
DYNAMIC LENGTH STRUCTURE dynamic-length-structure-name-1 IS

[SIGNED] [SHORT] PREFIXEDDELIMITED

physical-structure-name-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

292 ©ISO/IEC 2023

where symbolic-characters-clause is:

12.3.7.3 Syntax rules1) At the outer level of a source unit that defines a class, the CURSOR and CRT STATUS clauses shall not be specified.2) In a factory definition or instance definition, the only clauses that may be specified are the CURSOR and CRT STATUS clauses.3) In an interface definition, the ALPHABET clause, the CURRENCY clause, the DECIMAL-POINT clause, and the LOCALE clause are the only permitted clauses.4) In a program definition, data-name-1 and data-name-2 shall be described with the GLOBAL clause if the program definition contains one or more program definitions.5) Mnemonic-name-1 may be specified only in a SET statement.6) Mnemonic-name-2 may be specified only in the WRITE statement. The implementor may specify additional restrictions on the use of mnemonic-names that reference specific feature-names.7) Mnemonic-name-3 may be specified only in the ACCEPT and DISPLAY statements. The implementor may specify additional restrictions on the use of mnemonic-names that reference specific device-names.8) The implementor shall specify the names that are available for switch-name-1, feature-name-1, and device-name-1.9) Ordering-name-1 may be specified only in the STANDARD-COMPARE intrinsic function.10) Literal-4 and literal-9 shall be alphanumeric or national literals.11) Literal-1, literal-2, literal-3, literal-4, literal-5, literal-6, and literal-9 shall specify neither a symbolic-character figurative constant nor a zero-length literal.12) The words THROUGH and THRU are equivalent.

SYMBOLIC CHARACTERS
 FOR ALPHANUMERICNATIONAL

{ symbolic-character-1 } ... ISARE { integer-1 } ...

[IN alphabet-name-3]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 293

13) When the ALPHABET clause is specified with neither the ALPHANUMERIC phrase nor the NATIONAL phrase, the ALPHANUMERIC phrase is implied.14) When the ALPHABET clause is specified with a literal-phrase:a) A given character shall not be specified more than once in that ALPHABET clause.b) When the ALPHANUMERIC phrase is specified or implied:1. Each numeric literal shall be an unsigned integer and shall have a value within the range of one through the maximum number of characters in the native alphanumeric character set.2. Each noninteger literal shall be an alphanumeric literal.3. Each alphanumeric literal, when a THROUGH or ALSO phrase is specified, shall be one character in length.4. The number of characters specified shall not exceed the number of characters in the native alphanumeric character set.c) When the NATIONAL phrase is specified:1. Each numeric literal shall be an unsigned integer and shall have a value within the range of one through the maximum number of characters in the native national character set.2. Each noninteger literal shall be a national literal.3. Each national literal, when a THROUGH or ALSO phrase is specified, shall be one character in length.4. The number of characters specified shall not exceed the number of characters in the native national character set.15) The implementor shall specify the names supported for code-name-1 and code-name-2 in the ALPHABET clause, if any.16) When the SYMBOLIC CHARACTERS clause is specified:a) A given symbolic-character-1 may be specified only once within the SYMBOLIC CHARACTER clauses of this SPECIAL-NAMES paragraph.b) The relationship between each symbolic-character-1 and the corresponding integer-1 is by position in the SYMBOLIC CHARACTERS clause. The first symbolic-character-1 is paired with the first integer-1; the second symbolic-character-1 is paired with the second integer-1; and so on.c) There shall be a one-to-one correspondence between occurrences of symbolic-character-1 and occurrences of integer-1.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

294 ©ISO/IEC 2023

d) When neither the ALPHANUMERIC phrase nor the NATIONAL phrase is specified, the ALPHANUMERIC phrase is implied.e) When the ALPHANUMERIC phrase is specified or implied:1. When the IN phrase is specified, alphabet-name-3 shall reference an alphabet that defines an alphanumeric character set, and the ordinal position specified by integer-1 shall exist in that character set.2. When the IN phrase is not specified, the ordinal position specified by integer-1 shall exist in the native alphanumeric character set.f) When the NATIONAL phrase is specified:1. When the IN phrase is specified, alphabet-name-3 shall reference an alphabet that defines a national character set, and the ordinal position specified by integer-1 shall exist in that character set.2. When the IN phrase is not specified, the ordinal position specified by integer-1 shall exist in the native national character set. g) Alphabet-name-3 shall not reference an alphabet specified with the LOCALE phrase.17) When the CLASS clause is specified:a) When neither the ALPHANUMERIC phrase nor the NATIONAL phrase is specified, the ALPHANUMERIC phrase is implied.b) When the ALPHANUMERIC phrase is specified or implied:1. When the IN phrase is specified, alphabet-name-4 shall reference an alphabet that defines an alphanumeric character set.2. Literal-5, if numeric, shall be an unsigned integer and shall have a value within the range of one through the maximum number of characters in the native alphanumeric character set, or, when the IN phrase is specified, the maximum number of characters in the character set referenced by alphabet-name-4.3. Each noninteger literal shall be an alphanumeric literal.4. Each alphanumeric literal, when a THROUGH phrase is specified, shall be one character in length.5. The number of characters specified shall not exceed the number of characters in the native alphanumeric character set or, when the IN phrase is specified, the number of characters in the character set referenced by alphabet-name-4.c) When the NATIONAL phrase is specified:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 295

1. When the IN phrase is specified, alphabet-name-4 shall reference an alphabet that defines a national character set.2. Literal-5, if numeric, shall be an unsigned integer and shall have a value within the range of one through the number of characters in the native national character set, or, when the IN phrase is specified, the number of characters in the character set referenced by alphabet-name-4.3. Each noninteger literal shall be a national literal.4. Each national literal, when a THROUGH phrase is specified, shall be one character in length.5. The number of characters specified shall not exceed the number of characters in the native national character set or, when the IN phrase is specified, the number of characters in the character set referenced by alphabet-name-4.d) Alphabet-name-4 shall not reference an alphabet specified with the LOCALE phrase.18) Literal-7 shall be an alphanumeric or national literal that is not a figurative constant.19) If literal-7 is an alphanumeric or national literal in hexadecimal format, the PICTURE SYMBOL phrase shall be present in the CURRENCY SIGN clause.NOTE 1 Literals in hexadecimal format specified as literal-7 represent characters from the computer's runtime coded character set, and therefore the content of such literals is used at runtime exactly as specified by the user. Because the content of such literals is interpreted at runtime, the limitations as to which characters are permitted in a currency string at compile time do not apply to the alphanumeric or national characters represented by hexadecimal literals used as currency strings. 20) If the character specified as the currency symbol is not a character in the COBOL character repertoire, any equivalence between that character and any other character in the computer's compile-time coded character set is defined by the implementor. In all other cases, compile-time equivalence to that currency symbol is determined as specified in 8.1.3, COBOL character repertoire, General rules.NOTE 2 For example, N'M', N'm', 'M', and 'm' used as currency symbols are all equivalent.21) No two CURRENCY SIGN clauses within a single source unit shall specify equivalent currency symbols unless they specify identical currency strings.22) If the PICTURE SYMBOL phrase is not specified, literal-7 is both the currency string and the currency symbol. It shall consist of a single character from the computer's compile-time coded character set that is neither the same as nor equivalent to any of the following:a) digits 0 through 9;b) alphabetic characters A, B, C, D, E, N, P, R, S, V, X, Z, or their lowercase equivalents; or the space;c) characters '+' '–' ',' '.' '*' '/' ';' '(' ')' '"' '='

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

296 ©ISO/IEC 2023

23) If the PICTURE SYMBOL phrase is specified, literal-7 is the currency string and literal-8 is the associated currency symbol. Literal-7 may have any length and:a) shall contain at least one non-space character andb) may consist of any characters from the computer’s coded character set except for the digits 0 through 9 and the characters '+' '–' ',' '.' '*'.24) Locale-name-2 shall be a locale-name defined by the LOCALE clause.25) If a source unit does not contain a CURRENCY SIGN clause that specifies '$' as the currency symbol (either as literal-7 or literal-8), the clause CURRENCY SIGN '$' PICTURE SYMBOL '$' is implied for that source unit.26) Literal-8 shall be an alphanumeric or national literal consisting of a single character from the computer's compile-time coded character set. It shall be neither a figurative constant nor a hexadecimal literal.27) Literal-8 may be any character from the computer's coded character set except for the following:a) digits 0 through 9;b) alphabetic characters A, B, C, D, E, N, P, R, S, V, X, Z, or their lowercase equivalents; or the space;c) characters '+' '–' ',' '.' '*' '/' ';' '(' ')' '"' '='28) If literal-7 is of class alphanumeric, the associated currency symbol may be used only to define a numeric-edited item with usage display. If literal-7 is of class national, the associated currency symbol may be used only to define a numeric-edited item with usage national.29) Data-name-1 shall be described in the working-storage or local-storage section as either an elementary unsigned integer of 6 digits described implicitly or explicitly as usage display, or an alphanumeric group item consisting of two elementary unsigned integers of 3 digits described implicitly or explicitly as usage display.30) Data-name-2 shall be described in the working-storage or local-storage section as an alphanumeric data item 4 characters in length.31) One of the separator periods may be omitted if none of the clauses in the SPECIAL-NAMES paragraph is specified.32) The implementor shall specify the names supported for physical-structure-name-1.
12.3.7.4 General rules1) All clauses specified in the SPECIAL-NAMES paragraph of a source unit that contains other source units apply to each directly or indirectly contained source unit. The condition-names, mnemonic-names, locale-names, class-names, currency signs and symbols, alphabet-names, and symbolic-

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 297

characters specified in the SPECIAL-NAMES paragraph of the containing source unit may be referenced from any directly or indirectly contained source unit.2) Switch-name-1 identifies an implementor-defined external switch. The on status and the off status of an external switch may each be associated with a condition-name. The status of that switch may be interrogated by referencing the condition-names as specified in 8.8.4.6, Simple switch-status condition.3) The status of an external switch may be altered by execution of a SET mnemonic-name statement that specifies as its operand the mnemonic-name associated with that switch. The implementor defines which external switches may be referenced by the SET statement.4) The implementor defines the scope (program, run unit, etc.) of each external switch and any facility external to COBOL that may be used to modify the status of an external switch.NOTE 1 If the scope of an external switch is the run unit, each switch-name of such an external switch refers to one and only one such switch, the status of which is available to each runtime element functioning within that run unit.5) When the LOCALE clause is specified, locale-name-1 references a locale identified by external-locale-name-1 or the value of literal-4. The implementor specifies the allowable external-locale-names and the allowable content of literal-4.6) The implementor shall define the order of characters within the native alphanumeric coded character set and the native national coded character set, associating each character with an ordinal position within the character set.7) The ALPHABET clause provides a means of relating a name to a specified coded character set or collating sequence, or both.NOTE 2 An alphabet-name referenced in the PROGRAM COLLATING SEQUENCE clause of the OBJECT-COMPUTER paragraph or in the COLLATING SEQUENCE phrase of a SORT or MERGE statement references a collating sequence. An alphabet-name referenced in the class condition, in the CLASS clause in the data division, in a SYMBOLIC CHARACTERS clause, or in the CODE-SET clause of a file description entry references a coded character set.Table 6, Relationship of alphabet-name to coded character set and collating sequence, indicates for each operand of the ALPHABET clause whether the alphabet-name references a coded character set, a collating sequence, or both.
Table 6 — Relationship of alphabet-name to coded character set and collating sequence

ALPHABET clause operand Coded character set Collating sequence

LOCALE Y

NATIVE Y Y

STANDARD-1 Y Y

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

298 ©ISO/IEC 2023

When the ALPHABET clause is specified:a) When the ALPHANUMERIC phrase is specified or implied, a coded character set referenced by alphabet-name-1 is an alphanumeric coded character set and a collating sequence referenced by alphabet-name-1 is an alphanumeric collating sequence.b) When the NATIONAL phrase is specified, a coded character set referenced by alphabet-name-2 is a national coded character set and a collating sequence referenced by alphabet-name-2 is a national collating sequence.c) When the STANDARD-1 phrase is specified, the referenced coded character set shall be asspecified in ISO/IEC 646 International Reference Version. When the STANDARD-2 phrase is specified, the referenced coded character set shall be as specified in ISO/IEC 646; the implementor shall specify whether the International Reference Version or a national version is referenced, and shall specify the circumstances that define which national version is referenced. The collating sequence referenced by both the STANDARD-1 and STANDARD-2 phrases shall be as defined by the order in which characters appear in ISO/IEC 646. Each character of the standard character set is associated with its corresponding character of the native alphanumeric character set. The implementor defines the correspondence between the characters of the standard character set and the characters of the native character set.d) When the NATIVE phrase is specified:1. If the ALPHANUMERIC phrase is specified or implied, the native alphanumeric coded character set and native alphanumeric collating sequence are referenced;2. If the NATIONAL phrase is specified, the native national coded character set and native national collating sequence are referenced.

STANDARD-2 Y Y

UCS-4 Y Y

UTF-8 Y

UTF-16 Y

code-name-1 Y Y

code-name-2 Y Y

literal phrase Y Y

KEY:
Y in the Coded character set column indicates that the alphabet operand in the left column references a coded
character set and a space means it does not.
Y in the Collating sequence column indicates that the alphabet operand in the left column references a collating
sequence and a space means it does not.

Table 6 — Relationship of alphabet-name to coded character set and collating sequence

ALPHABET clause operand Coded character set Collating sequence

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 299

e) When the LOCALE phrase is specified, the collating sequence identified is defined by the locale referenced by locale-name-2 when specified, otherwise by the locale that is current at the time the collating sequence is used at runtime. When LOCALE is specified in the ALPHANUMERIC phrase, an alphanumeric collating sequence is identified; when specified in the NATIONAL phrase, a national collating sequence is identified.f) When the UCS-4 phrase is specified, the coded character set referenced shall be as specified in ISO/IEC 10646 as UTF-32. Each character of UTF-32 is associated with a corresponding character of the native national character set. The implementor shall specify the correspondence between the characters of UTF-32 and the characters of the native national character set. The collating sequence referenced by the UCS-4 phrase shall be defined by the order in which characters appear in ISO/IEC 10646.g) When the UTF-8 phrase is specified, the coded character set referenced shall be as specified in ISO/IEC 10646 as UTF-8. Each character of ISO/IEC 10646 UTF-32 shall be associated with a corresponding character of the native national character set. The association is the same as the association for the UCS-32 character from which the UTF-8 character was transformed.h) When the UTF-16 phrase is specified, the coded character set referenced shall be as specified in ISO/IEC 10646 as UTF-16. Each character of ISO/IEC 10646 UTF-16 shall be associated with a corresponding character of the native national character set. The association is the same as the association for the UTF-32 character from which the UTF-16 character was transformed.i) When code-name-1 is specified, the alphanumeric coded character set and collating sequence referenced are defined by the implementor. The implementor shall specify the ordinal number of each character for use when code-name-1 references a coded character set and the collating position of each character for use when code-name-1 references a collating sequence. The implementor also shall specify the correspondence between characters of the alphanumeric coded character set specified by code-name-1 and the characters of the native alphanumeric coded character set.
 The coded character set referenced by code-name-1 is statically defined.j) When code-name-2 is specified, the national coded character set and collating sequence referenced are defined by the implementor. The implementor shall specify the ordinal number of each character for use when code-name-2 references a coded character set and the collating position of each character for use when code-name-2 references a collating sequence. The implementor also shall specify the correspondence between characters of the national coded character set specified by code-name-2 and the characters of the native national coded character set.
 The coded character set referenced by code-name-2 is statically defined.k) When literal-phrase is specified, the coded character set and collating sequence are defined according to the following rules, where the native coded character set is the type of coded character set or collating sequence being defined, either alphanumeric or national:1. The value of each literal specifies:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

300 ©ISO/IEC 2023

a. The ordinal number of a character within the native character set, if the literal is numeric. This value shall not exceed the value that represents the number of characters in the native character set.b. Otherwise, the actual character within the native character set. If the value of the literal contains multiple characters, each character in the literal, starting with the leftmost character, is assigned successive ascending positions in the collating sequence being specified.2. The order in which the literals appear in the ALPHABET clause specifies, in ascending sequence, the ordinal number of the character within the collating sequence being specified.3. Any characters of the native collating sequence that are not specified in the literal phrase shall assume a position in the collating sequence that is greater than that of the highest character specified in this literal phrase. The relative order within the set of these unspecified characters is unchanged from the native collating sequence.4. If a character code set is being specified, the implementor defines the ordinal number within the character code set being specified for each character within the native character set that is not specified by the literal-1 phrase.5. If the THROUGH phrase is specified, the set of consecutive characters in the native character set beginning with the character specified by the value of literal-1, and ending with the character specified by the value of literal-2, is assigned a successive ascending position in the collating sequence being specified. In addition, the set of consecutive characters specified by a given THROUGH phrase may specify characters of the native character set in either ascending or descending sequence.6. If the ALSO phrase is specified, the characters of the native character set specified by the value of literal-1 and literal-3 are assigned to the same ordinal position in the collating sequence being specified or in the character code set that is used to represent the data. Literal-1 is the first character in the sequence of multiple characters defined at that ordinal position. If alphabet-name-1 is referenced in a SYMBOLIC CHARACTERS clause, only literal-1 is used to represent the character in the native character set.8) The character that has the highest ordinal position in the program collating sequence is associated with the figurative constant HIGH-VALUE, except when this figurative constant is specified as a literal in the SPECIAL-NAMES paragraph. If more than one character has the highest position in the program collating sequence, the last character specified is associated with the figurative constant HIGH-VALUE.9) The character that has the lowest ordinal position in the program collating sequence is associated with the figurative constant LOW-VALUE, except when this figurative constant is specified as a literal in the SPECIAL-NAMES paragraph. If more than one character has the lowest position in the program collating sequence, the first character specified is associated with the figurative constant LOW-VALUE.10) When specified as literals in the SPECIAL-NAMES paragraph, the figurative constants HIGH-VALUE and LOW-VALUE are associated with those characters having the highest and lowest positions,

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 301

respectively, in the native national collating sequence, when the NATIONAL phrase is specified, or in the native alphanumeric collating sequence otherwise.11) When the SYMBOLIC CHARACTERS clause is specified:a) Symbolic-character-1 defines a figurative constant.b) When ALPHANUMERIC is specified or implied, the value of figurative constant symbolic-character-1 is the representation of the coded character at ordinal position integer-1 in the native alphanumeric character set or, if the IN phrase is specified, in the character set referenced by alphabet-name-3.c) When NATIONAL is specified, the value of figurative constant symbolic-character-1 is the internal representation of the character at ordinal position integer-1 in the native national character set or, if the IN phrase is specified, in the character set referenced by alphabet-name-3.12) The CLASS clause provides a means for relating a name to the specified set of characters listed in that clause. The characters specified by the values of the literals in this clause define the exclusive set of characters of which class-name-1 consists.The value of each literal specifies:a) When the literal is numeric, the ordinal number of a character within the relevant native character set, or, when the IN phrase is specified, within the character set referenced by alphabet-name-4.b) Otherwise, the actual character within the relevant native character set or, when the IN phrase is specified, within the character set referenced by alphabet-name-4. If the value of literal-5 contains multiple characters, each character in the literal is included in the set of characters identified by class-name-1.If the THROUGH phrase is specified, the contiguous characters in the native character set beginning with the character specified by the value of literal-5, and ending with the character specified by the value of literal-6, are included in the set of characters identified by class-name-1. In addition, the contiguous characters specified by a given THROUGH phrase may specify characters of the native character set in either ascending or descending sequence.13) The CURRENCY SIGN clause is used to specify a currency string that is placed into numeric-edited data items when they are used as receiving items and de-edited from the data item when it is used as a sending item that has a numeric or numeric-edited receiving item. In addition, it is used to determine which symbol shall be used in a character-string of a basic format PICTURE clause to specify the presence of this currency string. This symbol is referred to as the currency symbol.The runtime value of literal-7 is the currency string.14) If the DECIMAL-POINT IS COMMA clause is specified, the functionality of the characters used to represent the decimal separator and the grouping separator are exchanged. The rules are as follows:a) The character written in numeric literals to represent the decimal separator shall be the comma.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

302 ©ISO/IEC 2023

b) For the basic format of the PICTURE clause, the character written in character-strings, and inserted in numeric-edited items to represent the decimal separator shall be the comma.NOTE 3 For the locale format of the PICTURE clause, the character written in character-strings to represent the decimal separator is always the period. The decimal separator to be inserted will be determined from the current locale.The character written in character-strings, and inserted in numeric-edited items to represent the grouping separator shall be the period.The DECIMAL-POINT IS COMMA clause has no effect on the editing or de-editing of a data item described with the locale format of the PICTURE clause.NOTE 4 The DECIMAL-POINT IS COMMA clause is not processed until after the text manipulation stage of the compilation process and therefore does not impact literals specified in compiler directives, COPY statements, or REPLACE statements.15) The content of the data item referenced by data-name-1 specifies the position of the cursor at the beginning of the execution of an ACCEPT screen statement. This content shall be updated by the execution of a successful ACCEPT screen statement to indicate the position of the visible cursor upon termination. (See 9.2.5, Cursor locator.)16) Data-name-2 shall be updated during the execution of an ACCEPT screen statement as described in 9.2.3, CRT status.17) When ORDER TABLE is specified, ordering-name-1 shall reference a cultural ordering table that is identified by literal-9 and constructed in accordance with ISO/IEC 14651:2020, Annex A. The implementor specifies the allowable content of literal-9.NOTE 5 The default ordering table in ISO/IEC 14651:2020 is named 'ISO_14651_2020_TABLE1'. The ordering table can be tailored for specific cultures.18) If the PREFIXED phrase is specified in the DYNAMIC LENGTH STRUCTURE clause, data described with dynamic-length-structure-name-1 is prefixed by a length field. If SIGNED is specified, the length field is a signed binary field; otherwise the length field is an unsigned binary field.The length field shall be capable of supporting the following values, at minimum:DYNAMIC LENGTH STRUCTURE phrase value
SIGNED PREFIXED 2147483647 [(2 ** 31) - 1] PREFIXED 4294967295 [(2 ** 32) - 1] SIGNED SHORT PREFIXED 32767 [(2 ** 15) - 1]SHORT PREFIXED 65535 [(2 ** 16) - 1]If the implementor allows larger values, the maximum value that can be expressed in a length field associated with the SHORT PREFIXED phrase shall be expressible in a length field associated with the PREFIXED phrase.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 303

The maximum size of records described with a DYNAMIC LENGTH phrase is defined by the implementor.19) If the DELIMITED phrase is specified in the DYNAMIC LENGTH STRUCTURE clause, a delimiter shall directly follow the data described with dynamic-length-structure-name-1. The delimiter for alphanumeric dynamic-length elementary items is data of the length of an alphanumeric character in which all bit positions contain binary zeroes. The delimiter for national dynamic-length elementary items is data of the length as a national character in which all bit positions contain binary zeroes.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

304 ©ISO/IEC 2023

12.3.8 REPOSITORY paragraph

12.3.8.1 GeneralThe REPOSITORY paragraph allows specification of program prototype names, function prototype names, property-names, class names, and interface names that may be used within the scope of this environment division. It also allows declaration of intrinsic-function-names that may be used without specifying the word FUNCTION.
12.3.8.2 General format

where class-specifier is:

where interface-specifier is:

where intrinsic-function-specifier is:

where program-specifier is:

REPOSITORY.class-specifierinterface-specifierintrinsic-function-specifierprogram-specifierproperty-specifieruser-defined-function-specifier

CLASS object-class-name-1 [AS literal-1] EXPANDS object-class-name-2 USING object-class-name-3interface-name-1

 ...

INTERFACE interface-name-2 [AS literal-2] EXPANDS interface-name-3 USING object-class-name-4interface-name-4

 ...

FUNCTION { intrinsic-function-name-1 } ...ALL

 INTRINSIC

PROGRAM program-prototype-name-1 [AS literal-3]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 305

where property-specifier is:
where user-defined-function-specifier is:
12.3.8.3 Syntax rulesALL SPECIFIERS1) If any object-class-name-1, interface-name-2, program-prototype-name-1, function-prototype-name-1, intrinsic-function-name-1 or property-name-1 is specified more than once in the REPOSITORY paragraph, all the specifications for that name shall be identical.2) Literal-1, literal-2, literal-3, literal-4, and literal-5 shall be alphanumeric literals or national literals and shall be neither figurative constants nor zero-length literals.3) The EXPANDS phrase shall not be specified in the REPOSITORY paragraph of a class definition that contains a USING clause in its CLASS-ID paragraph or of an interface definition that contains a USING clause in its INTERFACE-ID paragraph.CLASS SPECIFIER4) Object-class-name-2, object-class-name-3, and interface-name-1 shall be defined in the same REPOSITORY paragraph where object-class-name-1 is defined.5) If the specified object-class-name-1 is the name of the class definition in which this REPOSITORY paragraph is specified, references to object-class-name-1 are to that class definition and this class-specifier is ignored.6) If the CLASS phrase is specified without the EXPANDS phrase:a) If literal-1 is specified, there shall be information in the external repository for the class literal-1.b) If literal-1 is not specified, there shall be information in the external repository for the class object-class-name-1.INTERFACE SPECIFIER7) Interface-name-3, object-class-name-4, and interface-name-4 shall be defined in the same REPOSITORY paragraph where interface-name-2 is defined.8) If the specified interface-name-2 is the name of the interface definition in which this REPOSITORY paragraph is specified, references to interface-name-2 are to that interface definition and this interface-specifier is ignored.

PROPERTY property-name-1 [AS literal-4]
FUNCTION function-prototype-name-1 [AS literal-5]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

306 ©ISO/IEC 2023

9) If the INTERFACE phrase is specified without the EXPANDS phrase:a) If literal-2 is specified, there shall be information in the external repository for the interface literal-2.b) If literal-2 is not specified, there shall be information in the external repository for the interface interface-name-2.FUNCTION SPECIFIER10) Literal-5, if specified, or function-prototype-name-1, if literal-5 is not specified, shall be one of the following:— the name of a function prototype specified in this compilation group— the name of a function definition specified previously in this compilation group— the name of a function for which information exists in the external repository.11) If the specified function-prototype-name-1 is the name of the function definition in which this REPOSITORY paragraph is specified, references to function-prototype-name-1 are to that function definition and this function-specifier is ignored. 12) Intrinsic-function-name-1 shall not be specified as a user-defined word within the scope of this REPOSITORY paragraph.13) If ALL is specified in the intrinsic format of the function-specifier, none of the names of the intrinsic functions may be specified as a user-defined word within the scope of this REPOSITORY paragraph.PROGRAM SPECIFIER14) Literal-3, if specified, or program-prototype-name-1, if literal-3 is not specified, shall be one of the following:— the name of a program prototype specified in this compilation group— the name of a program definition specified previously in this compilation group— the name of a program for which information exists in the external repository.15) If the specified program-prototype-name-1 is the name of the program definition in which this REPOSITORY paragraph is specified or the name of a containing program definition, references to program-prototype-name-1 are to the named program definition and this program-specifier is ignored.PROPERTY SPECIFIER16) If the PROPERTY phrase is specified, a) If literal-4 is specified, there shall be information in the external repository for the property literal-5 that is part of one of the classes or interfaces that are declared in this REPOSITORY paragraph.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 307

b) If literal-4 is not specified, there shall be information in the external repository for the property property-name-1 that is part of one of the classes or interfaces that are declared in this REPOSITORY paragraph.
12.3.8.4 General rules1) Object-class-name-1 is the name of a class that may be used throughout the scope of the containing environment division.If object-class-name-1 is a class described with the USING phrase, object-class-name-1 may be specified only in the REPOSITORY paragraph.2) If the AS phrase is specified, literal-1, literal-2, literal-3, or literal-5 is the externalized name by which the class, interface, function, or program, respectively, is known to the operating environment. Literal-5 is the externalized name known to the operating environment for a method that implements the named property. The implementor shall specify when the AS phrase is required.3) Object-class-name-3 and interface-name-1 are actual parameters for the parameterized class referenced by object-class-name-2.4) Object-class-name-4 and interface-name-4 are actual parameters for the parameterized interface referenced by interface-name-3.5) If the EXPANDS phrase is specified in a class-specifier, a class object-class-name-1 is created from the parameterized class object-class-name-2. The number of parameters in the USING phrase of the EXPANDS phrase of the class-specifier shall be the same as the number of parameters in the USING clause of the CLASS-ID paragraph of object-class-name-2. The interface for class-name-1 is the interface specified for object-class-name-2 with the parameters of object-class-name-2 replaced by the parameters specified in the class-specifier.The class object-class-name-1 is created from the parameterized class object-class-name-2 by replacing each specification of the formal parameter by the corresponding actual parameter.6) The compiler shall use the information specified for object-class-name-1 together with the external repository to determine the details of the class that is to be used. It is implementor-defined how the information in the class specifier and the external repository are used to determine which class is used.7) Interface-name-2 is the name of an interface that may be used throughout the scope of the containing environment division.If interface-name-1 is an interface described with the USING phrase, interface-name-1 may be specified only in the REPOSITORY paragraph.8) If the EXPANDS phrase is specified in an interface-specifier, an interface interface-name-2 is created from the parameterized interface interface-name-3. The number of parameters in the USING phrase of the EXPANDS phrase of the interface-specifier shall be the same as the number of parameters in the USING phrase of the INTERFACE-ID paragraph of interface-name-3. The interface for interface-

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

308 ©ISO/IEC 2023

name-2 is the interface specified for interface-name-3 with the parameters of interface-name-3 replaced by the parameters specified in the interface-specifier.The interface interface-name-2 is created from the parameterized interface interface-name-3 by replacing each specification of the formal parameter by the corresponding actual parameter.9) The compiler shall use the information specified for interface-name-2 together with the external repository to determine the details of the interface that is to be used. It is implementor-defined how the information in the interface specifier and the external repository are used to determine which interface is used.10) Program-prototype-name-1 is the name of a program prototype that may be used throughout the scope of the containing environment division. The details for calling a program via this program prototype are obtained as follows:a) if the externalized name of the program prototype is the externalized name of a program definition specified previously in the same compilation group, the details are taken from that program definition, which is the program that will be called, and the details in the external repository are ignored; otherwise,NOTE 1 Literal-3, if specified, is the externalized name of the program prototype; otherwise, the externalized name is program-prototype-name-1.b) if the externalized name of the program prototype is the externalized name of a program prototype definition specified in the same compilation group, the details are taken from that program prototype definition and the details in the external repository are ignored. The program that will be called is the one with the same externalized name as the externalized name of the program prototype; otherwise,c) the details are taken from the external repository for the program with the same name as the externalized name of the program prototype. That program is the one that will be called.11) Function-prototype-name-1 is the name of a function prototype that may be used throughout the scope of the containing environment division. The details for activating a function via this function prototype are obtained as follows:a) if the externalized name of the function prototype is the externalized name of a function definition specified previously in the same compilation group, the details are taken from that function definition, which is the function that will be activated, and the details in the external repository are ignored; otherwise,NOTE 2 Literal-5, if specified, is the externalized name of the function prototype; otherwise, the externalized name is function-prototype-name-1.b) if the externalized name of the function prototype is the externalized name of a function prototype definition specified in the same compilation group, the details are taken from that function prototype definition and the details in the external repository are ignored. The function that will be activated is the one with the same externalized name as the externalized name of the function prototype; otherwise,

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 309

c) the details are taken from the external repository for the function with the same name as the externalized name of the function prototype. That function is the one that will be activated.12) Within the scope of the containing environment division, a reference to function-prototype-name-1 is a reference to a user-defined function, and not to an intrinsic function of the same name.13) Within the scope of the containing environment division, intrinsic-function-name-1 may be specified as a function-identifier without being preceded by the keyword FUNCTION, unless specific rules require the use of the keyword FUNCTION.14) If ALL is specified in the intrinsic format of the function-specifier, it is as if each of the intrinsic-function-names defined in 8.11, Intrinsic function names, except for those that may have been undefined by the COBOL-WORDS directive, were specified. If an intrinsic name has been replaced using the SUBSTITUTE option of the COBOL-WORDS directive, the content of literal-4 of the COBOL-WORDS directive shall replace the original intrinsic name in the list defined in 8.11, Intrinsic function names. If an intrinsic name has been added using the EQUATE option of the COBOL-WORDS directive, the content of literal-2 of the COBOL-WORDS directive shall be added to the list of intrinsic function names in the list defined in 8.11, Intrinsic function names.15) Property-name-1 is the name of an object property that may be used throughout the scope of the containing environment division.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

310 ©ISO/IEC 2023

12.4 Input-output section

12.4.1 GeneralThe input-output section deals with the information needed to control transmission and handling of data between external media and a runtime element.
12.4.2 General format

12.4.3 Syntax rule1) The input-output section may be specified in a program definition or a function definition. Within a class definition, the input-output section may be specified only in a factory definition or instance definition, but not in a method definition. The input-output section shall not be specified within an interface definition.

INPUT-OUTPUT SECTION.[file-control-paragraph][i-o-control-paragraph]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 311

12.4.4 FILE-CONTROL paragraph

12.4.4.1 GeneralThe FILE-CONTROL paragraph specifies file-related information.
12.4.4.2 General format

12.4.5 File control entryThe file control entry declares the relevant physical attributes of a file.
FILE-CONTROL. [file-control-entry] ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

312 ©ISO/IEC 2023

12.4.5.1 General formatsFormat 1 (indexed):
SELECT [OPTIONAL] file-name-1

ASSIGN TO device-name-1literal-1

 ... [USING data-name-1] USING data-name-1

ACCESS MODE IS DYNAMICRANDOMSEQUENTIAL

ALTERNATE RECORD KEY IS data-name-2record-key-name-1 SOURCE IS { data-name-3 }

[WITH DUPLICATES] [SUPPRESS WHEN literal-2]
 collating-sequence-clause ...FILE STATUS IS data-name-4
LOCK MODE IS MANUALAUTOMATIC

 WITH LOCK ON [MULTIPLE] RECORDRECORDS

ORGANIZATION IS INDEXED
RECORD KEY IS data-name-5record-key-name-2 SOURCE IS { data-name-6 } ...

RESERVE integer-1 AREAAREAS
SHARING WITH ALL OTHERNO OTHERREAD ONLY

 .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 313

Format 2 (relative):
SELECT [OPTIONAL] file-name-1

ASSIGN TO device-name-1literal-1

 ... [USING data-name-1] USING data-name-1

ACCESS MODE IS DYNAMICRANDOMSEQUENTIAL

FILE STATUS IS data-name-4
LOCK MODE IS MANUALAUTOMATIC

 WITH LOCK ON [MULTIPLE] RECORDRECORDS

ORGANIZATION IS RELATIVERELATIVE KEY IS data-name-7
RESERVE integer-1 AREAAREAS
SHARING WITH ALL OTHERNO OTHERREAD ONLY

 .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

314 ©ISO/IEC 2023

Format 3 (sequential):

Format 4 (sort-merge):

SELECT [OPTIONAL] file-name-1
ASSIGN TO device-name-1literal-1

 ... [USING data-name-1] USING data-name-1

ACCESS MODE IS SEQUENTIAL FILE STATUS IS data-name-4
LOCK MODE IS MANUALAUTOMATIC

 WITH LOCK ON RECORDRECORDS

 [ORGANIZATION IS] LINERECORD

 SEQUENTIAL

RECORD DELIMITER IS STANDARD-1feature-name-1

RESERVE integer-1 AREAAREAS
SHARING WITH ALL OTHERNO OTHERREAD ONLY

 .

SELECT [OPTIONAL] file-name-1
ASSIGN TO device-name-1literal-1

 ... [USING data-name-1] USING data-name-1

 [ORGANIZATION IS] SEQUENTIAL .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 315

where collating-sequence-clause is described in 12.4.5.7, COLLATING SEQUENCE clause.
12.4.5.2 Syntax rulesALL FORMATS1) The SELECT clause shall be specified first in the file control entry. The clauses that follow the SELECT clause may appear in any order.2) A given file-name may be specified in only one SELECT clause within a factory, function, object, or program.3) For each file-name specified in a SELECT clause, there shall be a file description entry or a sort-merge file description entry in the file section of the factory, function, object, or program in which the SELECT clause is specified.4) Literal-1 shall be an alphanumeric literal and shall be neither a figurative constant nor a zero-length literal.5) The meaning and rules for the allowable specification of device-name-1 and the value of literal-1 are defined by the implementor.6) The allowable and required syntactical combinations of data-name-1 with device-name-1 and of data-name-1 with literal-1 are defined by the implementor.7) Data-name-1 shall reference an alphanumeric data item and shall not be subordinate to the file description entry for file-name-1.FORMAT 18) Format 1 shall be specified only for an indexed file. The associated file description entry shall not be a sort-merge file description entry.FORMAT 29) Format 2 shall be specified only for a relative file. The associated file description entry shall not be a sort-merge file description entry.10) The RELATIVE clause shall be specified if the DYNAMIC or RANDOM phrase of the ACCESS clause is specified.FORMAT 311) Format 3 shall be specified only for a sequential file or a report file. The associated file description entry shall not be a sort-merge file description entry.12) If the LINE SEQUENTIAL phrase of the ORGANIZATION clause is specified, the RESERVE clause shall not be specified.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

316 ©ISO/IEC 2023

FORMAT 413) Format 4 shall be specified only for a sort-merge file. The associated file description entry shall be a sort-merge file description entry.
12.4.5.3 General rulesALL FORMATS1) If the file connector referenced by file-name-1 is an external file connector (see 13.18.22, EXTERNAL clause), all file control entries in the run unit that reference this file connector shall have:a) The same specification for the OPTIONAL phrase.b) A consistent specification for data-name-1, device-name-1, and literal-1 in the ASSIGN clause. The implementor shall specify the consistency rules for data-name-1, device-name-1, and literal-1.c) Either the STANDARD-1 phrase or a consistent value of feature-name-1 in the RECORD DELIMITER clause. The implementor shall specify the consistency rules for feature-name-1.d) The same value for integer-1 in the RESERVE clause.e) The same organization.f) The same access mode.g) The same specification of COLLATING SEQUENCE clauses.h) The same specification of the RELATIVE KEY clause, where data-name-7 references an external data item.i) The same specification of the FILE STATUS clause, where data-name-4 shall reference the same corresponding external data item.j) The same data description entry for data-name-5 and each data-name-6 as well as their relative location within the associated record.k) The same data description entry for data-name-2 and each data-name-3 as well as their relative location within the associated record, the same number of alternate record keys, the same SUPPRESS WHEN phrase, and the same DUPLICATES phrase.l) The same sharing mode.m) The same lock mode and the same choice of either single record locking or multiple record locking.NOTE As described in 13.4.5, File description entry, General rule 2, the separate data item referenced by the LINAGE clauses is required to be the same separate corresponding external data item.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 317

2) The OPTIONAL phrase applies only to files opened in the input, I-O, or extend mode. Its specification is required for physical files that are not necessarily present each time the runtime element is executed.3) The ASSIGN clause specifies the association of the file connector referenced by file-name-1 to a physical file identified by device-name-1, literal-1, or the content of the data item referenced by data-name-1. The association occurs at the time of execution of an OPEN, SORT, or MERGE statement that referenced file-name-1, according to the following rules:a) When the TO phrase of the ASSIGN clause is specified and the USING phrase is omitted, the file connector referenced by file-name-1 is associated with a physical file identified by the specification of device-name-1 or the value of literal-1 in the source unit that specifies the OPEN, SORT, or MERGE statement.b) When the USING phrase of the ASSIGN clause is specified, the file connector referenced by file-name-1 is associated with a physical file identified by the content of the data item referenced by data-name-1 in the runtime element that executes the OPEN, SORT, or MERGE statement.If the association cannot be made because the content of the data item referenced by data-name-1 is not consistent with the specification for device-name-1 or literal-1, the OPEN, SORT, or MERGE statement is unsuccessful.4) When the USING phrase is specified, the meaning and rules for the allowable content of the data item referenced by data-name-1 are defined by the implementor. The consistency rules, if any, that apply between the content of the data item referenced by data-name-1 and either the specification of device-name-1 or the value of literal-1 are defined by the implementor.FORMAT 15) The indexed format defines a file connector for an indexed file.6) If no COLLATING SEQUENCE clause is specified:a) the collating sequence for alphanumeric record keys, both primary and alternate, is the native alphanumeric collating sequence;b) the collating sequence for national record keys, both primary and alternate, is the native national collating sequence.FORMAT 27) The relative format defines a file connector for a relative file.FORMAT 38) The sequential format defines a file connector for a sequential file.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

318 ©ISO/IEC 2023

FORMAT 49) The sort-merge format defines a file connector for a sort-merge file.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 319

12.4.5.4 ACCESS MODE clause

12.4.5.5 GeneralThe ACCESS MODE clause specifies the order in which records are to be accessed in the file.
12.4.5.5.1 General format

12.4.5.5.2 Syntax rules1) The RANDOM clause shall not be specified for file-names specified in the USING or GIVING phrase of a SORT or MERGE statement.2) The DYNAMIC and RANDOM phrases shall not be specified for a sequential file.
12.4.5.5.3 General rules1) If the ACCESS MODE clause is not specified, sequential access is assumed.2) If the access mode is sequential, records in the file are accessed in the sequence dictated by the file organization:a) For sequential files this sequence is specified by predecessor-successor record relationships established by the execution of WRITE statements when the physical file is created or extended.b) For relative files this sequence is the order of ascending relative record numbers of existing records in the physical file.c) For indexed files this sequence is ascending within a given key of reference according to the collating sequence for that key.3) If the access mode is random:a) For a relative file, the value of a relative key data item indicates the record to be accessed. b) For an indexed file, the value of a record key data item indicates the record to be accessed.4) If the access mode is dynamic, records in the file may be accessed sequentially, randomly, or both.

ACCESS MODE IS SEQUENTIALRANDOMDYNAMIC

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

320 ©ISO/IEC 2023

12.4.5.6 ALTERNATE RECORD KEY clause

12.4.5.6.1 GeneralThe ALTERNATE RECORD KEY clause specifies an alternate record key access path to the records in an indexed file.
12.4.5.6.2 General format

12.4.5.6.3 Syntax rules1) Data-name-1 and data-name-2 shall not be subject to any OCCURS clauses.2) Data-name-1 and data-name-2 shall be defined as a data item of category alphanumeric or national within a record description entry associated with the file-name to which the ALTERNATE RECORD KEY clause is subordinate. All occurrences of data-name-2 shall be of the same category.3) Data-name-1 and data-name-2 shall not reference a variable-length data item.4) Data-name-1 shall not reference an item whose leftmost byte position corresponds to the leftmost byte position of the prime record key, or of another alternate record key. This restriction does not apply in the case where either key is specified using the SOURCE phrase.5) If the indexed file contains variable-length records, each data-name-1 and data-name-2 shall be contained within the first x bytes of the record, where x equals the minimum record size specified for the file. (See 13.18.43, RECORD clause.)6) Record-key-name-1 has the class and category of data-name-2.7) Literal-1 shall be an alphanumeric literal, a national literal, or a figurative constant, and shall be of the same category as data-name-1 or data-name-2. If ALL literal is specified, the literal shall be one character long.
12.4.5.6.4 General rules1) An ALTERNATE RECORD KEY clause specifies an alternate record key for the file with which this clause is associated.2) Record-key-name-1 defines a record key consisting of the concatenation of all occurrences of data-name-2 in the order specified.

ALTERNATE RECORD KEY IS data-name-1record-key-name-1 SOURCE IS { data-name-2 } ...

[WITH DUPLICATES] [SUPPRESS WHEN literal-1]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 321

3) The data description of data-name-1 or data-name-2 as well as their relative location within a record shall be the same as that used when the physical file was created. The number of alternate record keys for the file shall also be the same as that used when the physical file was created.4) The DUPLICATES phrase specifies that the value of the associated alternate record key may be equal to the value of the same alternate record key in another record in the physical file. If the DUPLICATES phrase is not specified, the value of the associated alternate record key shall not be equal to the value of the same alternate record key in another record in the physical file. The equality or inequality is based on the collating sequence used for the file according to the rules for a relation condition.5) The identical byte positions referenced by data-name-1 or data-name-2 in any one record description entry are implicitly referenced as keys for all other record description entries of that file.6) Literal-1 establishes the key suppression value for this alternate record key for WRITE and REWRITE statements. Alternate record key suppression specifies that an alternate record key access path to a particular record shall not be provided when the value of data-name-1 or record-key-name-1 in that record is equal to literal-1.NOTE The suppression does not impact READ and START although the suppressed records will not be processed by these statements. It is as if they did not exist.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

322 ©ISO/IEC 2023

12.4.5.7 COLLATING SEQUENCE clause

12.4.5.7.1 GeneralThe COLLATING SEQUENCE clause specifies the collating sequence to be used for the ordering of record keys and alternate record keys for an indexed file. Multiple collating sequences may be used by specifying a collating sequence clause unique to the primary key or to specific alternate record keys.
12.4.5.7.2 General formatsFormat 1 (file-level)

Format 2 (key-level)

12.4.5.7.3 Syntax rulesFORMAT 11) Alphabet-name-1 shall reference an alphabet that defines an alphanumeric collating sequence.2) Alphabet-name-2 shall reference an alphabet that defines a national collating sequence.3) Only one file-level format COLLATING SEQUENCE clause may be specified in one file control entry.FORMAT 24) Data-name-1 shall be a name specified as the data-name in an ALTERNATE RECORD KEY clause or in a RECORD KEY clause in the file control entry.5) Record-key-name-1 shall be a name specified as a record-key-name in an ALTERNATE RECORD KEY clause or in a RECORD KEY clause in the file control entry.6) Data-name-1 and record-key-name-1 shall not be subscripted.7) When the class of data-name-1 or record-key-name-1 is national, alphabet-name-3 shall reference an alphabet that defines a national collating sequence; otherwise, alphabet-name-3 shall reference an alphabet that defines an alphanumeric collating sequence.

COLLATING SEQUENCE IS alphabet-name-1 [alphabet-name-2]FOR ALPHANUMERIC IS alphabet-name-1FOR NATIONAL IS alphabet-name-2

COLLATING SEQUENCE OF data-name-1record-key-name-1

 ... IS alphabet-name-3

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 323

8) Neither data-name-1 nor record-key-name-1 shall be specified in more than one COLLATING SEQUENCE clause.
12.4.5.7.4 General rulesALL FORMATS1) Each collating sequence is a fixed file attribute and the collating sequence is set upon the successful execution of an OPEN statement that creates the physical file. The collating sequence used is the one that applies as specified in the following General rules.FORMAT 12) An alphanumeric collating sequence referenced by alphabet-name-1 applies to any record keys of class alphanumeric, whether primary or alternate, not specified in a key-level format of another COLLATING SEQUENCE clause in the file control entry.3) A national collating sequence referenced by alphabet-name-2 applies to any record keys of class national, whether primary or alternate, not specified in a key-level format of another COLLATING SEQUENCE clause in the file control entry.4) If alphabet-name-1 is not specified in the file control entry, the native alphanumeric collating sequence applies to any record keys of class alphanumeric, whether primary or alternate, not specified in a key-level format of another COLLATING SEQUENCE clause.5) If alphabet-name-2 is not specified in the file control entry, the native national collating sequence applies to any record keys of class national, whether primary or alternate, not specified in a key-level format of another COLLATING SEQUENCE clause.FORMAT 26) Alphabet-name-3 applies to record keys identified by data-name-1 or record-key-name-1.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

324 ©ISO/IEC 2023

12.4.5.8 FILE STATUS clause

12.4.5.8.1 GeneralThe FILE STATUS clause specifies a data item that contains the status of an input-output operation.
12.4.5.8.2 General format

12.4.5.8.3 Syntax rules1) Data-name-1 shall not be subject to any OCCURS clauses.2) Data-name-1 shall reference a two-character data item of the category alphanumeric, defined in the working-storage, local-storage, or linkage section.3) Data-name-1 shall not reference a dynamic-length elementary item or a variable-length group.4) Data-name-1 shall not be subject to a BASED clause in its data description.
12.4.5.8.4 General rule1) If the FILE STATUS clause is specified, the data item referenced by data-name-1 is updated to contain the value of the I-O status for the file connector referenced by the subject of the entry when the I-O status associated with that file connector is updated as a result of an input-output statement. A list of the possible I-O status values is contained in 9.1.13, I-O status.NOTE 1 In the case where a file-name is global and data-name-1 is not, data-name-1 is updated by references to file-name in contained programs even though data-name-1 is a local name.NOTE 2 While a programmer can alter the value of the FILE STATUS data item, this does not alter the state of the file. Consequently for example, if a sequential read produced the file status ’10’ and the value ’00’ was then moved to the file status data item, a second read would not be successful.

FILE STATUS IS data-name-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 325

12.4.5.9 LOCK MODE clause

12.4.5.9.1 GeneralThe LOCK MODE clause indicates the type of record locking for a shared file.
12.4.5.9.2 General format

12.4.5.9.3 Syntax rules1) This clause shall not be specified for a file that is the subject of an APPLY COMMIT clause for which there is an implicit LOCK MODE IS AUTOMATIC WITH LOCK ON MULTIPLE RECORDS applied automatically, including for sequential files.2) The MULTIPLE phrase shall not be specified for a file described with sequential organization or sequential access mode.
12.4.5.9.4 General rules1) If the LOCK MODE clause is omitted from a file control entry,a) If there is a SHARING clause in that file control entry, no record locks are set by the execution of I-O statements through the associated file connector.b) If there is no SHARING clause in that file control entry,1. If an OPEN statement for the associated file connector has a SHARING phrase, no record locks are set by the execution of I-O statements for that opening of the associated file connector.2. If an OPEN statement for the associated file connector has no SHARING phrase, the type of record locking for that opening of a shared file associated with that file connector is defined by the implementor. The implementor may define the default in terms of standard LOCK MODE clause syntax, specify another type of record locking as the default, or specify that the default is no record locking. If the default is defined in terms of standard syntax, then the semantics shall be as if that clause had been specified in the file control entry.2) If the processor does not support record locking, record locks have no effect for the associated file connector.3) If a physical file is open in the sharing with no other mode, the LOCK MODE clause has no effect. Otherwise, the LOCK MODE clause has the effects described in the General rules that follow.4) If the AUTOMATIC phrase is specified, the lock mode is automatic. Records are locked when any READ statement is executed.

LOCK MODE IS MANUALAUTOMATIC

 WITH LOCK ON [MULTIPLE] RECORDRECORDS

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

326 ©ISO/IEC 2023

5) If the MANUAL phrase is specified, the lock mode is manual. Records locks are obtained only when the LOCK phrase is explicitly specified on an I-O statement.6) Single record locking is specified explicitly by the LOCK ON phrase without the MULTIPLE phrase and implicitly when the LOCK MODE clause is specified with the LOCK ON phrase omitted. Single record locking allows only one record of a file to be locked at a given time through a single file connector. Execution of any I-O statement except START releases any previously locked record in that file for that file connector. Details of record locking are specified in 9.1.16, Record locking.7) If the MULTIPLE phrase is specified in the LOCK ON phrase, then multiple record locking is said to have been specified and a file connector is permitted to have more than one record of a file locked. A file connector that has specified multiple record locking for a file may hold a number of record locks for that file simultaneously. This prevents other file connectors from accessing any member of the set of locked records, but will not deny them access to records that are not locked. The implementor shall specify the maximum number of record locks that may be held by a file connector; that maximum shall be at least 15. The implementor shall specify the maximum number of record locks that may be held by a run unit; that maximum shall be at least 255. Any I-O statement that attempts to obtain a record lock that would exceed either limit is unsuccessful and receives an I-O status that indicates that condition. Details of record locking are specified in 9.1.16, Record locking.8) The setting of a record lock is part of the operation of an I-O statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 327

12.4.5.10 ORGANIZATION clause

12.4.5.10.1 GeneralThe ORGANIZATION clause specifies the logical structure of a file.
12.4.5.10.2 General format

12.4.5.10.3 General rules1) The ORGANIZATION clause specifies the logical structure of a file. The file organization is established at the time a physical file is created and cannot subsequently be changed.2) The LINE SEQUENTIAL phrase specifies that the file organization is line sequential. Line sequential organization is a permanent logical file structure in which a record is identified by a predecessor-successor relationship established when the record is placed into the file. Each record in a line sequential file is terminated by an implementor-defined line delimiter. The range of allowable characters in a line sequential file is implementor-defined.3) The RECORD SEQUENTIAL phrase specifies that the file organization is record sequential. Record sequential organization is a permanent logical file structure in which a record is identified by a predecessor-successor relationship established when the record is placed into the file. The length of each record is determined by any information the implementor may add to the record on the physical storage medium (such as record length headers). The length of the record used by the COBOL programmer does not reflect these additions.4) The RELATIVE phrase specifies that the file organization is relative. Relative organization is a permanent logical file structure in which each record is uniquely identified by an integer value greater than zero, that specifies the record’s logical ordinal position in the file.5) The INDEXED phrase specifies that the file organization is indexed. Indexed organization is a permanent logical file structure in which each record is identified by the value of one or more keys within that record.6) When the ORGANIZATION clause is not specified, sequential organization with the RECORD SEQUENTIAL phrase is implied.

[ORGANIZATION IS] LINERECORD

 SEQUENTIALRELATIVEINDEXED

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

328 ©ISO/IEC 2023

12.4.5.11 RECORD DELIMITER clause

12.4.5.11.1 GeneralThe RECORD DELIMITER clause indicates the method of determining the length of a variable-length record on the external medium.
12.4.5.11.2 General format

12.4.5.11.3 Syntax rules1) The RECORD DELIMITER clause may be specified only for variable-length records.NOTE There are three ways variable-length records can be specified:The RECORD clause is not specified and the implementor has specified that variable-length records are obtained in this circumstance.The RECORD IS VARYING clause is specified.The fixed-or-variable-length format RECORD clause is specified and the implementor has specified that variable-length records are obtained in this circumstance.2) The implementor shall specify the names available for use as feature-name-1.
12.4.5.11.4 General rules1) The RECORD DELIMITER clause indicates the method of determining the length of a variable-length record on the external medium. Any method used shall not be reflected in the record area or the record size used within the function, method, or program.2) If STANDARD-1 is specified, the external medium shall be a tape drive.3) If STANDARD-1 is specified, the method used for determining the length of a variable-length record shall be that specified in ISO/IEC 1001:2012, 7.1.2.4) If feature-name-1 is specified, the method used for determining the length of a variable-length record is that associated with feature-name-1 by the implementor.5) If the RECORD DELIMITER clause is not specified, the method used for determining the length of a variable-length record is specified by the implementor.6) At the time of a successful execution of an OPEN statement, the record delimiter is the one specified in the RECORD DELIMITER clause in the file control entry associated with the file-name specified in the OPEN statement.

RECORD DELIMITER IS STANDARD-1feature-name-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 329

12.4.5.12 RECORD KEY clause

12.4.5.12.1 GeneralThe RECORD KEY clause specifies the prime record key access path to the records in an indexed file.
12.4.5.12.2 General format

12.4.5.12.3 Syntax rules1) Data-name-1 and data-name-2 shall not be subject to any OCCURS clauses.2) Data-name-1 and data-name-2 shall reference a data item of category alphanumeric or category national within a record description entry associated with the file-name specified in this file control entry. All occurrences of data-name-2 shall be of the same category.3) Data-name-1 and data-name-2 shall not reference a variable-length data item.4) If the indexed file contains variable-length records, data-name-1 and each data-name-2 shall be contained within the first n bytes of the record, where n equals the minimum record size specified for the file. (See 13.18.43, RECORD clause.)5) Record-key-name-1 has the class and category of data-name-2.
12.4.5.12.4 General rules1) The RECORD KEY clause specifies the prime record key for the file that is the subject of the entry. The value of the associated record key shall not be equal to the value of the same record key in another record in the file. The equality or inequality is based on the collating sequence used for the file according to the rules for a relation condition.2) Record-key-name-1 defines a record key consisting of the concatenation of all occurrences of data-name-2 in the order specified.3) The data description of data-name-1 or data-name-2 as well as their relative location within a record shall be the same as that used when the file was created.4) If the file has more than one record description entry, data-name-1 or data-name-2 need only be described in one of these record description entries. The identical byte positions referenced by data-name-1 or data-name-2 in any one record description entry are implicitly referenced as keys for all other record description entries of that file.

RECORD KEY IS data-name-1record-key-name-1 SOURCE IS { data-name-2 } ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

330 ©ISO/IEC 2023

12.4.5.13 RELATIVE KEY clause

12.4.5.13.1 GeneralThe RELATIVE KEY clause identifies the data item that will contain the relative record number for accessing a relative file.
12.4.5.13.2 General format

12.4.5.13.3 Syntax rules1) Data-name-1 shall not be subject to any OCCURS clauses.2) Data-name-1 shall reference an unsigned integer data item whose description does not contain the picture symbol 'P'.3) Data-name-1 shall not be defined in a record description entry subordinate to the associated file-name.
12.4.5.13.4 General rules1) All records stored in a relative file are uniquely identified by relative record numbers. The relative record number of a given record specifies the record's logical ordinal position in the file. The first logical record has a relative record number of 1, and subsequent logical records have relative record numbers of 2, 3, 4,2) The relative key data item associated with the execution of an input-output statement is the data item referenced by data-name-1; data-name-1 is used to communicate a relative record number between the user and the mass storage control system.

RELATIVE KEY IS data-name-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 331

12.4.5.14 RESERVE clause

12.4.5.14.1 GeneralThe RESERVE clause allows the user to specify the number of input-output areas allocated.
12.4.5.14.2 General format

12.4.5.14.3 General rule1) If the RESERVE clause is specified, the number of input-output areas allocated is equal to the value of integer-1. If the RESERVE clause is not specified, the number of input-output areas allocated is specified by the implementor.

RESERVE integer-1 AREAAREAS

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

332 ©ISO/IEC 2023

12.4.5.15 SHARING clause

12.4.5.15.1 GeneralThe SHARING clause indicates that a file is to participate in file sharing and record locking. It specifies the degree of file sharing (or non-sharing) to be permitted for a file and whether record locks have an effect.
12.4.5.15.2 General format

12.4.5.15.3 General rule1) The SHARING clause specifies the sharing mode to be used for the file unless it is overridden by the SHARING phrase of the OPEN statement. This clause also specifies whether record locks have an effect. Additional details are specified in 9.1.15, Sharing mode.

SHARING WITH ALL OTHERNO OTHERREAD ONLY

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 333

12.4.6 I-O-CONTROL paragraph

12.4.6.1 GeneralThe I-O-CONTROL paragraph specifies which files and data-items are to be subject to commit and rollback. It also specifies that memory areas associated with different files are to be shared during file processing, record processing, or sort-merge processing.
12.4.6.2 General format

where apply-commit-clause and same-clause are shown below. The apply-commit and same clauses may be specified in any order.
12.4.6.3 APPLY COMMIT clause

12.4.6.3.1 GeneralThe APPLY COMMIT clause specifies which files and data-items are to be subject to COMMIT and ROLLBACK.
12.4.6.3.2 General format

12.4.6.3.3 Syntax rules1) File-name-1 shall be specified in the FILE-CONTROL paragraph of the source element that contains this clause.2) File-name-1 shall not represent a sort-merge file, nor a file used by report writer.3) Multiple instances of Identifier-1 shall represent different non-overlapping 01 or 77 level data-items in the linkage, working-storage and local-storage sections. They shall not be reference-modified.4) At least one file or data-item shall be specified.5) This clause shall not be specified in a recursive source element.6) This clause shall not be specified in a class, factory, or interface definition.7) APPLY COMMIT clauses shall not include data items containing object-reference data items.

I-O-CONTROL . [[apply-commit-clause] .] same-clause

APPLY COMMIT ON file-name-1 identifier-1 ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

334 ©ISO/IEC 2023

8) Where there is a dependency of one data item upon another, the 01 or 77 level data items that contain or refer to them shall each either or neither be specified in the list of identifiers, or have been specified in identifiers already subject to the same or another APPLY COMMIT clause.9) When file descriptions are subject to an APPLY COMMIT clause, the file status data items and data-items specified in the linage or record clauses of those file descriptions are automatically subject to the APPLY COMMIT clause for the file connectors, and they shall only be specified in the linkage, working-storage or local-storage sections, or in the case of the record clause also in the file section.10) No data items referenced by the FILE STATUS clause, the LINAGE clause, the RECORD clause, or separately specified in the APPLY COMMIT clause shall be subject to a BASED clause.11) Where a file or record area is declared with the GLOBAL clause, it may only be specified in the APPLY COMMIT clause of the same source element.
12.4.6.3.4 General rules1) This clause specifies that the files and data-items listed are to be subject to the commit and rollback facility.2) If the same file connector is specified in more than one runtime element within the run unit, then all or none of the runtime elements shall have an associated APPLY COMMIT clause in effect for that file connector and that file connector shall be an external file connector.3) If a runtime element that contains an APPLY COMMIT clause is attempted to be activated under the control of a recursive runtime element, then the EC-FLOW-APPLY exception condition is set to exist.4) If a runtime element that contains an APPLY COMMIT clause is attempted to be invoked under the control of a file sort or a merge, then the EC-FLOW-APPLY exception condition is set to exist.5) An APPLY COMMIT clause is active when the runtime element in which it is contained has been activated and, in the case of canceled runtime elements and exited initial programs, has not been deactivated by a COMMIT or ROLLBACK statement.6) If an attempt is made to change the address of a data item containing a data-item subject to an APPLY COMMIT clause, the EC-FLOW-APPLY-COMMIT exception condition is set to exist. The ability to detect this is processor dependent.NOTE 1 This will prevent the situation where a data item subject to the APPLY COMMIT clause is passed to a called program, which doesn't contain an APPLY COMMIT clause, which then attempts to change the address of that data item before then calling another program with that changed linkage address that does contain an APPLY COMMIT clause and attempts to access that data item.NOTE 2 In the event that it is not possible to detect this situation, it is the programmer’s responsibility to ensure that linkage passed between multiple source elements doesn’t have its address changed between source elements that contain the APPLY COMMIT clause by a source element that doesn’t have an APPLY COMMIT clause for the same data items.NOTE 3 Rather than pass data items subject to APPLY COMMIT statements in linkage, such data items can be defined as external, which would protect them from inadvertent addressing changes.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 335

12.4.6.4 SAME clause

12.4.6.4.1 GeneralThe SAME clause specifies files for which memory areas are to be shared during file processing, record processing, or sort-merge processing.
12.4.6.4.2 General formatsFormat 1 (file-area):
Format 2 (record-area):
Format 3 (sort-merge-area):

12.4.6.4.3 Syntax rules1) SORT and SORT-MERGE are equivalent.2) File-name-1 and file-name-2 shall be specified in the FILE-CONTROL paragraph of the source element that contains this SAME clause.3) File-name-1 and file-name-2 shall not reference an external file connector.4) The files specified in a given SAME clause need not all have the same organization or access.5) A given file-name that represents a report file may be specified in one file-area format SAME clause and shall not be specified in a record-area format or sort-merge-area format SAME clause.6) A given file-name that represents a sort or merge file may be specified in one record-area format SAME clause and in one sort-merge-area SAME clause, and shall not be specified in a file-area format SAME clause.7) A given file-name that represents a file other than a report file or a sort or merge file may be specified in one file-area format, in one record-area format, and in one or more sort-merge-area format SAME clauses.8) At least one file-name specified in a sort-merge-area format SAME clause shall represent a sort or merge file.

SAME AREA FOR file-name-1 { file-name-2 } ...
SAME RECORD AREA FOR file-name-1 { file-name-2 } ...

SAME SORTSORT-MERGE

 AREA FOR file-name-1 { file-name-2 } ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

336 ©ISO/IEC 2023

9) If one or more file-names specified in a file-area format SAME clause are also specified in a record-area format SAME clause, all of the file-names specified in the file-area format SAME clause shall also be specified in the record-area format SAME clause. Additional file-names not specified in the file-area format SAME clause may be specified in the record-area format SAME clause.10) If a file-name that represents a file other than a sort or merge file is specified in a file-area format SAME clause and in one or more sort-merge-area format SAME clauses, all of the file-names specified in that file-area format SAME clause shall also be specified in those sort-merge-area format SAME clause(s).11) A file or record area that is subject to an APPLY COMMIT clause shall not be specified with another file or record area that is not subject to an APPLY COMMIT clause.
12.4.6.4.4 General rules1) A file-area format SAME clause specifies that two or more files referenced by file-name-1, file-name-2 are to use the same memory area during processing. The area being shared includes all storage areas assigned to the files referenced by file-name-1, file-name-2. No more than one of these files may be in the open mode at a given time.2) A record-area format SAME clause specifies that two or more files referenced by file-name-1, file-name-2 are to share a memory area for processing the current logical record. All of these files may be in the open mode at the same time, except that only one file that is also specified in a file-area format SAME clause may be open at that time. A logical record in the shared memory area is a logical record of each file open in the output mode and of the most recently-read file open in the input mode. This is equivalent to an implicit redefinition of the area with records aligned on the leftmost byte position. The record area is available to the runtime element when any file connector referenced by file-name-1, file-name-2, ... is open. When none of the file connectors is open, the record area is not available to the runtime element.3) The file and record area of a file subject to commit and rollback may not be shared with another such file or record area unless it has been closed, a commit or a rollback has been executed and the APPLY COMMIT clause for the file has been deactivated.4) A sort-merge-area format SAME clause specifies that memory is shared as follows:a) Any storage area allocated for the sorting or merging of a sort or merge file specified in a sort-merge-area format SAME clause is available for reuse in sorting or merging any of the other sort or merge files specified in that sort-merge-area format SAME clause.b) Storage areas assigned to files specified in a sort-merge-area format SAME clause that do not represent sort or merge files may be allocated as needed for sorting or merging the sort or merge files named in that sort-merge-area format SAME clause. The extent of such allocation shall be specified by the implementor.c) Storage areas assigned to files specified in a sort-merge-area format SAME clause other than sort or merge files do not share the same storage area with each other.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 337

5) During the processing of a SORT or MERGE statement that refers to a sort or merge file named in a sort-merge-area format SAME clause, any non-sort and non-merge files associated with file-names specified in that clause shall not be in the open mode.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

338 ©ISO/IEC 2023

13 Data division

13.1 GeneralThe data division describes the data that the runtime module is to accept as input, to manipulate, to create, or to produce as output. The data division is optional.The following is the general format of the sections in the data division and defines the order of their presentation in the source element.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 339

13.2 Data division structure

13.2.1 General format

13.3 Explicit and implicit attributesAttributes may be implicitly or explicitly specified. Any attribute that has been explicitly specified is called an explicit attribute. Some explicit attributes in the description of a group item apply to its subordinate items; these attributes are implicit attributes of the subordinate item. If an attribute has not been explicitly specified for an item or inherited from a group item, the attribute takes on the default

DATA DIVISION.
FILE SECTION. file-description-entry constant-entryrecord-description-entrytype-declaration-entry ...

sort-merge-file-description-entry constant-entryrecord-description-entrytype-declaration-entry

WORKING-STORAGE SECTION. 77-level-description-entryconstant-entryrecord-description-entrytype-declaration-entry ...
LOCAL-STORAGE SECTION. 77-level-description-entryconstant-entryrecord-description-entrytype-declaration-entry ...
LINKAGE SECTION. 77-level-description-entryconstant-entryrecord-description-entrytype-declaration-entry ...
REPORT SECTION. report-description-entry constant-entryreport-group-description-entry

SCREEN SECTION. constant-entryscreen-description-entry ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

340 ©ISO/IEC 2023

specification, which is also known as an implicit attribute. An implicit attribute is treated as if the attribute had been explicitly specified.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 341

13.4 File section

13.4.1 GeneralThe purpose of the file section is to describe the structure of data, sort, and merge files.
13.4.2 General format

where the following meta-language terms are described in the indicated subclauses:Term Subclause constant-entry 13.10, Constant entryrecord-description-entry 13.11, Record description entrytype-declaration-entry 13.12, Type declaration entry
13.4.3 Syntax rule1) The file section may be specified in a function definition or a program definition. Within a class definition, the file section may be specified only in a factory definition or an instance definition, but not in a method definition. The file section shall not be specified within an interface definition.
13.4.4 General rule1) A data-item format or table format VALUE clause specified in the file section is ignored except in the execution of the INITIALIZE statement. The initial value of a data item in the file section is undefined. The initial length of a dynamic-length elementary item is zero.

FILE SECTION. file-description-entry constant-entryrecord-description-entrytype-declaration-entry

sort-merge-file-description-entry constant-entryrecord-description-entrytype-declaration-entry

 ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

342 ©ISO/IEC 2023

13.4.5 File description entry

13.4.5.1 GeneralThe file description entry (FD entry) represents the highest level of organization in the file section.The file description entry furnishes information concerning the physical structure, identification, and the internal or external attributes of a file connector, of the associated records, and of the associated data items. The file description entry also determines whether a file-name is a local name or a global name. In addition, for a report file the file description entry furnishes information concerning the physical structure, identification, and report-names pertaining to a report file.
13.4.5.2 General formatsFormat 1 (sequential):
FD file-name-1 IS EXTERNAL [AS literal-1] IS GLOBAL

FORMAT BITCHARACTERNUMERIC

 DATA

BLOCK CONTAINS [integer-1 TO] integer-2 CHARACTERSRECORDS

[record-clause][linage-clause]
CODE-SET IS alphabet-name-1 [alphabet-name-2]FOR ALPHANUMERIC IS alphabet-name-1FOR NATIONAL IS alphabet-name-2

 .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 343

Format 2 (relative-or-indexed):

Format 3 (report):

where the following meta-language terms are described in the indicated subclauses:Term Subclause linage-clause 13.18.34, LINAGE clauserecord-clause 13.18.43, RECORD clause

FD file-name-1 IS EXTERNAL [AS literal-1] IS GLOBAL

 BLOCK CONTAINS [integer-1 TO] integer-2 CHARACTERSRECORDS

 record-clause .
FD file-name-1 IS EXTERNAL [AS literal-1] IS GLOBAL

 BLOCK CONTAINS [integer-1 TO] integer-2 CHARACTERSRECORDS

 record-clause
 CODE-SET IS alphabet-name-1 [alphabet-name-2]FOR ALPHANUMERIC IS alphabet-name-1FOR NATIONAL IS alphabet-name-2

REPORT ISREPORTS ARE

 { report-name-1 }

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

344 ©ISO/IEC 2023

13.4.5.3 Syntax rulesALL FORMATS1) File-name-1 shall be specified in a file control entry.2) The clauses that follow file-name-1 may appear in any order.FORMATS 1 AND 23) When no record description entries are specified:a) a RECORD clause shall be specified in the file description entry,b) a FILE phrase specifying file-name-1 and the FROM phrase shall be specified on all WRITE and REWRITE statements associated with the file, andc) an INTO phrase shall be specified on all READ statements associated with the file.FORMATS 1 AND 34) If the LINE SEQUENTIAL phrase of the ORGANIZATION clause of the sequential format of the 12.4.5, File control entry is specified neither the BLOCK CONTAINS clause nor the RECORD CONTAINS clause shall be specified.FORMAT 15) Format 1 is the file description entry for a sequential file.6) If the FORMAT clause is specified, variable-length records shall be specified for the file.FORMAT 27) Format 2 is the file description entry for a relative file or an indexed file. For an indexed file, one or more record description entries shall be associated with the file description entry.FORMAT 38) Format 3 is the file description entry for a report file. No record description entries or constant entries shall be associated with the file description entry for a report file.9) The subject of a file description entry that specifies a REPORT clause may be referenced in the procedure division only by the USE statement, the WHEN phrase of a PERFORM statement, the CLOSE statement, or the OPEN statement with the OUTPUT or EXTEND phrase.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 345

13.4.5.4 General rulesALL FORMATS1) A file description entry associates file-name-1 with a file connector.2) If the EXTERNAL clause is specified, all file description entries in the run unit that reference the same file connector as file-name shall obey the following rules:a) If any of the file description entries has a BLOCK CONTAINS clause, all shall have a BLOCK CONTAINS clause specifying the same minimum and maximum size of the physical record.b) If any of the file description entries has a CODE-SET clause, all shall have a CODE-SET clause specifying the same character set.c) If any of the file description entries has a LINAGE clause, all shall have a LINAGE clause specifying1. the same corresponding values for any literals specified2. the same corresponding external data items.d) All file description entries shall have the same smallest and largest record size.e) If any of the file description entries has a REPORT clause, all shall have a REPORT clause.NOTE If a record description entry is not specified for a file description for an external file, the results can be undefined and can result in data corruption.FORMAT 13) If the file description entry for a sequential file contains the LINAGE clause and the EXTERNAL clause, the LINAGE-COUNTER data item is an external data item. If the file description entry for a sequential file contains the LINAGE clause and the GLOBAL clause, LINAGE-COUNTER is a global name.FORMAT 34) The report writer logical record structure of the file associated with file-name-1 is defined by the implementor.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

346 ©ISO/IEC 2023

13.4.6 Sort-merge file description entry

13.4.6.1 GeneralThe sort-merge file description entry (SD entry) represents the highest level of organization in the file section. The sort-merge file description entry furnishes information concerning the physical structure pertaining to a sort or merge file. The clauses of a sort-merge file description entry (SD entry) specify the size and the names of the records associated with a sort file or a merge file. The set of records in the file may reside on external media or in the internal storage of the processor. Storage allocation and record management associated with the file are under control of the SORT/MERGE implementation.
13.4.6.2 General format

where record-clause is described in 13.18.43, RECORD clause.
13.4.6.3 Syntax rules1) File-name-1 shall be specified in a file control entry.2) One or more record description entries shall be associated with the sort-merge file description entry.3) File-name-1 shall not be specified in an input-output statement.4) A record description entry associated with file-name-1 shall not be specified in an input-output statement other than following the word FROM or the word INTO.
13.4.6.4 General rule1) The number of characters is specified in terms of bytes.

SD file-name-1[record-clause] .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 347

13.5 Working-storage section

13.5.1 GeneralThe working-storage section describes records and subordinate data items that are not part of files. Data described in the working-storage section is static or initial data.
13.5.2 General format

where the following meta-language terms are described in the indicated subclauses:Term Subclause 77-level-entry 13.13, 77-level data description entryconstant-entry 13.10, Constant entryrecord-description-entry 13.11, Record description entrytype-declaration-entry 13.12, Type declaration entry
13.5.3 Syntax rule1) The working-storage section may be specified in a function definition or a program definition. Within a class definition, the working-storage section may be specified only in a factory definition or an instance definition, but not in a method definition. The working-storage section shall not be specified within an interface definition.
13.5.4 General rules1) Data items in the working-storage section of a program that does not have the initial attribute, a function, a factory, or an object are static data.2) Data items in the working-storage section of a program that does have the initial attribute are initial data.3) Data items in the working-storage section are initialized as indicated in 11.9.10, INITIALIZE clause, 13.18.63, VALUE clause, and 14.6.2.3.2, Initial state.

WORKING-STORAGE SECTION. 77-level-description-entryconstant-entryrecord-description-entrytype-declaration-entry ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

348 ©ISO/IEC 2023

13.6 Local-storage section

13.6.1 GeneralThe local-storage section describes automatic data.
13.6.2 General format

where the following meta-language terms are described in the indicated subclauses:Term Subclause 77-level-entry 13.13, 77-level data description entryconstant-entry 13.10, Constant entryrecord-description-entry 13.11, Record description entrytype-declaration-entry 13.12, Type declaration entry
13.6.3 Syntax rule1) The local-storage section may be specified in a program definition or function definition or in a method definition contained in a class definition.
13.6.4 General rules1) Data items in the local-storage section are automatic data.2) Data items in the local-storage section are initialized as indicated in 11.9.10, INITIALIZE clause, 13.18.63, VALUE clause, and 14.6.2.3.2, Initial state.

LOCAL-STORAGE SECTION. 77-level-description-entryconstant-entryrecord-description-entrytype-declaration-entry ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 349

13.7 Linkage section

13.7.1 GeneralThe linkage section describes formal parameters and returning items.Formal parameters and returning items described in the linkage section of a source element are referred to both by that source element, when it is activated, and by the activating source element.
13.7.2 General format

where the following meta-language terms are described in the indicated subclauses:Term Subclause 77-level-entry 13.13, 77-level data description entryconstant-entry 13.10, Constant entryrecord-description-entry 13.11, Record description entrytype-declaration-entry 13.12, Type declaration entry
13.7.3 Syntax rules1) The linkage section may be specified in a program definition, function definition, method definition, program prototype definition, or function prototype definition.2) The description of the formal parameters and the returning item that appear in the linkage section of a function prototype or a program prototype shall match the description of the formal parameters and the returning item in the corresponding function definition or program definition, respectively.3) The description of the parameters and the returning item that appear in a linkage section shall follow the rules specified in 14.8.2, Parameters and 14.8.3, Returning items,4) A based data item may be referenced as described in 13.18.5, BASED clause; otherwise, a data item defined in the linkage section of a source element may be referenced within the procedure division of that source element if, and only if, it satisfies one of the following conditions:a) It is an operand of the USING phrase or the RETURNING phrase of the procedure division header.b) It is subordinate to an operand of the USING phrase or the RETURNING phrase of the procedure division header.

LINKAGE SECTION. 77-level-description-entryconstant-entryrecord-description-entrytype-declaration-entry ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

350 ©ISO/IEC 2023

c) It is defined with a REDEFINES or RENAMES clause, the object of which satisfies one of the above conditions.d) It is subordinate to any item that satisfies the condition in subrule c.e) It is a condition-name or index-name associated with a data item that satisfies one of the above conditions.5) A formal parameter of a function shall not be used as a receiving operand.
13.7.4 General rules1) The access to a based data item is described in 13.18.5, BASED clause.2) The mechanism by which a correspondence is established between the formal parameters and returning items described in the linkage section and data items described in the activating element is described in 14.2.3, General rules of the procedure division. In the case of index-names, no such correspondence is established and index-names in the activated and activating source elements always refer to separate indices.3) In a program definition, access to formal parameters and the returning item is guaranteed if and only if the program is to execute under the control of a CALL statement, and the CALL statement contains a USING phrase. If a formal parameter or a returning item is accessed in a program that is not a called program, such as a program that is activated by the operating system, the effect is undefined. If a program is activated by a non-COBOL runtime element, the implementor defines whether access to formal parameters and the returning item is guaranteed.4) In a function definition and in a method definition, access to formal parameters and the returning item is always guaranteed.5) A data-item format or table format VALUE clause specified in the linkage section is ignored except in the execution of an explicit or implicit INITIALIZE statement. If the runtime element containing the linkage section is activated by a COBOL runtime element, the initial value of a data item in the linkage section is determined by the value of the corresponding formal parameter in the activating runtime element, as described in 14.2.3, General rules of the procedure division. If the runtime element containing the linkage section is activated by the operating system, the initial value of a linkage section data item is undefined. If the runtime element containing the linkage section is activated by a non-COBOL runtime element, the initial value of a linkage section data item is defined by the implementor.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 351

13.8 Report section

13.8.1 GeneralThe report section describes the reports to be written to report files. The description of each report begins with a report description (RD) entry and is followed by one or more report group descriptions.
13.8.2 General format

where the following meta-language terms are described in the indicated subclauses:Term Subclause constant-entry 13.10, Constant entryreport-group-description-entry13.8.5, Report group description entry
13.8.3 Syntax rule1) The report section may be specified in a function definition or a program definition. Within a class definition, the report section may be specified only in a factory definition or an instance definition, but not in a method definition. The report section shall not be specified within an interface definition.
13.8.4 Report description entryThe report description (RD) entry gives a name to the report and defines its physical and logical subdivisions. (See 13.8.6.2, Physical subdivisions of a report.)An RD entry shall be followed by one or more report group description entries. The RD entry and the report group description entries that follow fully describe one report. A report is in the active state after the successful execution of an INITIATE statement referencing that report description entry and before the successful execution of a TERMINATE statement referencing that report description entry. At any other time, it is in the inactive state.
13.8.5 Report group description entryA report group is a block of zero, one, or more report lines that is treated, both logically and visually, as a single unit. Each report group description shall consist of a level 1 report description entry followed by zero, one, or more subordinate entries, describing the vertical and horizontal layout of the report group and the content or origin of each of its printed data items, known as printable items.The report groups associated with the report are specified immediately following the report description entry. If several report groups are specified, the order in which they are defined is not significant. The first entry of each report group description has level number 1 and a TYPE clause and, if a data-name is

REPORT SECTION. report-description-entry constant-entryreport-group-description-entry

 ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

352 ©ISO/IEC 2023

also specified, this may be used subsequently to identify the report group. Further subordinate group and elementary entries may be specified to describe additional elements of the report group.
13.8.6 Report subdivisions

13.8.6.1 GeneralA report has physical and logical subdivisions that interact to determine what is printed on a page.
13.8.6.2 Physical subdivisions of a report

13.8.6.2.1 PagesEach report is composed of pages of equal size, defined by the PAGE clause, or one page of indefinite size. Each page heading, body group (detail, control heading, or control footing), and page footing appears in a separate subdivision of the page. Each report heading or report footing may appear in any position on the page. Advancing to a new page is executed automatically for body groups, including the printing of a page footing and page heading.
13.8.6.2.2 LinesEach report group is divided vertically into zero, one, or more lines. Each line, or multiple line set, is represented in the report group description by a LINE clause. The NEXT GROUP clause, where defined, specifies additional vertical spacing following the report group.
13.8.6.2.3 Report ItemsEach line of each report group is divided horizontally into zero, one, or more printable items. Each printable item, or adjacent set of printable items, is defined in the report group description by an elementary entry containing a COLUMN clause. The value that is placed in a printable item is determined solely by a SOURCE, SUM, or VALUE clause in its data description entry. In addition, unprintable items may be specified whose entries contain no COLUMN or LINE clause but from which printable items may be derived.Report items shall not be accessed or referred to by any clauses in any other section of the data division or by any other procedure division statements, except in the following cases:1) Sum counters may be inspected or altered in the procedure division.2) Report groups of type DETAIL are accessed by the GENERATE statement.A report item referenced in a function identifier or inline method invocation shall be an elementary report item.
13.8.6.3 Logical Subdivisions of a ReportReport groups of type DETAIL may be structured into a nested set of control groups. Each control group may begin with a control heading and end with a control footing.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 353

A control break occurs when a change of value is detected in a control data item during the execution of a GENERATE statement. The hierarchy of control data items is used to check automatically for any such change in value. The detection of a control break causes the same GENERATE statement to print each defined control footing, in reverse hierarchical order, and each defined control heading, in hierarchical order.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

354 ©ISO/IEC 2023

13.9 Screen section

13.9.1 GeneralThe screen section describes the screens to be displayed during terminal I-O. The screen section describes screen records and subordinate screen items.
13.9.2 General format

where the following meta-language terms are described in the indicated subclauses:
Term Subclauseconstant-entry 13.10, Constant entryscreen-description-entry 13.17, Screen description entry
13.9.3 Syntax rule1) The screen section may be specified in a function definition or a program definition. Within a class definition, the screen section may be specified only in a factory definition or an instance definition, but not in a method definition. The screen section shall not be specified within an interface definition.
13.9.4 General rule1) Data items in the screen section are initialized as indicated in 11.9.10, INITIALIZE clause, 13.18.63, VALUE clause, and 14.6.2.3.2, Initial state.

SCREEN SECTION. constant-entryscreen-description-entry ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 355

13.10 Constant entry

13.10.1 GeneralA constant entry defines a constant. A constant may be used in place of a literal.
13.10.2 General format

13.10.3 Syntax rules1) If the operand of the constant entry consists of a single numeric literal, that operand is treated as a literal, not as an arithmetic-expression.2) Except in a compiler directive, constant-name-1 may be used anywhere that a format specifies a literal of the class and category of constant-name-1. If constant-name-1 is an integer, it may also be used to specify repetition in a picture character-string, as specified in 13.18.40, PICTURE clause.3) All subscripts of data-name-1 and data-name-2 shall be literals.4) The length of data-name-1 or data-name-2 shall not be dependent, directly or indirectly, upon the value of constant-name-1.5) Neither the value of literal-1 nor the value of any of the literals in arithmetic-expression-1 shall be dependent, directly or indirectly, upon the value of constant-name-1.6) Neither literal-1 nor any of the literals in arithmetic-expression-1 shall be a figurative constant.7) Arithmetic-expression-1 shall be formed in accordance with 7.3.6, Compile-time arithmetic expressions, with the exception that all of the operands shall be literals and none shall be compilation-variable-names.8) Compilation-variable-name-1 shall be a compilation-variable-name for which the defined condition is currently true.9) If constant-name-1 duplicates another constant-name, the specification of arithmetic-expression-1, literal-1, data-name-1, data-name-2, or compilation-variable-name-1 shall be the same as specified in the other constant-name.10) Data-name-1 and data-name-2 shall not be described with the ANY LENGTH clause.

101

 constant-name-1 CONSTANT [IS GLOBAL] AS arithmetic-expression-1BYTE-LENGTH OF data-name-1literal-1LENGTH OF data-name-2

FROM compilation-variable-name-1

 .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

356 ©ISO/IEC 2023

11) Data-name-1 and data-name-2, if defined in the report section, shall reference elementary report items.12) Data-name-1 and data-name-2 shall not be dynamic-length elementary items or variable-length groups.
13.10.4 General rules1) If literal-1 or compilation-variable-name-1 is specified, the effect of specifying constant-name-1 in other than this entry is as if literal-1 or the text represented by compilation-variable-name-1 were written where constant-name-1 is written.2) If literal-1 or compilation-variable-name-1 is specified, the class and category of constant-name-1 is the same as that of literal-1 or the literal represented by compilation-variable-name-1.3) If arithmetic-expression-1, data-name-1, or data-name-2 is specified, the effect of writing constant-name-1 in other than this entry is as if an integer literal were written where constant-name-1 is written. This integer literal has the value specified in these general rules.4) If arithmetic-expression-1 is specified, it is evaluated in accordance with 7.3.6, Compile-time arithmetic expressions, to determine the value of constant-name-1. The class and category of constant-name-1 is numeric. Constant-name-1 is an integer.5) If the BYTE-LENGTH phrase is specified, the class and category of constant-name-1 is numeric. Constant-name-1 is an integer. The value of constant-name-1 is determined as specified in the BYTE-LENGTH intrinsic function with the exception that when data-name-1 is an occurs-depending group item, the maximum size of the data item is used.6) If the LENGTH phrase is specified, the class and category of constant-name-1 is numeric. Constant-name-1 is an integer. The value of constant-name-1 is determined as specified in the LENGTH intrinsic function with the exception that when data-name-2 is an occurs-depending group item, the maximum size of the data item is used.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 357

13.11 Record description entry

13.11.1 GeneralA record description entry consists of a set of data description entries, the first of which shall have level-number 1, that describe the characteristics of a particular record. Any data item that has been described with level-number 1 and whose declaration does not include the TYPEDEF clause is a record.A record description may have a hierarchical structure. The structure of a record description and the elements allowed in a record description entry are explained in 8.5.1.3, Levels, and in 13.16, Data description entry.Data elements that bear no hierarchical relationship to any other data item may be described as records that are single elementary items. Alternatively, such data elements when defined in the working-storage section, local-storage section, and linkage section may be described as separate data description entries having level-number 77, as described in 13.13, 77-level data description entry.
13.12 Type declaration entryA type declaration entry is a data description entry that contains a TYPEDEF clause. A type declaration entry may have a hierarchical structure beginning with level-number 1. The structure of a type declaration entry and the elements allowed in a type declaration entry are explained in 8.5.1.3, Levels, and in 13.16, Data description entry.A type declaration entry has no storage associated with it.Further details regarding the specification of a type declaration entry are described in 13.18.58, TYPEDEF clause.
13.13 77-level data description entryItems in the linkage section, local-storage, and the working-storage section that bear no hierarchical relationship to one another need not be grouped into records, provided they do not need to be further subdivided. Instead, they are classified and defined as noncontiguous elementary data items. Each of these items is defined in a separate data description entry that begins with the special level-number 77.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

358 ©ISO/IEC 2023

13.14 Report description entry

13.14.1 GeneralThe report description entry names a report and describes its general physical and logical structure.
13.14.2 General format

where the following meta-language terms are described in the indicated subclausesTerm Subclausecode-clause 13.18.12, CODE clause control-clause 13.18.16, CONTROL clause page-clause 13.18.39, PAGE clause
13.14.3 Syntax rules1) There shall be one and only one REPORT clause specifying report-name-1 in a given file description entry.2) The clauses that follow report-name-1 may appear in any order.
13.14.4 General rule1) If GLOBAL is specified, report-name-1 and all its constituent report groups, its PAGE-COUNTER andLINE-COUNTER, and any sum counters defined in report-name-1 are global.

RD report-name-1 IS GLOBAL code-clausecontrol-clausepage-clause .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 359

13.15 Report group description entry

13.15.1 GeneralThe report group description entry specifies the characteristics of a report group and of the individual items within a report group.
13.15.2 General format

where the following meta-language terms are described in the indicated subclauses:Term Subclausecolumn-clause 13.18.14, COLUMN clauseentry-name-clause 13.18.20, Entry-name clausejustified-clause 13.18.32, JUSTIFIED clauseline-clause 13.18.35, LINE clausenext-group-clause 13.18.37, NEXT GROUP clausepicture-clause 13.18.40, PICTURE clausesign-clause 13.18.52, SIGN clausesource-clause 13.18.53, SOURCE clausesum-clause 13.18.54, SUM clausetype-clause 13.18.57, TYPE clause (report-group format)value-clause 13.18.63, VALUE clause (report-section format)

level-number [entry-name-clause]type-clause next-group-clause line-clause picture-clause [USAGE IS] DISPLAYNATIONAL

sign-clause justified-clause column-clause BLANK WHEN ZERO source-clausesum-clausevalue-clausePRESENT WHEN condition-1GROUP INDICATE OCCURS [integer-1 TO] integer-2 TIMES [DEPENDING ON data-name-1] [STEP integer-3] varying-clause .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

360 ©ISO/IEC 2023

varying-clause 13.18.64, VARYING clause
13.15.3 Syntax rules1) Report group description entries may appear only in the report section.2) If the entry-name clause is specified, the data-name format or filler format shall be specified. The entry-name clause shall immediately follow the level-number. All other clauses may be written in any order.3) Level-number shall be any integer from 1 through 49.4) The first entry that follows a report description entry shall be a level 1 entry.5) The TYPE clause may be specified only in a level 1 entry and shall be specified in every level 1 entry.6) The NEXT GROUP clause may be specified only in a level 1 entry.7) The data-name format of the entry-name clause shall be specified when the data-name is referenced in a GENERATE statement, a USE BEFORE REPORTING statement, as a qualifier for a SUM counter, in the UPON phrase of the SUM clause, or as an operand in a SUM clause. The data-name shall not be referenced in any other way.8) No report group description entry with a LINE clause shall be subordinate to another entry with a LINE clause.9) Every elementary entry with a COLUMN clause but no LINE clause shall be subordinate to an entry with a LINE clause.10) Every elementary entry with a COLUMN clause shall also contain either a SOURCE, VALUE or SUM clause.11) The PICTURE, COLUMN, SOURCE, VALUE, SUM, and GROUP INDICATE clauses may be written only in an elementary entry.12) A PICTURE clause shall be specified in every elementary entry that has a SOURCE or SUM clause.13) A COLUMN clause shall be specified in each elementary entry that has a VALUE clause.14) The PICTURE clause may be omitted for an elementary item when an alphanumeric, boolean or national literal that is not a zero-length literal is specified in the VALUE clause. A PICTURE clause is implied as follows:a) If the literal is alphanumeric, 'PICTURE X(length)'b) If the literal is boolean, 'PICTURE 1(length)'c) If the literal is national, 'PICTURE N(length)'

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 361

where length is the length of the literal as specified in 8.3.3, Literals.15) If BLANK WHEN ZERO or JUSTIFIED is specified, a COLUMN clause shall also be specified.16) Condition-1 shall not reference any sum counter, LINE-COUNTER, PAGE-COUNTER, or other report section data item.17) The GROUP INDICATE clause shall not be specified in an entry in which the PRESENT WHEN clause is specified.
13.15.4 General rules1) Each level 1 entry identifies a report group. The report group is defined by this entry and all its subordinate entries.2) Except for the additional restrictions defined under syntax rules above, the USAGE, PICTURE, BLANK WHEN ZERO and JUSTIFIED clauses are the same clauses as those that are described under the general format for a data description entry and shall obey the syntax rules and general rules defined for each clause. (See 13.18, Data division clauses.)3) An entry that contains either an OCCURS clause or a LINE or COLUMN clause with more than one operand is said to be a repeating entry, and the number of repetitions is defined to be integer-2 of the OCCURS clause or the number of operands of the LINE or COLUMN clause, whichever is applicable. The number of repetitions of an entry that is not a repeating entry is defined to be 1. A report item is a repeating item if it is defined by a repeating entry or by an entry that is subordinate to a repeating entry.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

362 ©ISO/IEC 2023

13.16 Data description entry

13.16.1 GeneralA data description entry specifies the characteristics of a particular item of data. A level 1 data description entry within the file, working-storage, local-storage, or linkage section determines whether the record and its subordinate data items have local names or global names.A level 1 data description entry in the working-storage section determines the internal or external attribute of the record and its subordinate data items.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 363

13.16.2 General formatsFormat 1 (data-description):
level-number entry-name-clause [REDEFINES data-name-1][IS TYPEDEF [STRONG]][ALIGNED][ANY LENGTH][BASED][BLANK WHEN ZERO]CONSTANT RECORD [DYNAMIC LENGTH [dynamic-length-structure-name-1] [LIMIT IS integer-1]]IS EXTERNAL [AS literal-1][IS GLOBAL]

GROUP-USAGE IS BITNATIONAL

JUSTIFIEDJUST

 RIGHT

[occurs-clause][picture-clause]
PROPERTY WITH NO GETSET

 [IS FINAL]

[SAME AS data-name-2][select-when-clause]
[SIGN IS] LEADINGTRAILING

 [SEPARATE CHARACTER]

SYNCHRONIZEDSYNC

 LEFTRIGHT[TYPE type-name-1][usage-clause][validation-clauses][value-clause] .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

364 ©ISO/IEC 2023

where validation-clauses is:

where the following meta-language terms are described in the indicated subclauses:Term Subclauseclass-clause 13.18.11, CLASS clausedefault-clause 13.18.17, DEFAULT clauseentry-name-clause 13.18.20, Entry-name clauseoccurs-clause 13.18.38, OCCURS clause (fixed-table, occurs-depending-table, or dynamic-capacity-table-format)picture-clause 13.18.40, PICTURE clauseselect-when clause 13.18.51, SELECT WHEN clauseusage-clause 13.18.60, USAGE clausevalidate-status-clause 13.18.62, VALIDATE-STATUS clausevalue-clause 13.18.63, VALUE clause (data-item or table format)Format 2 (renames):

Format 3 (condition-name):
where value-clause is described in 13.18.63, VALUE clause (condition-name format).Format 4 (validation):
where value-clause is described in 13.18.63, VALUE clause (content-validation-entry format).NOTE The validation format of the data description is an obsolete feature.

[class-clause][default-clause][DESTINATION IS { identifier-1 } ...][{ INVALID WHEN condition-2 } ...][PRESENT WHEN condition-3][VARYING { data-name-3 [FROM arithmetic-expression-1] [BY arithmetic-expression-2] } ...]validate-status-clause ...

66 data-name-1 RENAMES data-name-4 THROUGHTHRU

 data-name-5 .

88 condition-name-1 value-clause .

88 [condition-name-2] value-clause .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 365

13.16.3 Syntax rulesFORMAT 11) Level-number may be 77 or 1 through 49.2) The data-name format of the entry-name clause shall be specified if level-number is 77.3) The REDEFINES clause shall not be specified in the same data description entry as the BASED, CONSTANT RECORD, or TYPEDEF clause.4) If the entry-name clause is specified, either the data-name format or the filler format may be specified and the entry-name clause shall immediately follow the level-number. If no entry-name clause is specified, it is as though the filler format of the entry-name clause were specified. The REDEFINES clause, if specified, shall immediately follow the entry-name clause, if specified; otherwise, the REDEFINES clause shall immediately follow the level-number. If the TYPEDEF clause is specified, the data-name format of the entry-name clause shall also be specified and the TYPEDEF clause shall immediately follow the entry-name clause. The remaining clauses may be written in any order.5) The EXTERNAL clause shall not be specified in the same data description entry as the REDEFINES or BASED clause.6) The CONSTANT RECORD and GLOBAL clauses may be specified only in data description entries whose level-number is 1.7) The data-name format of the entry-name clause shall be specified for any entry containing the GLOBAL or EXTERNAL clause, or for record descriptions associated with a file description entry that contains the EXTERNAL or GLOBAL clause.8) The PICTURE clause shall not be specified for the subject of a RENAMES clause or for an item whose usage is binary-char, binary-short, binary-long, binary-double, float-short, float-long, float-extended, index, message-tag, object reference, pointer, function-pointer, or program-pointer. For any other entry describing an elementary item, a PICTURE clause shall be specified except as indicated in Syntax rule 9.9) The PICTURE clause may be omitted for an elementary item when an alphanumeric, boolean, or national literal that is not a zero-length literal is specified in the data-item format of the VALUE clause. A PICTURE clause is implied as follows:a) if the literal is alphanumeric, 'PICTURE X(length)'b) if the literal is boolean, 'PICTURE 1(length)'c) if the literal is national, 'PICTURE N(length)'where length is the length of the literal as specified in 8.3.3, Literals.10) The VALUE clause shall not be specified for data items of class index, message-tag, object, or pointer.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

366 ©ISO/IEC 2023

11) The PICTURE, JUSTIFIED, and BLANK WHEN ZERO clauses may be specified only for an elementary data item.12) The SAME AS clause shall not be specified in the same data description entry with any clauses except CONSTANT RECORD, entry-name, EXTERNAL, GLOBAL, level-number, and OCCURS.13) The ANY LENGTH, BASED, BLANK WHEN ZERO, DYNAMIC LENGTH, select-when, SYNCHRONIZED, and TYPEDEF clauses and validation-clauses shall not be specified in the same data description entry with the CONSTANT RECORD clause, or in any data description entry subordinate to a data description entry with the CONSTANT RECORD clause.If the CONSTANT RECORD clause is specified with the EXTERNAL clause, there shall also be a TYPE clause that specifies a strongly typed definition.NOTE Further requirements and restrictions are specified in 13.18.38, OCCURS clause, Syntax rules 19, 23, and 33; 13.18.42, PROPERTY clause, Syntax rule 5; 13.18.44, REDEFINES clause, Syntax rule 13; 13.18.49, SAME AS clause, Syntax rule 10; and 13.18.60, USAGE clause, Syntax rules 4 and 21.14) The TYPE clause shall not be specified in the same data description entry with any clauses except BASED, CLASS, CONSTANT RECORD, DEFAULT, DESTINATION, entry-name, EXTERNAL, GLOBAL, INVALID, level-number, OCCURS, PRESENT WHEN, PROPERTY, TYPEDEF, VALIDATE-STATUS, VALUE, and VARYING.15) The TYPEDEF clause may be specified only in a data description entry whose level-number is 1 and for which the data-name format of the entry-name clause is specified.16) The BASED clause may be specified only in data description entries in the linkage section, in the working-storage section, and in the local-storage section. The level number of such data description entries shall be 1 or 77.17) If the ANY LENGTH clause is specified, the only other clauses permitted are level-number, entry-name, PICTURE, USAGE, and VALUE.18) If a DYNAMIC LENGTH clause is specified, the only other clauses permitted are level-number, entry-name, PICTURE, USAGE, and VALUE.19) If the LOCALE phrase of the PICTURE clause is specified, the SIGN clause shall not be specified.20) The PRESENT WHEN clause shall not be specified in a data description entry that has a level number of 1 or 77.21) The PROPERTY clause shall not be specified in the same data description entry as:a) a BASED clause,b) a TYPEDEF clause.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 367

FORMAT 222) The words THROUGH and THRU are equivalent.FORMATS 3 AND 423) Each condition-name is subordinate to the data-name with which it is associated.24) Format 3 or 4 is used for each condition-name. Each condition-name requires a separate entry with level-number 88. The condition-name entries for a particular conditional variable shall immediately follow the entry describing the item with which the condition-name is associated. A condition-name may be associated with any data description entry that contains a level-number except the following:a) Another level 88 entry.b) A level 66 entry.c) An alphanumeric group containing items with a usage other than display.d) A group containing items described with a JUSTIFIED or SYNCHRONIZED clause.e) A data item of the class index, message-tag, object, or pointer.f) A data item described with the ANY LENGTH clause.g) A type declaration described with the STRONG phrase, or a group item subordinate to such a type declaration.h) A variable-length group.
13.16.4 General rules1) If the subject of the entry is a group item that is subordinate to a bit group and a GROUP-USAGE BIT clause is not specified, a GROUP-USAGE BIT clause is implied for the subject of the entry.2) If the subject of the entry is a group item that is subordinate to a national group and a GROUP-USAGE NATIONAL clause is not specified, a GROUP-USAGE NATIONAL clause is implied for the subject of the entry.3) Format 3 contains the name of the condition and the value, values, or range of values associated with the condition-name.4) Format 4 may contain the name of a condition and the value, values, or range of values associated with the condition-name, in which case the condition-name has the same meaning as in Format 3 and may be used in the same way. During the content validation stage of a VALIDATE statement that references the subject of the entry or a superordinate data item, the value or values specified in this format define the value, values, or range of values that make the subject of the entry valid if VALID is specified or invalid if INVALID is specified.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

368 ©ISO/IEC 2023

13.17 Screen description entry

13.17.1 GeneralA screen description entry specifies attributes, behavior, size, and location of a screen item so that it can be referenced by an ACCEPT screen or a DISPLAY screen statement. The screen description entry allows data items to be associated with the screen item so that the contents of the data item are displayed within the screen item or the value keyed into a screen item by the operator is placed in the data item.
13.17.2 General formatsFormat 1 (group):
level-number [entry-name-clause] IS GLOBAL

 LINE NUMBER IS PLUS+MINUS–
identifier-1integer-1

COLUMNCOL

 NUMBER IS PLUS+MINUS–

identifier-2integer-2

 BLANK SCREEN [screen-attribute-clauses]
 [SIGN IS] LEADINGTRAILING

 [SEPARATE CHARACTER]

 FULL AUTO SECURE REQUIRED OCCURS integer-5 TIMES
 [USAGE IS] DISPLAYNATIONAL

 .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 369

Format 2 (elementary):

where entry-name-clause is described in 13.18.20, Entry-name clause

level-number [entry-name-clause] IS GLOBAL

 LINE NUMBER IS PLUS+MINUS-
identifier-1integer-1

COLUMNCOL

 NUMBER IS PLUS+MINUS-

identifier-2integer-2

 BLANK LINESCREEN

 ERASE END OF LINEEND OF SCREENEOLEOS

[screen-attribute-clauses][picture-clause][source-destination-clauses]
 BLANK WHEN ZERO JUSTJUSTIFIED

 RIGHT
 [SIGN IS] LEADINGTRAILING

 [SEPARATE CHARACTER]

 FULL AUTO
 SECURE
 REQUIRED OCCURS integer-5 TIMES
 [USAGE IS] DISPLAYNATIONAL

 .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

370 ©ISO/IEC 2023

where screen-attribute-clauses is:

where picture-clause is described in 13.18.40, PICTURE clause.where source-destination-clauses is:

13.17.3 Syntax rulesALL FORMATS1) The entry-name clause, if specified, shall immediately follow level-number. If the entry-name clause is specified, only the screen-name format or filler format may be specified. If the entry-name clause is not specified, it is as if the FILLER format of the entry-name clause were specified. The remaining clauses may be specified in any order.2) If the GLOBAL clause is specified, the screen-name format of the entry-name clause shall be specified and level-number shall be 1.

 BELL BLINK HIGHLIGHT LOWLIGHT REVERSE-VIDEO UNDERLINE
 FOREGROUND-COLOR IS identifier-3integer-3

 BACKGROUND-COLOR IS identifier-4integer-4

FROM identifier-5literal-1

TO identifier-6

 USING identifier-7
 VALUE IS literal-2

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 371

FORMAT 13) Level-number shall be a number from 1 through 48.4) The subject of the entry shall be a group screen item.FORMAT 25) Level-number shall be a number from 1 through 49.6) The subject of the entry shall be an elementary screen item.7) For an elementary screen item, the associated screen description entry shall include at least one of the following:— a PICTURE clause and a FROM, TO, or USING clause;— a PICTURE clause and a VALUE clause with a numeric literal;— a VALUE clause specifying an alphanumeric, boolean, or national literal;— a BLANK clause;— an ERASE clause;— a BELL clause.8) If the FULL clause is specified, the JUSTIFIED clause shall not be specified.9) If the LOCALE phrase of the PICTURE clause is specified, the SIGN clause shall not be specified.10) The PICTURE clause may be omitted when an alphanumeric, boolean, or national literal that is not a zero-length literal is specified in the VALUE clause. A PICTURE clause is implied as follows:a) if the literal is alphanumeric, 'PICTURE X(length)',b) if the literal is boolean, 'PICTURE 1(length)', orc) if the literal is national, 'PICTURE N(length)'.where length is the length of the literal as specified in 8.3.3, Literals.
13.17.4 General rulesALL FORMATS1) If the same clause, other than an OCCURS clause, is specified at more than one level in the hierarchy of a screen item, the clause that appears at the lowest level of the hierarchy is the one that takes effect.2) If the HIGHLIGHT and LOWLIGHT clauses are both specified in the hierarchy of a screen item, the clause that appears at the lowest level of the hierarchy is the one that takes effect.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

372 ©ISO/IEC 2023

13.18 Data division clauses

13.18.1 ALIGNED clause

13.18.1.1 GeneralThe ALIGNED clause specifies that a bit group item or an elementary bit data item is to be aligned at the first bit of the first available byte.
13.18.1.2 General format

13.18.1.3 Syntax rule1) The ALIGNED clause may be specified only for a bit group item or an elementary bit data item.
13.18.1.4 General rules1) An ALIGNED clause causes the subject of the entry to be aligned on the first bit of the first available byte boundary. Implicit filler bits may be generated to complete the assignment of bits as described in 8.5.1.6.3, Alignment of data items of usage bit.2) An ALIGNED clause specified for a multiple-occurrence data item applies to each occurrence of that item.3) When an ALIGNED clause is not specified, bit data items are aligned in accordance with 8.5.1.6.3, Alignment of data items of usage bit.

ALIGNED

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 373

13.18.2 ANY LENGTH clause

13.18.2.1 GeneralThe ANY LENGTH clause specifies that the length of a linkage section item may vary at runtime and is determined by the length of the argument in the calling program, method, or function.
13.18.2.2 General format

13.18.2.3 Syntax rules1) A PICTURE clause shall be specified for the subject of the entry. The character-string specified in that PICTURE clause shall be one instance of the picture symbol 'N', 'X', or '1'.2) The ANY LENGTH clause may be specified only in an elementary level 1 entry in the linkage section of a function, of a contained program, or of a method that is not a property method.NOTE The ANY LENGTH clause may not be specified in an outermost program. This is because an outermost program can be called with or without a program-prototype format CALL statement. For calls without a program-prototype, this Working Draft International Standard does not require an implementation to determine whether an argument corresponds to a formal parameter described with ANY LENGTH.3) If the source element containing the ANY LENGTH clause is a contained program or is a method, the subject of the entry shall be referenced in its procedure division header as either:a) a formal parameter with the BY REFERENCE phrase, orb) the returning item.4) If the source element containing the ANY LENGTH clause is a function, the subject of the entry shall be referenced in its procedure division header as a formal parameter with the BY REFERENCE phrase.
13.18.2.4 General rule1) The ANY LENGTH clause specifies that the subject of the entry shall be:a) a zero-length item when the corresponding argument or returning item of the activating runtime element is a zero-length item, orb) treated as though there were n repetitions of the picture symbol in the character-string in its PICTURE clause, where n is the length of the corresponding argument or returning item of the activating runtime element.

ANY LENGTH

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

374 ©ISO/IEC 2023

13.18.3 AUTO clause

13.18.3.1 GeneralThe AUTO clause causes the cursor to be automatically moved to the next field declared for the screen item during execution of an ACCEPT screen statement.
13.18.3.2 General format

13.18.3.3 General rules1) An AUTO clause specified at the group level applies to each input screen item in that group.2) The AUTO clause is ignored for a field that is not an input field.3) The AUTO clause takes effect during the execution of an ACCEPT screen statement that references the screen item for which the AUTO clause is specified.4) The AUTO clause causes the cursor to be automatically moved to the next input field declared for the screen item when the last character of the input field whose definition contains this clause has data entered into it.5) When the AUTO clause is specified for an input field that has no logical next field during input, then when that field is available for input during an ACCEPT screen statement and data is entered into the last character of the screen item, successful completion with normal termination of the ACCEPT statement results.

AUTO

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 375

13.18.4 BACKGROUND-COLOR clause

13.18.4.1 GeneralThe BACKGROUND-COLOR clause specifies the background color for the screen item.
13.18.4.2 General format

13.18.4.3 Syntax rules1) Identifier-1 shall be described in the file, working-storage, local-storage, or linkage section as an unsigned integer data item.2) Integer-1 shall have a value in the range of 0 to 7.
13.18.4.4 General rules1) When an ACCEPT screen statement or a DISPLAY screen statement referencing the associated screen item is executed, the content of the data item referenced by identifier-1 shall be in the range of 0 to 7.2) Integer-1 or the content of the data item referenced by identifier-1 specifies the color number of the background color to be used for displaying the screen item. The color associated with the color number is specified in 9.2.7, Color number.3) A BACKGROUND-COLOR clause specified at the group level applies to each elementary screen item in that group.4) When a BACKGROUND-COLOR clause is not specified or the value is not in the range 0 to 7, the background color is implementor-defined.

BACKGROUND-COLOR IS identifier-1integer-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

376 ©ISO/IEC 2023

13.18.5 BASED clause

13.18.5.1 GeneralThe BASED clause defines a based entry. A based entry is a template that, when associated with an actual data item or allocated storage, describes a based data item.
13.18.5.2 General format

13.18.5.3 Syntax rules1) The subject of the entry shall not be of class object.2) The subject of the entry shall not be a dynamic-length elementary item or a variable-length group.
13.18.5.4 General rules1) The BASED clause specifies that the subject of the entry is a based entry defining a template that is dynamically associated with storage through an implicit data-address pointer.2) The implicit data-address pointer has an initial value of NULL. The rules for setting the implicit address-pointer are described in 14.9.39, SET statement, General rules 17, 18, and 19. The life cycle of this implicit data-address pointer is described in 8.6.5, Based entries and based data items.3) If the subject of the entry or any item subordinate to it is referenced directly or indirectly while its address is NULL, the EC-DATA-PTR-NULL exception condition is set to exist.4) If the subject of the entry is referenced while its address is not NULL and not a valid address of storage, the EC-BOUND-PTR exception condition is set to exist.

BASED

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 377

13.18.6 BELL clause

13.18.6.1 GeneralThe BELL clause causes the terminal audio tone to sound.
13.18.6.2 General format

13.18.6.3 General rules1) The use of this clause results in the audio tone sounding when the screen item in which it is specified is processed during the execution of a DISPLAY screen statement. The audio tone sounds once at the start of the execution of the DISPLAY screen statement regardless of how many entries specify the clause.2) A BELL clause specified at the group level applies to each elementary screen item in that group.

BELL

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

378 ©ISO/IEC 2023

13.18.7 BLANK clause

13.18.7.1 GeneralThe BLANK clause clears a screen line or clears the whole screen during the execution of a DISPLAY screen statement before data is transferred to the screen item.
13.18.7.2 General format

13.18.7.3 General rules1) When the BLANK LINE clause is specified, the entire line specified for the screen item that is the subject of the entry, columns 1 through the end of the line, is cleared during the execution of a DISPLAY screen statement before data is transferred to the screen item.2) When the BLANK SCREEN clause is specified, the screen is cleared and the cursor is placed at line 1, column 1 during the execution of a DISPLAY screen statement before data is transferred to the screen item. Upon clearing the screen, the background color for the entire screen is set to the value applicable at the time.3) The BLANK SCREEN clause in combination with the BACKGROUND-COLOR clause for the same screen item, or for a screen item to which it is subordinate, establishes the default background color to be used until the same combination is encountered specifying another background color.4) The BLANK SCREEN clause in combination with the FOREGROUND-COLOR clause for the same screen item, or for a screen item to which it is subordinate, establishes the default foreground color to be used until the same combination is encountered specifying another foreground color.5) The BLANK clause is ignored during all phases of the execution of an ACCEPT screen statement.

BLANK LINESCREEN

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 379

13.18.8 BLANK WHEN ZERO clause

13.18.8.1 GeneralThe BLANK WHEN ZERO clause causes the blanking of an item when a value of zero is being stored in it.
13.18.8.2 General format

13.18.8.3 Syntax rules1) The BLANK WHEN ZERO clause may be specified only for an elementary item described by its picture character-string as category numeric-edited or as numeric without the picture symbol 'S'.2) The subject of the entry shall be implicitly or explicitly described as usage display or usage national.
13.18.8.4 General rules1) When the BLANK WHEN ZERO clause is specified for a data item, the content of the data item is set to all spaces when the item is a receiving operand and the value being stored is zero.2) If the subject of the entry is described by its picture character-string as category numeric, the BLANK WHEN ZERO clause defines the item as numeric-edited.3) If the subject of the entry is a sending data item, the object of an operation is a numeric or numeric-edited data item, and the content of the sending data item is all spaces, the value of the sending data item is considered to be zero.

BLANK WHEN ZERO

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

380 ©ISO/IEC 2023

13.18.9 BLINK clause

13.18.9.1 GeneralThe BLINK clause specifies that each character of the field blinks when it is displayed on the screen.
13.18.9.2 General format

13.18.9.3 General rules1) A BLINK clause specified at the group level applies to each elementary screen item in that group.2) When the BLINK clause is specified, the characters that constitute the screen item will blink when the screen item is referenced in an ACCEPT screen statement or a DISPLAY screen statement.

BLINK

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 381

13.18.10 BLOCK CONTAINS clause

13.18.10.1 GeneralThe BLOCK CONTAINS clause specifies the size of a physical record.
13.18.10.2 General format

13.18.10.3 Syntax rule1) If integer-1 is specified, integer-2 shall be greater than integer-1.
13.18.10.4 General rules1) This clause is required except when one or more of the following conditions exist:a) A physical record contains one and only one complete logical record.b) The hardware device assigned to the file has one and only one physical record size.c) The number of records or characters contained in a block is specified in the operating environment.2) The size of a physical record may be stated in terms of records unless one or more of the following situations exists, in which case the RECORDS phrase shall not be used:a) In mass storage files, logical records may extend across physical records.b) The physical record contains padding (area not contained in a logical record).c) Logical records are grouped in such a manner that an inaccurate physical record size would be implied.3) If the CHARACTERS phrase is specified, the physical record size is specified in terms of the number of bytes required to store the physical record, regardless of the types of characters used to represent the items within the physical record.4) If integer-1 is not specified, integer-2 represents the exact size of the physical record. If integer-1 and integer-2 are both specified, they refer to the minimum and maximum size of the physical record, respectively.

BLOCK CONTAINS [integer-1 TO] integer-2 CHARACTERSRECORDS

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

382 ©ISO/IEC 2023

13.18.11 CLASS clause

13.18.11.1 GeneralThe CLASS clause specifies a range of values for each character of a data item, to be checked during the content validation stage of the execution of a VALIDATE statement.
13.18.11.2 General format

13.18.11.3 Syntax rule1) The subject of the entry shall be of class alphabetic, alphanumeric, or national.
13.18.11.4 General rules1) The CLASS clause takes effect during the content validation stage of the execution of a VALIDATE statement. The CLASS clause is ignored during the execution of any statement other than a VALIDATE statement.2) If the subject of the entry is an elementary item, the CLASS clause takes effect only if the item's associated internal indicator is still set to its initial valid value, indicating that no errors occurred during the format validation stage.3) The operand of the CLASS clause is used to check each character of the value of the data item as described in 8.8.4.4, Simple class condition. If the class condition is false, the data item's internal indicator is set to invalid on content.4) If the subject of the entry is an alphanumeric group item or national group item, General rules 2 and 3 are applied to each of its subordinate elementary items, except for any data items that are not processed as a result of a PRESENT WHEN clause or an OCCURS clause with a DEPENDING phrase.

CLASS IS
NUMERICALPHABETICALPHABETIC-LOWERALPHABETIC-UPPERBOOLEANalphabet-name-1class-name-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 383

13.18.12 CODE clause

13.18.12.1 GeneralThe CODE clause specifies one or more characters used to separate multiple reports written to the same file or for specifying correct functioning of the printer device.
13.18.12.2 General format

13.18.12.3 Syntax rules1) Literal-1 shall be an alphanumeric literal.2) Identifier-1 shall reference an alphanumeric data item that shall not be an occurs-depending-on group item, a variable-length group, or a dynamic-length elementary item.3) If the CODE clause is specified for any report, it shall be specified for each report associated with the same report file.
13.18.12.4 General rules1) When the CODE clause is specified, literal-1 or identifier-1 is automatically placed in the first characters of each logical record written to the report file for this report.2) The characters occupied by literal-1 or identifier-1 are not included in the descriptions of the lines in the report, but are included in the logical record size.3) If identifier-1 is specified, it is evaluated at the start of the processing for each body group, either during page advance processing, as detailed in the GENERATE statement, or whenever page advance processing is not performed. The resultant value is used until the next evaluation.

CODE IS literal-1identifier-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

384 ©ISO/IEC 2023

13.18.13 CODE-SET clause

13.18.13.1 GeneralThe CODE-SET clause specifies the character code convention used to represent data on the external media.
13.18.13.2 General format

13.18.13.3 Syntax rules1) Alphabet-name-1 shall reference an alphabet that defines an alphanumeric coded character set.2) Alphabet-name-2 shall reference an alphabet that defines a national coded character set.3) If there are record description entries associated with the file and no SELECT WHEN clauses are specified, either alphabet-name-1 or alphabet-name-2 may be specified, but not both; and:a) if alphabet-name-1 is specified, all elementary data items of all record description entries associated with the file shall be described as usage display, and any signed numeric data items shall be described with the SIGN IS SEPARATE clause.b) if alphabet-name-2 is specified, all elementary data items of all record description entries associated with the file shall be described as usage national, and any signed numeric data items shall be described with the SIGN IS SEPARATE clause.
13.18.13.4 General rules1) The CODE-SET clause identifies alphabets to be used for converting data from a coded character set on the storage medium to the native character set during input operations, and from the native character set to the coded character set on the storage medium during output operations.2) Upon successful processing of an OPEN statement for the file referenced in this file description entry, the coded character set used to represent alphanumeric data on the storage medium is the one referenced by alphabet-name-1; the coded character set used to represent national data on the storage medium is the one referenced by alphabet-name-2.3) If the record description entries associated with the file do not contain a SELECT WHEN clause, the specified alphabet is used for code-set conversion of all data items in each record.4) If record description entries associated with the file contain a SELECT WHEN clause, a record description entry is selected by evaluation of those SELECT WHEN clauses. If there are no record

CODE-SET IS alphabet-name-1 [alphabet-name-2]FOR ALPHANUMERIC IS alphabet-name-1FOR NATIONAL IS alphabet-name-2

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 385

description entries associated with the file, the record description used for conversion is the description of the identifier or literal specified in the FROM phrase of a WRITE or REWRITE statement specifying the FILE phrase.Alphabet-name-1 is used for code-set conversion of each data item described with usage display in the selected record description entry. Alphabet-name-2 is used for code-set conversion of each data item described with usage national in the selected record description entry.NOTE There is no conversion of data items described with other usages unless a FORMAT clause applies.5) If a FORMAT clause is also specified for the file, the logical order of processing for each data item is:— formatting first, then code-set conversion during output operations;— code-set conversion first, then formatting during input operations.6) For each data item to be converted:a) On input, each coded character from the storage medium is replaced with its associated native coded character as defined in the alphabet being used.b) On output, each native coded character in the record is replaced for the storage medium with its associated coded character as defined in the alphabet being used.7) If the CODE-SET clause is not specified, the native character set is assumed for data on the external media.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

386 ©ISO/IEC 2023

13.18.14 COLUMN clause

13.18.14.1 GeneralThe COLUMN clause identifies a printable item, or a set of printable items, and specifies their horizontal location in a report line, or specifies the horizontal screen coordinate for a screen item.
13.18.14.2 General formatsFormat 1 (report-writer):

Format 2 (screen-item):

13.18.14.3 Syntax rulesALL FORMATS1) COLUMN, COL, COLUMNS, and COLS are synonyms.2) PLUS and + are synonyms.FORMAT 13) The COLUMN clause may be specified only in an elementary entry. The entry shall also contain a LINE clause or shall be subordinate to an entry containing a LINE clause.4) The keyword ARE may be specified only if COLUMNS, COLS, or NUMBERS is specified.5) The keyword IS shall not be specified if COLUMNS, COLS, or NUMBERS is specified.6) Neither integer-1 nor integer-2 shall exceed the page width. (See 13.18.39, PAGE clause)

COLUMN NUMBERCOLUMN NUMBERSCOLUMNSCOL NUMBERCOL NUMBERSCOLS

 LEFTCENTERRIGHT

 ISARE integer-1PLUS+

 integer-2

COLUMNCOL

 NUMBER IS PLUS+MINUS–

identifier-1integer-3

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 387

7) Within a given report line, any two or more absolute items defined using column numbers that are not in increasing numerical order shall be subject to a different PRESENT WHEN clause.8) The set of printable items within a given report line is subject to the following rules:a) If any two or more items overlap each other, they shall each be subject to a different PRESENT WHEN clause.b) The rightmost column positions of all absolute items shall not exceed the page width.c) If the report line ends in a set of relative printable items or consists only of such, they shall not cause the page width to be exceeded unless each of them is subject to a different PRESENT WHEN clause, in which case this rule applies only to the largest of them.9) If LEFT, CENTER, or RIGHT is specified, all the operands shall be absolute. If any of the operands is absolute and neither LEFT, CENTER, nor RIGHT is specified, LEFT is assumed.10) If more than one integer-1 or integer-2 operand is specified the clause is referred to as a multiple COLUMN clause and the following additional rules apply:a) No OCCURS clause shall be specified in the same entry.b) All the occurrences of integer-1 shall be in increasing order of magnitude.FORMAT 211) MINUS and – are synonyms.12) Identifier-1 shall be described in the file, working-storage, local-storage, or linkage section as an elementary unsigned integer data item.13) Neither the PLUS phrase nor the MINUS phrase shall be specified for the first elementary item in a screen record.
13.18.14.4 General rulesFORMAT 11) The COLUMN clause defines one or more printable items. If a COLUMN clause is not specified, the items are not printed.2) There is a fixed correspondence, specified by the implementor, between a column and a character in a national character set.3) The printable-size of a printable item is the number of columns required for printing the characters described by the item's PICTURE clause or, in the absence of a PICTURE clause, the literal specified in the VALUE clause. There is a one-to-one correspondence between a column and a character in an alphanumeric character set.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

388 ©ISO/IEC 2023

NOTE 1 Columns might not line up in a report if the printable characters are not of fixed size encoding, such as UTF-8.4) Any report line shall be defined in such a way that any given column position is used for only one printable item when the line is printed. If this rule is violated the EC-REPORT-COLUMN-OVERLAP exception condition is set to exist and the results are undefined.5) Any report line shall be defined in such a way that, when printed, the final column position of the last printable item does not exceed the page width. If this rule is violated the EC-REPORT-PAGE-WIDTH exception condition is set to exist, the report line is truncated, and the report line is printed.6) If the integer-1 phrase is specified, the following general rules apply:a) Integer-1 specifies an absolute column number.b) If LEFT is specified, integer-1 is the leftmost column of the printable item. The rightmost column of the printable item is integer-1 + printable-size – 1.c) If RIGHT is specified, integer-1 is the rightmost column of the printable item. The leftmost column of the printable item is integer-1 – printable-size + 1.d) If CENTER is specified, the printable item is centered, as follows:1. If the printable-size of the printable item is an odd number of columns, integer-1 identifies the center column of the printable item. The leftmost column is integer-1 - ((printable-size - 1) / 2); the rightmost column is integer-1 + (printable-size / 2), truncated to an integer.2. If the printable-size of the printable item is an even number of columns, integer-1 identifies the column of the printable item that is to the left of an imaginary line between the two middle columns of the printable item. The leftmost column is (integer-1 - (printable-size / 2)) + 1; the rightmost column is integer-1 + (printable-size / 2).7) Within any given report line, a horizontal counter, representing the rightmost occupied column, is maintained and updated by each printable item in the line. At the start of the line, the horizontal counter is zero.8) Integer-2 specifies a relative column number. If integer-2 is specified for an item that is the first printable item in the current line, it specifies the leftmost column of that item. Otherwise, the value of integer-2 is the number of column positions between the rightmost column of the preceding printable item and the leftmost column of the item being defined. The position of the item's leftmost character is obtained by adding integer-2 to the current line's horizontal counter.NOTE 2 The value of integer-2 minus 1 is the number of blank columns, if any, immediately preceding the item.9) The rightmost column position of each printable item becomes the new value of the horizontal counter.10) Any unoccupied columns in each print line are filled with space characters.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 389

11) If an entry containing a LINE clause has no subordinate entry defining a printable item, the resultant report line will be blank.12) A multiple COLUMN clause is functionally equivalent to a COLUMN clause with a single operand, together with a simple OCCURS clause whose integer is equal to the number of operands of the COLUMN clause, except that the multiple COLUMN clause allows the printable items to be defined at unequal horizontal intervals.FORMAT 213) The COLUMN clause specifies the column in which the leftmost character of the screen item is to appear on the screen during the execution of an ACCEPT screen or a DISPLAY screen statement. Positioning of the screen record and within the screen record appears the same on the terminal display regardless of whether the whole screen record or just a portion of it is referenced in an ACCEPT screen or a DISPLAY screen statement.NOTE 3 Columns might not line up on a screen if the characters on the screen are not of fixed size encoding, such as UTF-8.14) If the COLUMN clause does not specify PLUS or MINUS, the clause gives the column number relative to the first column of the screen record. A column number of 1 represents the first column of the screen record.15) If the PLUS or MINUS phrase is specified in the COLUMN clause, the column number is relative to the end of the preceding screen item in the same screen record, such that if COLUMN PLUS 1 is specified, the screen item starts immediately following the preceding screen item. PLUS denotes a column position that is increased by the value of identifier-1 or integer-3. MINUS denotes a column position that is decreased by the value of identifier-1 or integer-3.16) A setting of COLUMN 1 is assumed for screen descriptions that specify the LINE clause but omit the COLUMN clause.17) If both the LINE clause and the COLUMN clause are omitted, the following apply:a) if no previous screen item has been defined, LINE 1 COLUMN 1 of the screen is assumed.b) if a previous screen item has been defined, the line of that previous item and COLUMN PLUS 1 is assumed.18) If a column number of zero is specified, the EC-SCREEN-STARTING-COLUMN exception condition is set to exist and the results are as if 1 were specified for the column number.19) If the explicit or implicit column number of the first character of the screen item exceeds the number of columns available for a terminal, the EC-SCREEN-STARTING-COLUMN exception condition is set to exist and that screen item does not take part in the execution of the ACCEPT screen or DISPLAY screen statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

390 ©ISO/IEC 2023

Otherwise, if the starting column and length of a screen item are such that the field would extend outside the end of the terminal line, the EC-SCREEN-ITEM-TRUNCATED exception condition is set to exist and the field is truncated at the end of the line.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 391

13.18.15 CONSTANT RECORD clause

13.18.15.1 GeneralThe CONSTANT RECORD clause identifies a structured constant. The content of a structured constant cannot be modified.
13.18.15.2 General format

13.18.15.3 Syntax rules1) The CONSTANT RECORD clause may be specified only in the local-storage or working-storage sections.2) Neither the data item described by the subject of the entry nor any data item subordinate to the subject of the entry shall be specified as a receiving data item.
13.18.15.4 General rule1) The content of a record described with the CONSTANT RECORD clause is as though the clause had been omitted and the record had been the subject of an INITIALIZE statement that is specified with the following phrases:— the FILLER phrase;— the VALUE phrase with the category-name of ALL;— and the DEFAULT phrase.

CONSTANT RECORD

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

392 ©ISO/IEC 2023

13.18.16 CONTROL clause

13.18.16.1 GeneralThe CONTROL clause establishes a hierarchy of control breaks for the report.
13.18.16.2 General format

13.18.16.3 Syntax rules1) CONTROL and CONTROLS are synonyms.2) Data-name-1 shall not be defined in the report section.3) Data-name-1 shall not be subject to any OCCURS clauses.4) Data-name-1 may be reference-modified. If it is, leftmost-position and length shall be integer literals.5) The entry specified by data-name-1 shall not have an occurs-depending table subordinate to it.6) Data-name-1 shall be unique in any given CONTROL clause. Two or more instances of data-name-1 in the same clause may, however, refer to the same physical data item or to overlapping data items.7) Data-name-1 shall not reference a variable-length group.
13.18.16.4 General rules1) The order of appearance of the operands of the CONTROL clause establishes the levels of the control hierarchy. The first data-name-1 is the major control; the next recurrence of data-name-1 is an intermediate control, etc. The last recurrence of data-name-1 is the minor control.2) Specifying FINAL is equivalent to specifying a data item whose value does not change throughout the processing of the report. Therefore FINAL, if specified, is associated with the highest level in the hierarchy.3) For each data-name-1 an internal data item, known as a prior control, is implicitly defined, having the same data description as the corresponding data item and a mechanism is established to save each control data item in the corresponding prior control and subsequently to compare these values to sense for control breaks. Execution of the chronologically first GENERATE statement for a given report saves each current control data item in the corresponding prior control. Subsequent executions of any GENERATE statement for that report automatically test the current value of each control data item, in order major to minor, for equality with the corresponding prior control. If a change of value in a control data item is detected, no further control data items are tested for the

CONTROL ISCONTROLS ARE

 { data-name-1 } ...FINAL [data-name-1] ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 393

current GENERATE statement, and control break processing for that level and any lower levels is performed automatically.4) If a control break has been detected during the execution of a GENERATE statement, the control data items are processed as follows:a) If any control footing is defined for the report, the current contents of control data items are saved and the corresponding prior controls are stored in the control data items before any control footing is printed. This ensures that any reference to a control data item in a control footing will always yield the value that the control data item had before the control break. If a USE BEFORE REPORTING declarative procedure is specified for the control footing, any reference to a control data item in this section will similarly yield the prior value. If the printing of the control footing causes a page advance and the page heading or page footing refers to a control data item, the value produced is similarly the prior value. When the printing of each control footing has been accomplished, the control data items are restored from the prior controls to their new current values, with these new current values remaining in the prior controls. All subsequent references to the control data items will obtain the new current values.b) If no control footing is defined for the report, the new current values of the control data items are stored in the corresponding prior controls.(See also 13.18.57, TYPE clause.)5) When a TERMINATE statement is executed, if any control footing is defined for the report, the prior controls are stored in the control data items before each control footing is printed, as though a highest-level control break had been detected. The result is the same as that of a control break detected during the execution of a GENERATE statement.6) Data-name-1 shall not reference a zero-length group item.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

394 ©ISO/IEC 2023

13.18.17 DEFAULT clause

13.18.17.1 GeneralThe DEFAULT clause specifies an explicit alternative value for a data item that contains all spaces or was found to be invalid on format during the format validation stage of the execution of a VALIDATE statement.NOTE The DEFAULT clause feature of the VALIDATE facility is an obsolete feature.
13.18.17.2 General format

13.18.17.3 Syntax rules1) The subject of the entry shall not be of class index, message-tag, object, or pointer.2) Literal-1 or the data item referenced by identifier-1 shall be valid as a sending operand for a MOVE statement specifying the subject of the entry as the receiving operand.
13.18.17.4 General rules1) A default value is established during the format validation stage of the execution of a VALIDATE statement if any of the following circumstances apply:a) In the case of an elementary data item, if the item's associated internal indicator is set to invalid on format, or the item is implicitly or explicitly of usage display or national and contains all spaces.b) In the case of an alphanumeric group or strongly-typed group item, if all the item's subordinate elementary data items are implicitly or explicitly of usage display and contain all spaces, and none of their associated internal indicators is set to invalid on format.c) In the case of a national group item, if all the item's subordinate elementary data items contain all spaces.In these cases, any subsequent reference to that data item during the execution of the current VALIDATE statement uses the default value rather than the actual content of the item. The data item itself remains unchanged. The DEFAULT clause is ignored during the execution of any statement other than a VALIDATE statement.2) Except in the case of DEFAULT NONE, the DEFAULT clause specifies the default value explicitly. If literal-1 is specified, the default value used is the value of literal-1. If identifier-1 is specified, the default value used is the value of the data item referenced by identifier-1.

DEFAULT IS literal-1identifier-1NONE

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 395

3) If the DEFAULT clause is not specified in the data item's data description entry, or if DEFAULT NONE is specified, the default value is that which would be supplied for the data item by the execution of an implicit INITIALIZE statement without a REPLACING or VALUE phrase.4) If NONE is specified, the effect of the clause is the same as if no DEFAULT clause were specified, except that, if the data item contains all spaces or the data item is elementary and is found to be invalid on format, any DESTINATION clause specified for the data item is ignored.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

396 ©ISO/IEC 2023

13.18.18 DESTINATION clause

13.18.18.1 GeneralThe DESTINATION clause specifies one or more data items to which data is to be implicitly moved during the execution of the input distribution stage of a VALIDATE statement.NOTE The DESTINATION clause feature of the VALIDATE facility is an obsolete feature.
13.18.18.2 General format

13.18.18.3 Syntax rules1) The description of the data item referenced by identifier-1 shall be such that a syntactically correct MOVE statement results when that data item is the receiving operand and the subject of the entry, qualified and subscripted where necessary, is the sending operand.2) The data description entry for the data item referenced by identifier-1 or any data item subordinate to identifier-1 shall not contain a VALIDATE-STATUS clause.3) If the subject of the entry is a global name, every data-name appearing in identifier-1 shall be a global name.
13.18.18.4 General rules1) The DESTINATION clause causes one or more implicit MOVE statements to be executed during the input distribution phase of the execution of a VALIDATE statement that references a data item whose description contains the DESTINATION clause in the same or in a subordinate entry. The DESTINATION clause is ignored during the execution of any statement other than a VALIDATE statement.2) If a default value has not been assigned to the item, as described in General rule 1 of the DEFAULT clause, the actual content of the item is moved to the data item referenced by identifier-1.3) If a default value has been assigned to the item and DEFAULT NONE is not specified in the entry, the item's default value is moved to the data item referenced by identifier-1.4) If a default value has been assigned to the item and DEFAULT NONE is specified in the entry, the data item referenced by identifier-1 is unchanged.5) If identifier-1 contains subscripts defined in VARYING clauses that are processed at the same time as the DESTINATION clause, these subscripts may be used to store different occurrences of the data item in the same number of different occurrences of the destination item. If a VARYING clause is not used, any subscripts specified in the DESTINATION clause are unchanged.6) The sending data determined by the above general rules is moved to the data item referenced by each identifier-1 in the order specified, according to the rules for the MOVE statement.

DESTINATION IS { identifier-1 } ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 397

13.18.19 DYNAMIC LENGTH clause

13.18.19.1 GeneralThe DYNAMIC LENGTH clause specifies that the length of a data item can vary at runtime.
13.18.19.2 General format

13.18.19.3 Syntax rules1) A PICTURE clause shall be specified for the subject of the entry. The character-string specified in that PICTURE clause shall be one instance of the picture symbol 'N', or 'X'.2) If dynamic-length-structure-name-1 is specified, it shall correspond to a dynamic-length-structure-name specified in the DYNAMIC LENGTH STRUCTURE clause in the SPECIAL-NAMES paragraph, as defined in 12.3.7, SPECIAL-NAMES paragraph.3) If dynamic-length-structure-name-1 is not specified, the structure of the dynamic-length elementary item is defined by the implementor.4) If the LIMIT phrase and dynamic-structure-name-1 are both specified, integer-1 shall not be greater than the maximum length associated with dynamic-length-structure-name-1.
13.18.19.4 General rules1) The DYNAMIC LENGTH clause specifies that the length of the data item defined by the entry can vary. The minimum length of the data item is zero. The picture symbol determines the class.2) Integer-1 specifies the maximum number of characters that can be contained by the subject of the entry. If the LIMIT phrase is not specified, the maximum number of characters that can be contained by the subject of the entry is implementor-defined.

DYNAMIC LENGTH [dynamic-length-structure-name-1] [LIMIT IS integer-1]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

398 ©ISO/IEC 2023

13.18.20 Entry-name clause

13.18.20.1 GeneralThe entry-name clause specifies the name of the item that is being described. A data-name or screen-name may be used to give the item a name.
13.18.20.2 General formatsFormat 1 (data-name)
Format 2 (screen-name)
Format 3 (filler)
13.18.20.3 Syntax rules1) Data-name-1 shall not be qualified or subscripted.2) If the entry-name clause is not specified in a data description entry, a report group description entry, or a screen description entry, the word FILLER is assumed.3) If the entry-name clause is specified in a data description entry or a report group description entry, either data-name-1 or FILLER shall be specified. If the entry-name clause is specified in a screen description entry, either screen-name-1 or FILLER shall be specified.
13.18.20.4 General rule1) The word FILLER may be used to name a data, report, or screen item. Under no circumstances shall a FILLER item be referred to explicitly.

data-name-1
screen-name-1
FILLER

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 399

13.18.21 ERASE clause

13.18.21.1 GeneralThe ERASE clause clears part of the line or the screen starting at the cursor position.
13.18.21.2 General format

13.18.21.3 Syntax rules1) The word EOL is equivalent to the words END OF LINE.2) The word EOS is equivalent to the words END OF SCREEN.
13.18.21.4 General rules1) When the ERASE clause is specified, a portion of the screen is cleared during the execution of a DISPLAY screen statement before data is transferred to the screen item. The clearing begins at the line and column coordinates specified for the subject of the entry and continues as follows:— If LINE is specified, the clearing continues to the end of the line.— If SCREEN is specified, the clearing continues to the end of the screen.2) The ERASE clause is ignored during all phases of the execution of an ACCEPT screen statement.

ERASE END OF LINEEND OF SCREENEOLEOS

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

400 ©ISO/IEC 2023

13.18.22 EXTERNAL clause

13.18.22.1 GeneralThe EXTERNAL clause specifies that a type declaration, data item, or a file connector is external. The constituent data items and group data items of an external data record are available in a run unit to every runtime element that describes the record as external.
13.18.22.2 General format

13.18.22.3 Syntax rules1) The EXTERNAL clause may be specified only in file description entries, in level 1 data description entries in the working-storage section, and in level 1 type declarations.2) In the same source element, the externalized name of the subject of the entry that includes the EXTERNAL clause shall not be the same as the externalized name of any other entry that includes the EXTERNAL clause.3) Literal-1 shall be an alphanumeric or national literal and shall be neither a figurative constant nor a zero-length literal.4) The EXTERNAL clause shall not be specified for a data item of class object or pointer.5) When a record description is an external item, any associated type declaration that is strongly typed shall also be external.NOTE This covers the situation where a file is declared as external and the associated record descriptions have TYPE clauses.
13.18.22.4 General rules1) If the EXTERNAL clause is specified in a record description entry, the data contained in the record is external and may be accessed within the run unit by any runtime element that describes the same record as external, subject to the following rules.NOTE 1 Use of the EXTERNAL clause does not imply that the associated file-name or data-name is a global name.2) If the EXTERNAL clause is specified in a type declaration entry, any data description containing that type declaration shall be at level-number 1.3) If a type declaration is specified with the EXTERNAL phrase, the record descriptions in which it is specified are also external and subject to the same rules.4) If the EXTERNAL clause is specified in a file description entry:

IS EXTERNAL [AS literal-1]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 401

a) the file connector associated with this file description entry is an external file connector; andb) the data contained in all record description entries subordinate to that file description entry is external and may be accessed by any runtime element in the run unit that describes the same file and records as external, subject to the following rules.NOTE 2 13.18.57, TYPE clause, Syntax rule 4; and 13.18.33, Level-number, General rule 3; require that if the record description is strongly typed, it is the only record description for the file.5) Literal-1, if specified, is the name of the file connector or record that is externalized to the operating environment. If literal-1 is not specified, the externalized name of the file connector or record is the name specified in the file description entry or the data-name format of the entry-name clause, respectively.6) Within a run unit, if two or more source elements describe the same external data record, each name that is externalized to the operating environment for the record description entries shall be the same; the VALUE clause specification, if any, for each record name of the associated record description entries shall be identical; and the records shall define the same number of bytes. A source element that describes an external record that is not strongly typed may contain a data description entry including the REDEFINES clause that redefines the complete external record, and this complete redefinition need not occur identically in other source elements in the run unit. Additionally, for strongly typed external items, the rules in 8.5.3, Types also apply.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

402 ©ISO/IEC 2023

13.18.23 FOREGROUND-COLOR clause

13.18.23.1 GeneralThe FOREGROUND clause specifies the foreground color for the screen item.
13.18.23.2 General format

13.18.23.3 Syntax rules1) Identifier-1 shall be described in the file, working-storage, local-storage, or linkage section as an unsigned integer data item.2) Integer-1 shall have a value in the range of 0 to 7.
13.18.23.4 General rules1) When an ACCEPT screen statement or a DISPLAY screen statement referencing the associated screen item is executed, the content of the data item referenced by identifier-1 shall be in the range of 0 to 7.2) Integer-1 or the content of the data item referenced by identifier-1 specifies the color number of the foreground color to be used for displaying the screen item. The color associated with the color number is specified in 9.2.7, Color number.3) A FOREGROUND-COLOR clause specified at the group level applies to each elementary screen item in that group.4) When a FOREGROUND-COLOR clause is not specified or the value is not in the range 0 to 7, the foreground color is implementor-defined.

FOREGROUND-COLOR IS identifier-1integer-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 403

13.18.24 FORMAT clause

13.18.24.1 GeneralThe FORMAT clause specifies that records written to the file are to be formatted to an external representation during the output process and records read from the file are to be converted from the external format into internal representation during the input process. The external representation is suitable for presentation or printing.
13.18.24.2 General format

13.18.24.3 Syntax rules1) If more than one record description entry is associated with a file description entry in which the FORMAT clause is specified, each of these record description entries shall contain a SELECT WHEN clause.2) The REDEFINES clause and the RENAMES clause shall not be specified in a record description entry associated with a file description entry in which a FORMAT clause is specified or in the data description entry of the identifier specified in a FROM phrase in a REWRITE or WRITE statement referencing that file description entry.3) Data items of class index, message-tag, object, and pointer shall not be specified in a record description entry associated with a file description entry in which a FORMAT clause is specified or in the data description entry of the identifier specified in a FROM phrase in a REWRITE or WRITE statement referencing that file description entry.
13.18.24.4 General rules1) The FORMAT clause specifies that external media format is to be used for records written to the file. In external media format, data contains the appropriate encoding for presentation or printing.NOTE The data in the record area is visible to the runtime module in internal representation.2) A record description entry or a data description entry is selected for use in formatting during an input-output operation referencing a file description entry in which a FORMAT clause is specified as follows:a) If only one record description entry is associated with the file description entry, that record description entry is selected.b) If more than one record description entry is associated with the file description entry, the record description entry identified by the SELECT WHEN clause is selected.

FORMAT BITCHARACTERNUMERIC

 DATA

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

404 ©ISO/IEC 2023

c) If there are no record description entries associated with the file description entry, the record description entry or data description entry that is selected depends on the input-output operation as follows:1. If the input-output statement is a READ statement, it is the data description entry of the identifier that is specified in the INTO phrase of that READ statement.2. If the input-output statement is a WRITE or REWRITE statement and an identifier is specified in the FROM phrase, it is the data description entry of that identifier.3. If the input-output statement is a WRITE or REWRITE statement and a literal is specified in the FROM phrase, an implicit data description entry that describes the literal is the data description entry as follows:a. If the literal is an alphanumeric literal, the implicit data description entry is
01 PIC X(n).where n is the number of alphanumeric character positions in the literal.b. If the literal is a boolean literal, the implicit data description entry is
01 PIC 1(n).where n is the number of boolean character positions in the literal.c. If the literal is a national literal, the implicit data description entry is
01 PIC N(n).where n is the number of national character positions in the literal.3) Elementary data description entries of the selected record description entry are used to determine the data items to be formatted.4) If CHARACTER is specified, data items described with the following characteristics are selected for formatting:— class alphabetic— class alphanumeric— class boolean with usage display— class national— class numeric with usage display— class numeric with usage national.5) If BIT is specified, data items described with class boolean and usage bit are selected for formatting.6) If NUMERIC is specified, data items described with class numeric and a usage other than national or display are selected for formatting.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 405

7) If a data item is not selected for formatting, it is transferred as is with no conversion or formatting taking place.8) For a WRITE or REWRITE statement, each selected data item is formatted as necessary in a temporary area for output in external media format. Output formatting does not appear in the record area. Signs are presented as SIGN IS LEADING SEPARATE.9) For a READ statement, each selected data item is formatted as necessary to the appropriate internal representation. The record area contains the resultant logical record in internal representation.10) The implementor shall specify the representation produced as a result of processing the FORMAT clause, including any control information that may be necessary for presentation or printing. This representation may be the same as internal representation.11) Data items selected for formatting are restored to the same internal representation when read with the same FORMAT clause on the same implementation, except for exclusions specified by the implementor.12) If the associated file connector is an external file connector, all file description entries in the run unit that are associated with that file connector shall specify the same FORMAT clause.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

406 ©ISO/IEC 2023

13.18.25 FROM clause

13.18.25.1 GeneralThe FROM clause specifies the source of data for an ACCEPT screen statement and a DISPLAY screen statement.
13.18.25.2 General format

13.18.25.3 Syntax rules1) Identifier-1 shall be defined in the file, working-storage, local-storage, or linkage section. 2) The category of identifier-1 and literal-1 shall be a permissible category as a sending operand in a MOVE statement where the receiving operand has the same PICTURE clause as the subject of the entry.3) If the subject of this entry is subject to an OCCURS clause, identifier-1 shall be specified without the subscripting normally required. Additional requirements are specified in 13.18.38, OCCURS clause, Syntax rule 13.4) Identifier-1 shall not reference a variable-length group.5) Literal-1 shall not be a zero-length literal.
13.18.25.4 General rule1) The subject of the entry is an output screen item.

FROM identifier-1literal-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 407

13.18.26 FULL clause

13.18.26.1 GeneralThe FULL clause specifies that the operator shall either leave the screen item completely empty or fill it entirely with data.
13.18.26.2 General format

13.18.26.3 General rules1) If a FULL clause is specified at the group level, it applies to each elementary input screen item in that group that does not have the JUSTIFIED clause specified. 2) The FULL clause is effective during the execution of any ACCEPT screen statement that causes the screen item to be accepted, provided the cursor enters the screen item at some time during the execution of the ACCEPT statement.3) The effect of the FULL clause is to reject the normal termination key unless that clause is satisfied. To satisfy the clause for a screen item:a) If it is alphanumeric or alphanumeric-edited, either the entire item shall contain spaces, or both the first and last character positions shall contain non-space characters; b) If it is national or national-edited, either the entire item shall contain spaces, or both the first and last character positions shall contain non-space characters;c) If it is numeric or numeric-edited, either the value shall be zero, or there shall be no digit position in which zero suppression has taken effect;d) If it is boolean, the entire item shall contain boolean '0' or '1' characters.4) For fields that are both input and output, the FULL clause may be satisfied by the contents of the literal or identifier referenced in the FROM or USING clause, as well as operator keyed data.5) The FULL clause shall not be effective if a function key is used to terminate the execution of the ACCEPT statement.6) The specification of the FULL and REQUIRED clauses together requires that the field be entirely filled before the normal termination key has any effect.7) The FULL clause is ignored for a field that is not an input field.

FULL

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

408 ©ISO/IEC 2023

13.18.27 GLOBAL clause

13.18.27.1 GeneralThe GLOBAL clause specifies that a constant-name, a data-name, a file-name, a report-name, or a screen-name is a global name. A global name is available to every program contained within the program that declares it.
13.18.27.2 General format

13.18.27.3 Syntax rules1) The GLOBAL clause may be specified only in the following entries:a) A constant entry.b) A data description entry whose level-number is 1 that is specified in the file, working-storage, local-storage, or linkage section.c) A screen-description entry whose level-number is 1.d) A file description entry.e) A report description entry.2) If the SAME RECORD AREA clause is specified for several files, the record description entries or the file description entries for these files shall not include the GLOBAL clause.3) If the GLOBAL clause is not specified in the file description entry of a containing program, the file shall not be referenced directly or indirectly by any input-output statements in any contained program, unless they are defined as external files in each of the source elements in which they are referenced.4) The GLOBAL clause shall not be specified in a factory definition, an instance definition, or a method definition.
13.18.27.4 General rules1) A constant-name, data-name, file-name, report-name, or screen-name described using a GLOBAL clause is a global name. All data-names subordinate to a global name are global names. All condition-names associated with a global name are global names.2) A statement in a program contained directly or indirectly within a program that describes a global name may reference that name without describing it again. (See 8.4.6, Scope of names.)3) If the GLOBAL clause is used in a data description entry that contains the REDEFINES clause, it is only the subject of that REDEFINES clause that possesses the global attribute.

IS GLOBAL

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 409

13.18.28 GROUP INDICATE clause

13.18.28.1 GeneralThe GROUP INDICATE clause specifies that the associated printable item is printed only on the first occurrence of its report group after execution of an INITIATE statement, or after a control break or page advance.
13.18.28.2 General format

13.18.28.3 Syntax rule1) The GROUP INDICATE clause may be specified only within a detail report group description, in an elementary entry that also contains a COLUMN clause and a SOURCE or VALUE clause.
13.18.28.4 General rule1) The GROUP INDICATE clause has the same effect as a PRESENT WHEN clause where the associated condition is true only on the first occasion that a GENERATE is issued for the current detail group after any of the following events. (See 13.18.41, PRESENT WHEN clause.)a) Execution of an INITIATE for the report.b) A page advance, if the report is divided into pages. (See 13.18.39, PAGE clause.)c) Any control break, if the report description contains a CONTROL clause.

GROUP INDICATE

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

410 ©ISO/IEC 2023

13.18.29 GROUP-USAGE clause

13.18.29.1 GeneralA GROUP-USAGE clause with a BIT phrase specifies that the group item defined by the subject of the entry is to be treated as an elementary item of usage bit and category boolean, unless specified otherwise.A GROUP-USAGE clause with a NATIONAL phrase specifies that the group item defined by the subject of the entry is to be treated as an elementary item of usage national and category national, unless otherwise specified.
13.18.29.2 General format

13.18.29.3 Syntax rules1) The GROUP-USAGE clause may be specified only if the subject of the entry is a group item that is not strongly typed and not a variable-length group.2) When the BIT phrase is specified, USAGE BIT is implied for the subject of the entry. A USAGE clause shall not be explicitly specified for the subject of the entry, but USAGE BIT may be implicitly specified. All elementary items subordinate to the subject of the entry shall be explicitly or implicitly described as usage bit, class and category boolean. All subordinate group items shall be explicitly or implicitly described as GROUP-USAGE BIT.3) When the NATIONAL phrase is specified, USAGE NATIONAL is implied for the subject of the entry. A USAGE clause shall not be explicitly specified for the subject of the entry, but USAGE NATIONAL may be implicitly specified. All elementary items subordinate to the subject of the entry shall be explicitly or implicitly described as usage national. Any signed numeric data items shall be described with the SIGN IS SEPARATE clause. All subordinate group items shall be explicitly or implicitly described as GROUP-USAGE NATIONAL.
13.18.29.4 General rules1) When the BIT phrase is specified:a) The subject of the entry is a bit group and also a bit data item; its class and category are boolean.b) Unless stated otherwise, a bit group is treated as though it were an elementary data item of usage bit and class and category boolean described with PICTURE 1(m), where m is the bit length of the group.c) Data items contained within a bit group are allocated in storage in accordance with the rules specified in 8.5.1.6.3, Alignment of data items of usage bit.

GROUP-USAGE IS BITNATIONAL

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 411

2) When the NATIONAL phrase is specified:a) The subject of the entry is a national group; its class and category are national.b) Unless stated otherwise, a national group is treated as though it were an elementary data item of usage national and class and category national described with PICTURE N(m), where m is the length of the group.NOTE The GROUP-USAGE NATIONAL clause is needed so that groups containing only national characters can be properly truncated and padded with national characters and can be correctly processed for operations such as INSPECT. Without the GROUP-USAGE NATIONAL clause, the content of such a group item would be treated as category alphanumeric, possibly leading to corruption or invalid handling of data.3) If a GROUP-USAGE clause is not specified or implied for a group item that is not strongly typed and is not a variable-length group, that group item is an alphanumeric group item.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

412 ©ISO/IEC 2023

13.18.30 HIGHLIGHT clause

13.18.30.1 GeneralThe HIGHLIGHT clause specifies that the field is to appear on the screen with the highest level of intensity.
13.18.30.2 General format

13.18.30.3 General rules1) A HIGHLIGHT clause specified at the group level applies to each elementary screen item in that group.2) When the HIGHLIGHT clause is specified, the characters that constitute the screen item will be displayed in the foreground color at the highest intensity when the screen item is referenced in an ACCEPT screen or a DISPLAY screen statement.

HIGHLIGHT

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 413

13.18.31 INVALID clause

13.18.31.1 GeneralThe INVALID clause specifies the circumstances under which a data item fails the relation validation stage of the execution of a VALIDATE statement.NOTE The INVALID clause feature of the VALIDATE facility is an obsolete feature.
13.18.31.2 General format

13.18.31.3 Syntax rule1) The subject of the entry shall not be of class index, message-tag, object, or pointer.
13.18.31.4 General rules1) The INVALID clause takes effect during the relation validation stage of the execution of a VALIDATE statement. The INVALID clause is ignored during the execution of any statement other than a VALIDATE statement.2) The INVALID clause takes effect only if the item's associated internal indicator is still set to its initial valid value.3) Condition-1 is evaluated at the beginning of the execution of the relation validation stage, with the following two possible results:a) If condition-1 is true, the item's associated internal indicator is set to invalid on relation.b) If condition-1 is false, the INVALID clause has no effect.

INVALID WHEN condition-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

414 ©ISO/IEC 2023

13.18.32 JUSTIFIED clause

13.18.32.1 GeneralThe JUSTIFIED clause specifies right justification of data within a receiving data item or screen item.
13.18.32.2 General format

13.18.32.3 Syntax rules1) The JUSTIFIED clause may be specified only at the elementary item level.2) JUST is an abbreviation for JUSTIFIED.3) The JUSTIFIED clause may be specified only for a data item whose category is alphabetic, alphanumeric, boolean, or national.4) The JUSTIFIED clause shall not be specified for a dynamic-length elementary item.
13.18.32.4 General rules1) When the receiving data item is described with the JUSTIFIED clause and the sending operand is larger than the receiving data item, the leftmost character positions or boolean positions of the sending operand shall be truncated.2) When the receiving data item is described with the JUSTIFIED clause and it is larger than the sending operand, the data is aligned at the rightmost character position or boolean position in the data item with zero fill for the leftmost boolean positions and space fill for the leftmost character positions. For data items implicitly or explicitly described as usage national, national zeros shall be used for zero fill and national spaces shall be used for space fill. For data items implicitly or explicitly described as usage display, alphanumeric zeros shall be used for zero fill and alphanumeric spaces shall be used for space fill. For data items implicitly or explicitly described as usage bit, bit zeros shall be used for zero fill.3) When the JUSTIFIED clause is omitted, the standard rules for aligning data within an elementary item apply (see 14.6.8, Alignment and transfer of data into data items).

JUSTIFIEDJUST

 RIGHT

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 415

13.18.33 Level-number

13.18.33.1 GeneralLevel numbers 1 through 49 indicate the position of a data item or screen item within the hierarchical structure described by a data description entry, a report group description entry, or a screen description entry. In addition, level numbers 66, 77, and 88 are used to identify special entries.
13.18.33.2 General format

13.18.33.3 Syntax rules1) A level-number is required as the first element in each data description or screen description entry.2) Data description entries subordinate to a FD or SD entry shall have level-numbers with the values 66, 88, or 1 through 49.3) A level-number in the range of 1 through 9 may be specified as 01 through 09.4) Report group description entries that are subordinate to an RD entry shall have level-numbers with the values 1 through 49.5) Data description entries in the working-storage section, local-storage section, and linkage section shall have level-numbers 66, 77, 88, or 1 through 49.6) Screen description entries shall have level-numbers 1 through 49.
13.18.33.4 General rules1) The level-number 1 identifies the first entry in each record description, type declaration, or report group.2) Special level-numbers have been assigned to certain entries where there is no real concept of hierarchy:a) Level-number 77 is assigned to identify noncontiguous working storage data items, noncontiguous local storage data items, and noncontiguous linkage data items, and may be used only as described by the data description format of the data description entry.b) Level-number 66 is assigned to identify RENAMES entries and may be used only as described by the renames format of the data description entry.c) Level-number 88 is assigned to entries that define condition-names associated with a conditional variable and to define criteria to be used to validate a data item. Level-number 88 maybe used only as described by the condition-name format or the validation format of the data description entry.

level-number

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

416 ©ISO/IEC 2023

3) Multiple level 1 entries subordinate to a FD or SD entry represent implicit redefinitions of the same area. Multiple level 1 entries subordinate to a report description entry do not represent implicit redefinitions of the same area.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 417

13.18.34 LINAGE clause

13.18.34.1 GeneralThe LINAGE clause provides a means for specifying the depth of a logical page in terms of number of lines. It also provides for specifying the size of the top and bottom margins on the logical page, and the line number, within the page body, at which the footing area begins.
13.18.34.2 General format

13.18.34.3 Syntax rules1) Data-name-1, data-name-2, data-name-3, and data-name-4 shall not be subject to any OCCURS clauses.2) Data-name-1, data-name-2, data-name-3, and data-name-4 shall reference elementary unsigned numeric integer data items.3) Integer-2 shall not be greater than integer-1.4) Integer-3, integer-4 may be zero.
13.18.34.4 General rules1) The LINAGE clause provides a means for specifying the size of a logical page in terms of number of lines. The logical page size is the sum of the values referenced by each phrase except the FOOTING phrase. If the LINES AT TOP or LINES AT BOTTOM phrases are not specified, the values of these items are zero. If the FOOTING phrase is not specified, no end-of-page condition independent of the page overflow condition exists.There is not necessarily any relationship between the size of the logical page and the size of a physical page.2) Integer-1 or the value of the data item referenced by data-name-1 specifies the number of lines that may be written or spaced on the logical page. This number is called the page size. That part of the logical page in which these lines may be written or spaced is called the page body.

LINAGE IS data-name-1integer-1

 LINES WITH FOOTING AT data-name-2integer-2

LINES AT TOP data-name-3integer-3

 LINES AT BOTTOM data-name-4integer-4

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

418 ©ISO/IEC 2023

3) Integer-2 or the value of the data item referenced by data-name-2 specifies the line number within the page body at which the footing area begins. The value shall be greater than zero and not greater than integer-1 or the value of the data item referenced by data-name-1.The footing area is the area of the page body between the footing start and the page size, inclusive.4) Integer-3 or the value of the data item referenced by data-name-3 specifies the number of lines in the top margin on the logical page. This number is called the top margin.5) Integer-4 or the value of the data item referenced by data-name-4 specifies the number of lines in the bottom margin on the logical page. This number is called the bottom margin.6) The values for the page size, top margin, footing start, and bottom margin are determined as follows:a) If a literal is specified, the value is always that literal.b) If a data-name is specified, the value is the content of the data item referenced by the associated data-name at the following times when the indicated statement references the associated file:1. At the completion of an OPEN statement with the OUTPUT phrase.2. During the execution of a WRITE statement that is specified with the ADVANCING PAGE phrase. This occurs before the device is positioned and after all positioning on the current page.3. During the execution of a WRITE statement that causes a page overflow condition. This occurs before the device is positioned and after all positioning on the current page.When a value is determined for the page size, top margin, footing start, and bottom margin, the value applies to the next logical page.The value shall conform to the following rules:1. The page size shall be greater than zero.2. The footing start shall be greater than zero and not greater than the page size.If the value does not conform to these two rules, the EC-I-O-LINAGE exception condition is set to exist. If execution continues after processing of this exception condition, it continues with the statement following the WRITE statement; the LINAGE -COUNTER is set to 0 and remains at that value until the file is closed; and all subsequent WRITE statements referencing the file cause the EC-I-O-LINAGE exception condition to continue to exist until the file is closed.7) A LINAGE-COUNTER is generated by the presence of a LINAGE clause. The value in the LINAGE-COUNTER at any given time represents the line number at which the device is positioned within the current page body. The rules governing the LINAGE-COUNTER are as follows:a) A separate LINAGE-COUNTER is supplied for each file described in the file section whose file description entry contains a LINAGE clause.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 419

b) LINAGE-COUNTER may be referenced only in procedure division statements; however only the input-output control system may change the value of LINAGE-COUNTER. Since more than one LINAGE-COUNTER may exist in a source element, the user shall qualify LINAGE-COUNTER by file-name when necessary.c) LINAGE-COUNTER is automatically modified, according to the following rules, during the execution of a WRITE statement to an associated file:1. When the ADVANCING PAGE phrase of the WRITE statement is specified, the LINAGE-COUNTER is automatically reset to one. During the resetting of LINAGE-COUNTER to the value one, the value of LINAGE-COUNTER is implicitly incremented to exceed the value specified by integer-1 or the data item referenced by data-name-1.2. When the ADVANCING phrase of the WRITE statement is specified, the LINAGE-COUNTER is incremented by the value of the integer specified in the ADVANCING phrase or the contents of the data item referenced by the identifier specified in the ADVANCING phrase.3. When the ADVANCING phrase of the WRITE statement is not specified, the LINAGE-COUNTER is incremented by the value one. 4. The value of LINAGE-COUNTER is automatically reset to one when the device is repositioned to the first line that may be written on for each of the succeeding logical pages. d) The value of LINAGE-COUNTER is automatically set to one at the time an OPEN statement with the OUTPUT phrase is executed for the associated file.8) Each logical page is contiguous to the next with no additional spacing provided.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

420 ©ISO/IEC 2023

13.18.35 LINE clause

13.18.35.1 GeneralThe LINE clause introduces a report line, or a set of adjacent report lines, and specifies their vertical positioning.The LINE clause also specifies vertical positioning for its screen item.
13.18.35.2 General formatsFormat 1 (report-writer):

Format 2 (screen):

13.18.35.3 Syntax rulesALL FORMATS1) PLUS and + are synonyms.FORMAT 12) LINE and LINES are synonyms.3) Integer-1 specifies an absolute line number. Integer-2 specifies a relative line number. Neither integer-1 nor integer-2 shall exceed the page limit, or 9999 if the report is not divided into pages. (See 13.18.39, PAGE clause.) Integer-2 may be zero. Integer-1 and integer-2 shall be unsigned.4) Within a given report group description entry, an entry that contains a LINE clause shall not have a subordinate entry that also contains a LINE clause.5) If the report is not divided into pages, all its LINE clauses shall be relative.

LINE NUMBER ISLINE NUMBERS ARELINES ARE

integer-1 [ON NEXT PAGE] PLUS+

 integer-2 ON NEXT PAGE

 ...

LINE NUMBER IS PLUS+MINUS–
identifier-1integer-3

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 421

6) Within any given report group, the set of report lines, if any, is subject to the following rules:a) If any two or more absolute lines are defined using line numbers that are not in increasing numerical order, they shall each be subject to a different PRESENT WHEN clause.b) If any two or more lines, or groups of lines, overlap each other, they shall each be subject to a different PRESENT WHEN clause.c) Any absolute report lines shall be defined in such a way that no line appears above the upper limit or below the lower limit allowed for the report group. The upper and lower limits for each type of report group are given in the general rules for the TYPE clause. (See 13.18.57, TYPE clause.)d) If the report group consists of one or more absolute lines, not subject to any PRESENT WHEN clause, and ends in a set of relative lines, or groups of relative lines, they shall not cause the report group's lower limit to be exceeded unless each of them is subject to a different PRESENT WHEN clause, in which case this rule applies only to the vertically largest of them.e) If the description of any absolute line appears later than that of a relative line, they shall each be subject to a different PRESENT WHEN clause.7) Within a given report group description, a NEXT PAGE phrase, if present, shall be specified only in the first LINE clause.8) The NEXT PAGE phrase may appear only in the description of a body group or a report footing.9) If the current report group is a control heading with the OR PAGE phrase, all the LINE clauses in the report group description shall be relative.10) If more than one integer-1 or integer-2 operand is specified, the clause is referred to as a multiple LINE clause and the following additional rules apply:a) The NEXT PAGE phrase, if specified, shall appear only with the first operand.b) All absolute operands, if present, shall precede all relative operands, if present.c) The occurrences of integer-1, if present, shall be in ascending numerical order.d) An OCCURS clause shall not also be present in the same entry.FORMAT 211) MINUS and – are synonyms.12) Identifier-1 shall be described in the file, working-storage, local-storage, or linkage section as an elementary unsigned integer data item.13) Neither the PLUS phrase nor the MINUS phrase shall be specified for the first elementary item in a screen record.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

422 ©ISO/IEC 2023

13.18.35.4 General rulesFORMAT 11) Each LINE clause in a given report group description defines a report line, or set of report lines, that is printed when the report group is printed. The report's LINE-COUNTER identifier contains the line number within the page of the most recent line to have been printed.2) If the report is divided into pages, each report group shall be described such that it may be printed on one page. A report group shall never be split between two pages. If this rule is violated the EC-REPORT-PAGE-LIMIT exception condition is set to exist and the results are undefined.3) Each report group shall be described such that, when it is printed, no lines or groups of lines overlap each other, except that the non-space characters of a relative line specified with an integer-2 of zero will overwrite the corresponding characters of the preceding line. If this rule is violated the EC-REPORT-LINE-OVERLAP exception condition is set to exist and the results are undefined.4) If the report is divided into pages and the report group about to be printed is a body group, other than the chronologically first body group since the execution of an INITIATE statement for the report, a page fit test is performed before any line of the report group is printed. The rules for the page fit test and the location of the first line of the body group are modified if the immediately preceding body group's description contained the absolute form of a NEXT GROUP clause. (See 13.18.37, NEXT GROUP clause.) The actions described below assume that no such NEXT GROUP clause was present.The nature of the page fit test depends on the format of the first LINE clause specified in the report group description. Which LINE clause is taken to be the first may depend on the current values of conditions in PRESENT WHEN clauses in the report group description. (See 13.18.41, PRESENT WHEN clause.)The page fit test takes one of the following forms:a) If the first LINE clause has a NEXT PAGE phrase, no page fit test takes place and the page fit is declared unsuccessful.b) If the first LINE clause is absolute without the NEXT PAGE phrase, integer-1 (the target position of the first line) is compared with the current value of LINE-COUNTER. If integer-1 is greater than LINE-COUNTER, the page fit is declared successful; otherwise the page fit is declared unsuccessful.c) If the first LINE clause is relative (so that all LINE clauses in the report group description are relative) without the NEXT PAGE phrase, the expected position of the last line of the report group is computed in a trial sum. First, the current value of LINE-COUNTER is placed in the trial sum. Next, the trial sum is incremented by integer-2 for each subsequent LINE clause. Wherever there is an OCCURS clause at the level of the LINE clause or above, the vertical interval between successive occurrences is added into the trial sum once for each occurrence beyond the first. (See 13.18.38, OCCURS clause.)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 423

If any of the LINE clauses used in computing the trial sum are subject to a PRESENT WHEN clause or to an OCCURS clause with the DEPENDING phrase, these clauses are taken into account in computing the trial sum. (See 13.18.41, PRESENT WHEN clause.)If the trial sum is less than or equal to the lower limit for the report group, the page fit is declared successful; otherwise the page fit is declared unsuccessful. The lower limit for body groups is defined in the general rules under 13.18.57, TYPE clause.If the page fit was declared successful, no page advance takes place and the report group is printed on the current page; otherwise, a page advance takes place before the body group is printed and the body group becomes the first body group on the new page as specified in 14.9.16, GENERATE statement.5) The line number on which the report group's first line is printed depends on the first LINE clause in the report group description. Which LINE clause is taken to be the first may depend on the current values of conditions in PRESENT WHEN clauses in the report group description. (See 13.18.41, PRESENT WHEN clause.)a) If the first LINE clause of the report group is absolute, the report group's first line number is given by integer-1. If in addition the NEXT PAGE phrase is present and the report group is a report footing, the first line is printed beginning on a new page.b) If the first LINE clause of the report group is relative and the report is divided into pages, the report group's first line number is calculated as follows:1. If the report group is a report heading, the line number is given by (HEADING integer + integer-2 - 1).2. If the report group is a page heading and no report heading has been printed on the same page, the line number is given by (HEADING integer + integer-2 - 1). If the report group is a page heading and a report heading has been printed on the same page, the line number is given by adding integer-2 to the current value of the report's LINE-COUNTER.3. When the report group is a body group: if that report group is the first body group to be printed on the current page, the line number is given by the FIRST DETAIL integer; otherwise, the line number is given by adding integer-2 to the current value of the report's LINE-COUNTER.4. If the report group is a page footing, the line number is given by (FOOTING integer + integer-2).5. When the report group is a report footing: if no page footing has been printed on the same page, the line number is given by (FOOTING integer + integer-2); otherwise, the line number is given by adding integer-2 to the current value of the report's LINE-COUNTER.c) If the first LINE NUMBER clause of the report group is relative and the report is not divided into pages, the report group's first line number is obtained by adding integer-2 to the current value of the report's LINE-COUNTER.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

424 ©ISO/IEC 2023

6) When the first line number of the report group has been calculated, the report's LINE-COUNTER is set equal to that line number and the line is now printed on the page at that vertical location.7) Any subsequent LINE clauses within the same report group cause the line number to be updated as follows:a) If the LINE clause is absolute, the new line number is given by integer-1.b) If the LINE clause is relative, the new line number is determined by adding integer-2 to the report's LINE-COUNTER.When each subsequent line number of the report group has been calculated, the report's LINE-COUNTER is set equal to that number and the line is now printed on the page at that vertical location.Line numbers need not be consecutive. Any unoccupied lines on the page result in a blank line.8) The final line number for the report group is given by the value contained in the report's LINE-COUNTER when the last line of the report group has been printed. Before processing of the report group is concluded, the value of LINE-COUNTER may be further altered as a result of the action of an optional NEXT GROUP clause defined for the report group. (See 13.18.37, NEXT GROUP clause.)9) A multiple LINE clause is functionally equivalent to a LINE clause with a single operand, together with a simple OCCURS clause whose integer is equal to the number of operands of the LINE clause, except that the multiple LINE clause allows the report lines to be defined at unequal vertical intervals.FORMAT 210) The LINE clause, in conjunction with the COLUMN clause, establishes the starting coordinates for a screen item within a screen record. The LINE clause specifies the vertical coordinate. Positioning of the screen record and within the screen record appears the same on the terminal display regardless of whether the whole screen record or just a portion of it is referenced in an ACCEPT screen or a DISPLAY screen statement.11) If the LINE clause does not specify PLUS or MINUS, the clause gives the line number relative to the start of the screen record. A line number of 1 represents the first line of the screen record.12) If the PLUS or MINUS phrase is specified in the LINE clause, the line number is relative to the end of the preceding screen item in the same screen record. PLUS denotes a line position that is increased by the value of identifier-1 or integer-3. MINUS denotes a line position that is decreased by the value of identifier-1 or integer-3.13) If the LINE clause is omitted, the following apply:a) if no previous screen item has been defined, LINE 1 of the screen record is assumed.b) if a previous screen item has been defined, the line of that previous item is assumed.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 425

14) If the explicit or implicit line number of a screen item is zero or exceeds the number of lines available for a terminal, the EC-SCREEN-LINE-NUMBER exception condition is set to exist and that screen item does not take part in the execution of the ACCEPT screen or DISPLAY screen statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

426 ©ISO/IEC 2023

13.18.36 LOWLIGHT clause

13.18.36.1 GeneralThe LOWLIGHT clause specifies that the field is to appear on the screen with the lowest level of intensity.
13.18.36.2 General format

13.18.36.3 General rules1) A LOWLIGHT clause specified at the group level applies to each elementary screen item in that group.2) When the LOWLIGHT clause is specified, the characters that constitute the screen item will be displayed in the foreground color at the lowest intensity when the screen item is referenced in an ACCEPT screen or a DISPLAY screen statement.

LOWLIGHT

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 427

13.18.37 NEXT GROUP clause

13.18.37.1 GeneralThe NEXT GROUP clause specifies additional blank lines following the printing of the last line of a report group.
13.18.37.2 General format

13.18.37.3 Syntax rules1) Integer-1 specifies an absolute line number. Integer-2 specifies a relative vertical distance. Integer-1 and integer-2 shall not exceed the page limit, or 9999 if the report is not divided into pages. Integer-1 and integer-2 shall be unsigned. (See 13.18.39, PAGE clause.)2) PLUS and + are synonyms.3) If the report is not divided into pages, only the relative form of the clause may be specified.4) The NEXT GROUP clause shall not be specified in a page heading or report footing.5) The NEXT PAGE phrase shall not be specified in a page footing.6) If the absolute form is used, the following checks apply:a) If the current report group is a report heading, integer-1 shall be greater than the minimum last line number of the report group and less than the FIRST DETAIL integer.b) If the current report group is a body group, integer-1 shall lie between the FIRST DETAIL integer and the FOOTING integer, inclusive.c) If the current report group is a page footing, integer-1 shall be greater than the minimum last line number of the report group.7) If the relative form is used, the following checks apply:a) If the current report group is a report heading, the minimum last line number of the report group plus integer-2 shall be less than the FIRST DETAIL integer.b) If the current report group is a page footing, the minimum last line number of the report group plus integer-2 shall not exceed the page limit.

NEXT GROUP IS integer-1PLUS+

 integer-2NEXT PAGE [WITH RESET]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

428 ©ISO/IEC 2023

13.18.37.4 General rules1) The NEXT GROUP clause has no effect when it is specified in a control footing that is at a level other than the highest level at which the control break is detected.2) The NEXT GROUP clause modifies the value of the current report's LINE-COUNTER after the printing of the last line, if any, of the report group in whose description the clause appears. The effect of this clause depends on the type of report group whose description contains the clause, as covered in the following general rules.3) If the report group is a report heading, the effect of the absolute and relative forms is to increase the line number on which the immediately next report group is printed, namely the first body group when the report is not divided into pages, or the first page heading when the page heading consists only of relative lines. The effect on LINE-COUNTER in each case is as follows:a) If the NEXT GROUP clause is absolute, LINE-COUNTER is set equal to integer-1.b) If the NEXT GROUP clause is relative, integer-2 is added to LINE-COUNTER.c) If NEXT GROUP NEXT PAGE is specified, the report heading is printed on the first page of the report as the only report group on that page and LINE-COUNTER is then set equal to zero.4) If the report group is a body group:a) If the NEXT GROUP clause is absolute, a check is made as to whether LINE-COUNTER is less than integer-1. If so, LINE-COUNTER is set equal to integer-1. Otherwise, integer-1 is placed in a save location and LINE-COUNTER is set equal to the FOOTING integer, causing a page advance to take place just before any other non-dummy body group is printed for the report. The NEXT GROUP clause has no further effect on the current body group and will have no effect at all if a TERMINATE is next executed for the report. But it will affect the location of the next non-dummy body group, at the time that it is printed, in the following way:1. If the next body group begins with an absolute LINE clause without the NEXT PAGE phrase, the save location is moved to LINE-COUNTER and the page fit test is re-applied before the first line of the body group is printed.2. If the next body group begins with an absolute LINE clause with the NEXT PAGE phrase, a page advance takes place, the save location is moved to LINE-COUNTER and a new page fit test and subsequent processing take place as for an identical report group without the NEXT PAGE phrase.3. If the next body group contains only relative LINE clauses, its first line will be printed on the next line following the line number in the save location, unless this will result in some line of this body group being printed beyond its lower permitted limit. In the latter case, a second page advance takes place, resulting in a page devoid of body groups, and the next body group is printed on the following page with no reference to the save location.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 429

b) If the NEXT GROUP clause is relative and if the sum of integer-2 and LINE-COUNTER is less than the FOOTING integer, integer-2 is added to LINE-COUNTER; otherwise the FOOTING integer is moved to LINE-COUNTER.c) If NEXT GROUP NEXT PAGE is specified, the FOOTING integer is moved to LINE-COUNTER.5) If the report group is a page footing, the NEXT GROUP clause affects any report footing defined in the current report using only relative LINE clauses, by changing LINE-COUNTER in the following ways:a) If the NEXT GROUP clause is absolute, LINE-COUNTER is set equal to integer-1.b) If the NEXT GROUP clause is relative, integer-2 is added to LINE-COUNTER.6) If the WITH RESET phrase is present, the value of PAGE-COUNTER for the report is set to 1 (one) immediately after the page feed caused by the next page advance, chronologically between the printing of any page footing and the printing of any page heading. Whether the current group is a report heading or a body group, this phrase ensures that PAGE-COUNTER will be one, effective from the start of the next page (unless procedurally altered).

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

430 ©ISO/IEC 2023

13.18.38 OCCURS clause

13.18.38.1 GeneralThe OCCURS clause describes repeated data items, report items, and screen items and supplies information required for the application of subscripts.
13.18.38.2 General formatsFormat 1 (fixed-table):

Format 2 (occurs-depending-table):

Format 3 (report-writer):
Format 4 (dynamic-capacity-table):

13.18.38.3 Syntax rulesALL FORMATS1) The OCCURS clause shall not be specified in a data description entry that: a) Has a level-number of 01, 66, 77, or 88, or b) Has an occurs-depending table subordinate to it.

OCCURS integer-2 TIMESASCENDINGDESCENDING

 KEY IS { data-name-2 } [INDEXED BY { index-name-1 } ...]

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1ASCENDINGDESCENDING

 KEY IS { data-name-2 } [INDEXED BY { index-name-1 } ...]

OCCURS integer-1 TO integer-2 TIMES [DEPENDING ON data-name-1] [STEP integer-3]
OCCURS DYNAMIC [CAPACITY IN data-name-3] [FROM integer-4] [TO integer-5] [INITIALIZED]ASCENDINGDESCENDING

 KEY IS { data-name-2 } [INDEXED BY { index-name-1 } ...]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 431

2) Data-name-1 and data-name-2 shall not be subscripted.FORMATS 1, 2, AND 43) The first specification of data-name-2 shall be the name of either the entry containing the OCCURS clause or an entry subordinate to the entry containing the OCCURS clause. Subsequent specification of data-name-2 shall be subordinate to the entry containing the OCCURS clause.4) If data-name-2 is subordinate to an alphanumeric group item, bit group item, national group item, or strongly-typed group item that is subordinate to the entry containing the OCCURS clause, that group item shall not contain an OCCURS clause.5) Data-name-2 shall be specified without the subscripting normally required.6) The data item identified by data-name-2 shall not contain an OCCURS clause except when data-name-2 is the subject of the entry.7) Index-name-1 may be specified only in the following contexts:— as a subscript;— in the VARYING phrase of a PERFORM statement;— in the VARYING phrase of a SEARCH statement;— in the SET statement;— as an operand in a relation condition.8) The KEY phrase shall not be specified for a data item of class boolean, message-tag, object, or pointer.9) Data-name-2 shall not reference a variable-length group.FORMATS 1 AND 310) If the DEPENDING ON phrase is not specified, an OCCURS clause may be subordinate to a data description entry that contains another OCCURS clause as long as the number of subscripts required does not exceed seven.FORMAT 111) An OCCURS clause specified in a screen description entry shall be a format 1 OCCURS clause without any optional phrases.12) The maximum number of dimensions for a table described in a screen description entry is two.13) If a screen description entry includes the OCCURS clause, then if it or any item subordinate to it has a description that includes the TO, FROM, or USING clause, that screen description entry shall be part of a table with the same number of dimensions and number of occurrences in each dimension as the identifier representing the receiving or sending operand. The identifier representing the receiving or sending operand shall not be subordinate to an OCCURS clause with the DEPENDING phrase.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

432 ©ISO/IEC 2023

14) If a screen description entry that includes the OCCURS clause also contains the COLUMN clause, then the COLUMN clause shall include the PLUS or MINUS phrase, unless the screen description entry also includes a LINE clause with a PLUS or MINUS phrase.15) If a screen description entry that includes the OCCURS clause also contains the LINE clause, then the LINE clause shall include the PLUS or MINUS phrase, unless the screen description entry also includes a COLUMN clause with a PLUS or MINUS phrase.FORMATS 2 AND 316) Integer-1 shall be greater than or equal to zero and integer-2 shall be greater than integer-1.17) Data-name-1 shall describe an integer.18) If the OCCURS clause is specified in an entry subordinate to one containing the GLOBAL clause, data-name-1, if specified, shall be a global name and shall reference a data item that is described in the same data division.FORMAT 219) A format 2 OCCURS clause shall not be specified in any data item subordinate to a data item described with the CONSTANT RECORD clause.20) The data item defined by data-name-1 shall not occupy a byte position within the range of the first byte position defined by the data description entry containing the OCCURS clause and the last byte position defined by the record description entry containing that OCCURS clause. 21) If the OCCURS clause is specified in a data description entry included in a record description entry containing the EXTERNAL clause, data-name-1 shall reference a data item possessing the external attribute that is described in the same data division.22) The subject of the entry may be followed within that record description only by data description entries that are subordinate to it.FORMAT 323) The DEPENDING phrase shall not be specified in any data item subordinate to a data item described with the CONSTANT RECORD clause.24) The TO and DEPENDING phrases shall either be both absent or both present.25) The STEP phrase shall be specified if the entry:a) contains an absolute LINE clause, orb) has an entry with an absolute LINE clause subordinate to it, orc) contains an absolute COLUMN clause, or

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 433

d) is subordinate to an entry with a LINE clause and has an entry with an absolute COLUMN clause subordinate to it.In all other cases, the STEP phrase is optional.26) The value of integer-3 shall be sufficient to prevent the overlapping of any line (in the case of vertical repetition) or column (in the case of horizontal repetition) of any two consecutive repetitions of the associated report item.27) A report group description entry that contains an OCCURS clause with a DEPENDING phrase may be followed within that report group only by report group description entries that are subordinate to it.FORMAT 428) Integer-4 shall be nonnegative and integer-5, if both are present, shall be greater than integer-4.29) The implementor shall specify a maximum permissible value for integer-4 and integer-5. Their values shall not exceed this maximum value.NOTE If the maximum is not more than enough to accommodate any capacity likely to be required by any error-free application running at the limit of its range, the users can be restricted in what they can accomplish.30) Data-name-3 shall not be defined elsewhere in the source element. If qualifiers are required for uniqueness, it shall be treated as though implicitly defined at the same level as the entry containing the OCCURS clause.31) Data-name-3 shall not be subscripted.32) Data-name-3 shall not be referenced as a receiving item, except as the operand of a variable-table format SET statement.33) The dynamic-capacity-table format of the OCCURS clause shall not be specified in any data item described with the CONSTANT RECORD clause or any data item subordinate to a data item described with the CONSTANT RECORD clause.
13.18.38.4 General rulesFORMATS 1, 2 AND 41) Except for the OCCURS clause itself, all data description clauses associated with an item whose description includes an OCCURS clause apply to each occurrence of the item described.2) The allocation and format of the index defined by index-name-1 are dependent on the implementor and the hardware. The implementor shall specify the rules for the range of values allowed in the index defined by index-name-1. This range shall include at least the value corresponding to the occurrence number (1 - integer-2) through and including the value corresponding to the occurrence number (2 * integer-2). An index may be modified only by a PERFORM VARYING statement, a SEARCH statement, and a SET statement. If the execution of one of these statements creates a value for the index that is outside the range of the values allowed by the implementor:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

434 ©ISO/IEC 2023

a) the EC-RANGE-INDEX exception condition is set to exist, andb) the value of the index is undefined unless the value of the index is specified by the rules of that statement.3) The KEY phrase indicates the order of key data items used during execution of a SEARCH statement with the ALL phrase specified, or during the execution of a SORT statement that references a table. If more than one data-name-2 is specified, they are specified in descending order of significance. The data associated with data-name-2 shall be ordered when a SEARCH statement with the ALL phrase is executed if data-name-2 is specified in one of the conditions in the WHEN phrase. At the time of the execution of such a SEARCH statement, the contents of the data items referenced by data-name-2 shall be in ascending order if the ASCENDING phrase is specified or descending order if the DESCENDING phrase is specified. The associated collating sequence for the order is determined by the rules for comparison of operands that apply to the condition specified in the WHEN phrase of the SEARCH statement.FORMAT 14) The value of integer-2 represents the fixed number of occurrences of the subject of the entry.5) During a DISPLAY screen or an ACCEPT screen statement that references a screen item whose description includes the OCCURS clause and whose description or whose subordinate's description includes a FROM, TO, or USING clause, the data values for corresponding table elements are moved from the data table element to the screen table element or from the screen table element to the data table element.6) If the description of a screen item includes the OCCURS clause, the positioning within the screen record of each occurrence of that screen item is as follows:a) If the description of that screen item contains a COLUMN clause, each occurrence behaves as though it had the same COLUMN clause specified.b) If that screen item is a group item with a subordinate screen item whose description contains a COLUMN clause with the PLUS or MINUS phrase and that group screen item is subordinate to a screen item whose description contains a LINE clause, each occurrence behaves as though it had the same subordinate entries with the same COLUMN clause specified.c) If the description of that screen item contains a LINE clause with the PLUS or MINUS phrase, each occurrence behaves as though it had the same LINE clause specified.d) If that screen item is a group item with a subordinate screen item whose description contains a LINE clause with the PLUS or MINUS phrase, each occurrence behaves as though it had the same subordinate entries with the same LINE clause specified.FORMAT 27) The value of the data item referenced by data-name-1 represents the current number of occurrences of the subject of the entry.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 435

The subject of this entry has a variable number of occurrences. The value of integer-2 represents the maximum number of occurrences and the value of integer-1 represents the minimum number of occurrences. This does not imply that the length of the subject of the entry is variable, but that the number of occurrences is variable.At the time the subject of entry is referenced or any data item subordinate or superordinate to the subject of entry is referenced, the value of the data item referenced by data-name-1 shall fall within the bounds from integer-1 through integer-2. If the value of the data item does not fall within the specified bounds, the EC-BOUND-ODO exception condition is set to exist. The content of a data item whose occurrence number exceeds the value of the data item referenced by data-name-1 is undefined.8) An alphanumeric group item, bit group item, national group item, or strongly-typed group item that has an entry subordinate to it that specifies the DEPENDING phrase of the OCCURS clause is an occurs-depending group item. When an occurs-depending group item is referenced, the part of the table area used in the operation is determined as follows:a) If the data item referenced by data-name-1 is outside the group, only that part of the table area that is specified by the value of the data item referenced by data-name-1 at the start of the operation will be used. If there are no elementary data items defined between the data description entry of the group data item and the definition of the table specified by format 2 and the value of the data item referenced by data-name-1 at the start of the operation is zero, the group data item is a zero-length item.b) If the data item referenced by data-name-1 is included in the same group and the group data item is referenced as a sending operand, only that part of the table area that is specified by the value of the data item referenced by data-name-1 at the start of the operation will be used in the operation. If the group is a receiving operand, the maximum length of the group will be used.9) If format 2 is specified in a record description entry and the associated file description or sort-merge description entry contains the VARYING phrase of the RECORD clause, the records are variable length. If the DEPENDING ON phrase of the RECORD clause is not specified, the content of the data item referenced by data-name-1 of the OCCURS clause shall be set to the number of occurrences to be written before the execution of any RELEASE, REWRITE, or WRITE statement referencing that record description entry.FORMAT 310) If the OCCURS clause is written without any of the optional phrases, it causes the entry to define integer-2 distinct report items. The effect of the OCCURS clause on each repetition depends on the position of the entry containing the clause in the report group definition, as follows:a) If the entry also contains a relative COLUMN clause, each repetition behaves as though it had the same relative COLUMN clause.b) If the entry is a group entry having subordinate entries with relative COLUMN clauses, and being itself subordinate to an entry with a LINE clause, each repetition behaves as though it had the same subordinate entries with the same relative COLUMN clauses.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

436 ©ISO/IEC 2023

c) If the entry also contains a relative LINE clause, each repetition behaves as though it had the same relative LINE clause.d) If the entry is a group entry having subordinate entries with relative LINE clauses, each repetition behaves as though it had the same subordinate entries with the same relative LINE clauses.11) Any PICTURE, USAGE, SIGN, VALUE, JUSTIFIED, BLANK WHEN ZERO, or GROUP INDICATE clauses have the same effect on each repetition as they would on a single data item without the OCCURS clause. This applies also to any SOURCE, SUM, or PRESENT WHEN clauses if no VARYING clause is present. If a VARYING clause is present, the action of these clauses may vary from one repetition to another. (See 13.18.64, VARYING clause.)12) The STEP phrase, if specified, defines the vertical or horizontal interval between successive occurrences of the associated report item after the first occurrence, as follows:a) If the entry contains a COLUMN clause, each successive occurrence is printed at a horizontal distance integer-3 columns to the right of the preceding occurrence.b) If the entry is a group entry having subordinate entries with COLUMN clauses and being itself subordinate to an entry with a LINE clause, printable items in each successive occurrence are positioned integer-3 columns to the right of the column they occupy in the preceding occurrence.c) If the entry contains a LINE clause, each successive occurrence is positioned integer-3 lines vertically beneath the preceding occurrence.d) If the entry is a group entry having subordinate entries with LINE clauses, report lines in successive occurrences are positioned integer-3 lines vertically beneath the line they occupy in the preceding occurrence.If no STEP phrase is specified, the vertical or horizontal interval between successive occurrences is defined by the relative LINE or COLUMN numbers, respectively, specified in the corresponding report section entries.13) If the DEPENDING phrase is specified, the value of data-name-1 is evaluated just before the processing for the first LINE clause of the report group. If the value of data-name-1 is not in the range integer-1 to (integer-2 - 1), the report group is processed as though the OCCURS clause had been written without the TO and DEPENDING phrases. If the value of data-name-1 is in the range integer-1 to (integer-2 - 1), the OCCURS clause has the same effect as an OCCURS clause with no TO or DEPENDING phrases and with an integer-2 equal to the current value of data-name-1. This same principle is used in the computing of the trial sum used in performing the page fit test. (See 13.18.35, LINE clause, General rule 4c.)FORMAT 414) Format 4 defines a dynamic-capacity table. Other rules and restrictions concerning dynamic-capacity tables are specified in 8.5.1.9, Dynamic-capacity tables.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 437

15) Data-name-3 defines a numeric data item that contains the current capacity of the associated table. Data-name-3 shall not be referenced as a receiving operand.16) Integer-4 is the minimum capacity of the table. If integer-4 is absent, a value of zero is assumed for it.17) Integer-5 is the expected capacity of the table.18) If INITIALIZED is specified, any unreferenced locations of each new element added to the table are implicitly initialized, as defined in 8.5.1.9.5, Implicit initialization.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

438 ©ISO/IEC 2023

13.18.39 PAGE clause

13.18.39.1 GeneralThe PAGE clause defines the maximum length and width of a page of a report and the vertical subdivisions within which its report groups shall be printed.
13.18.39.2 General format

13.18.39.3 Syntax rules1) FIRST DE is synonymous with FIRST DETAIL, LAST CH is synonymous with LAST CONTROL HEADING, and LAST DE is synonymous with LAST DETAIL.2) Either integer-1 or integer-2 or both shall be specified.3) The HEADING, FIRST DETAIL, LAST CONTROL HEADING, LAST DETAIL, or FOOTING phrase may be specified only if integer-1 is specified.4) The HEADING, FIRST DETAIL, LAST CONTROL HEADING, LAST DETAIL, and FOOTING phrases may be written in any order.5) Integer-1 shall not exceed 9999.6) Integer-3, integer-4, integer-5, integer-6, integer-7, and integer-1 shall be greater than zero. Wherever specified, they shall be in ascending order, with equality allowed.

PAGE LIMIT IS LIMITS ARE
integer-1

integer-1 LINELINES

 integer-2 COLSCOLUMNS

[HEADING IS integer-3] FIRST DETAILDE

 IS integer-4

LAST CONTROL HEADINGCH

 IS integer-5

LAST DETAILDE

 IS integer-6 [FOOTING IS integer-7]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 439

13.18.39.4 General rules1) The printed page is regarded as a vertical arrangement of horizontal lines, each line being capable of displaying the content of one report line. On each page these lines are numbered from 1 (representing the first line on the page) in steps of 1. The PAGE clause and its phrases subdivide the printed page into vertical regions. Depending on its type, each report group shall be confined within one or more of these regions.2) The integers specified in the PAGE clause establish the vertical regions of the report page as follows.a) Integer-1 is the page limit. It defines the last line position on each page of the report. No report line will appear below this position on any page. If integer-1 is not specified, the report consists of a single page of indefinite length.b) Integer-2 is the page width. It defines the maximum number of print columns that may be accommodated in any line of the report. c) Integer-3 is the HEADING integer. It defines the first line position on which a report heading or page heading may be printed. No report line will appear higher than this position on the page.d) Integer-4 is the FIRST DETAIL integer. It defines the first line position on which any line of a body group may be printed. Any report heading (when not on a page by itself) or page heading shall be defined so that it terminates before this line.e) Integer-5 is the LAST CONTROL HEADING integer. It defines the last line position on which any line of a control heading may be printed.f) Integer-6 is the LAST DETAIL integer. It defines the last line position on which any line of a detail may be printed.g) Integer-7 is the FOOTING integer. It defines the last line position on which any line of a control footing may be printed. Any page footing or report footing (when not on a page by itself) shall be defined so that it begins after this line.3) If integer-1 is specified and any of the following phrases is omitted, a default value for the associated integer is supplied as follows:a) If HEADING is omitted, integer-3 will be 1.b) If FIRST DETAIL is omitted, integer-4 will be equal to integer-3.c) If LAST CONTROL HEADING is omitted, integer-5 will be equal to integer-6, if LAST DETAIL is specified, or equal to integer-7, if FOOTING is specified, or otherwise equal to the page limit given by integer-1.d) If LAST DETAIL is omitted, integer-6 will be equal to integer-7, if FOOTING is specified, or otherwise equal to the page limit given by integer-1.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

440 ©ISO/IEC 2023

e) If FOOTING is omitted, integer-7 will be equal to integer-6, if LAST DETAIL is specified, or otherwise equal to the page limit given by integer-1.4) A report heading or report footing on a page by itself may occupy any region of the page from HEADING integer-3 through the page limit integer-1 or, if not on a page by itself, is constrained in the same way as a page heading or page footing respectively.5) If integer-2 is omitted, a value of 999 is assumed for the page width.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 441

13.18.40 PICTURE clause

13.18.40.1 GeneralThe PICTURE clause describes the General characteristics, editing requirements, and format validation profile of an elementary item.
13.18.40.2 General formatsFormat 1 (basic):

Format 2 (locale):

13.18.40.3 Syntax rulesALL FORMATS1) The PICTURE clause may be specified only at the elementary level.2) Character-string-1 shall consist of an allowable combination of characters used as picture symbols.The allowable combinations of symbols for a PICTURE clause are specified in 13.18.40.6, Precedence rules.NOTE 1 The currency symbol can be selected from the set of allowable characters from the computer's compile-time coded character set. All picture symbols other than the currency symbol are from the COBOL character repertoire.3) The equivalence between uppercase and lowercase letters appearing as occurrences of a currency symbol in character-string-1 is as specified in 12.3.7, SPECIAL-NAMES paragraph, Syntax rule 20. The equivalence between uppercase and lowercase letters appearing as picture symbols other than currency symbols in character-string-1 is as specified in 8.1.3, COBOL character repertoire, General rule 3.4) The maximum number of characters allowed in character-string-1 is 63.5) PIC is an abbreviation for PICTURE.

PICTUREPIC

 IS character-string-1 EDITING character-1 IS literal-1FOR NEGATIVE IS literal-2POSITIVE IS literal-3

 ...

PICTUREPIC

 IS character-string-1 LOCALE [IS locale-name-1] SIZE IS integer-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

442 ©ISO/IEC 2023

6) An unsigned nonzero integer that is enclosed in parentheses indicates the number of consecutive occurrences of the symbol that immediately precedes the left parenthesis. The integer may be specified by a constant-name, in which case the length of the integer, not the length of the constant-name, is counted toward the maximum number of characters in character-string-1.7) If the symbol ',' or the symbol '.' is the last symbol of character-string-1, the PICTURE clause shall be the last clause of the data description entry and shall be followed immediately (without an intervening separator space) by the separator period.FORMAT 18) Character-1 shall be any basic letter in the COBOL character set except those specified in a CURRENCY-SIGN clause or a basic letter character A, B, C, D, E, N, P, R, S, V, X, Z or their lowercase equivalents.9) If USAGE IS NATIONAL is specified for the subject of the entry or if character-string-1 contains the symbol 'N', literal-1, literal-2, and literal-3 shall be national literals. Otherwise, literal1, literal-2, and literal-3 shall be alphanumeric literals. The total number of characters in literal-1, literal-2, or literal-3 shall not exceed 50.10) If the EDITING phrase is specified, the character identified by character-1 shall appear at least once in character-string-1.11) If more than one EDITING phrase is specified in one PICTURE clause, no two instances of character-1 shall be the same character.12) If literal-1 is specified, character-1 is a fixed editing sign control symbol. If the FOR phrase is specified, character-1 is an extended editing sign control symbol, character-1 is limited to numeric or numeric-edited data items, and the following rules apply:a) Literal-2 and literal-3 shall occupy the same number of character positions.b) Character-string-1 shall contain character-1 and only the symbols ‘9’, ‘.’, the currency symbol, ‘P’, ‘V’, or ‘Z’.c) If only POSITIVE is specified, the default character for the unspecified phrase is the space character repeated for the number of characters in literal-2. If only NEGATIVE is specified, the default character for the unspecified phrase is the space character repeated the number of characters in literal-3.a) No editing sign control symbols may be specified in character-string-1. Extended editing sign control symbols shall not be specified for a floating-point edited item.If the FOR phrase is not specified, the following rules apply:a) Character-string-1 shall contain: — at least on one of the symbols from the set ‘A’, ‘N’, ‘X’, ‘Z’, ‘1’, ‘9’, *’, or

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 443

— at least two occurrences of one of the symbols from the set character-1, ‘x’, ‘+’, ‘-‘, and the currency symbol.b) Each of the symbols from the set ‘CR’, ‘DB’, ‘E’, ‘S’, ‘V’ ‘.’ may appear only once in character-string-1.NOTE 2 The symbols ‘CR’ and ‘DB’ although consisting of two characters, are each considered to be a symbol by itself.13) When the DECIMAL-POINT IS COMMA clause is specified, the symbol comma is the decimal separator and the symbol period is the grouping separator. The rules for the symbol period apply to the symbol comma, and the rules for the symbol comma apply to the symbol period.14) For data items of category numeric, and for fixed-point data items of category numeric-edited, the number of digit positions described by character-string-1 shall range from 1 through 31.15) For floating-point data items of category numeric-edited, the number of digit positions in the significand shall range from 1 through 36.16) The symbol 'P' may appear only as a continuous string of 'P's in the leftmost or rightmost digit positions in character-string-1.17) The symbol 'P' and the symbol '.' are mutually exclusive in character-string-1.18) The symbol 'S', if present, shall be the first symbol in character-string-1.19) When the symbol 'V' and one or more symbols 'P' are used in character-string-1, the symbol 'V' shall either immediately precede the first symbol 'P' or immediately follow the last symbol 'P'.20) The symbol 'V' and the symbol '.' are mutually exclusive in character-string-1.21) The symbol 'Z' and the symbol '*' are mutually exclusive in character-string-1.22) Neither the symbol 'S' nor the symbol '*' shall be specified in character-string-1 when the BLANK WHEN ZERO clause is specified for the subject of the entry.23) The editing sign control symbols '+', '-', 'CR', and 'DB' are mutually exclusive in character-string-1 with the exception of a numeric-edited data item for a floating-point edited result as described in General rule 13b.NOTE 3 For a floating-point edited result, the significand part of the character-string may contain a '-' symbol and the exponent part always contains a '+' symbol.24) For fixed insertion with editing sign control symbols, only one currency symbol and only one editing sign control symbol may be used in character-string-1. For extended editing sign control symbols, either one or two extended editing sign control symbols may be used in character-string-1.25) The symbol '+' or the symbol '-', when used, shall be either the leftmost or the rightmost symbol in character-string-1. When extended editing sign control symbols are used and two are specified, the

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

444 ©ISO/IEC 2023

first occurrence of the EDITING phrase shall be for the leftmost symbol in character-string-1 and the second occurrence shall be for the rightmost symbol in character-string-1.26) For fixed editing sign control, the currency symbol, when used, shall be either the leftmost symbol in character-string-1, optionally preceded by one of the symbols '+' or '-', or the rightmost symbol in character-string-1, optionally followed by one of the symbols '+', '-', 'CR', or 'DB'. For extended editing sign control, the currency symbol when used shall be either the leftmost symbol in character-string-1, optionally preceded by character-1, or the rightmost symbol in character-string-1 optionally followed by character-1.NOTE 4 This means that the following are valid picture character-strings: '$999+' '+999$' '+$999' '999$+' '+$$99' '$$99+'.27) No more than one of the following may be specified in character-string-1:— a string of two or more symbols '+';— a string of two or more symbols '-';— a string of two or more currency symbols;— a string of one or more symbols '*';— a string of one or more symbols 'Z'.NOTE 5 This means, for example, that the picture character-string +$$$ is valid, but that the picture character-string +++$$$ is invalid.28) For floating insertion, when the currency symbol is used as the floating insertion symbol, all occurrences of the currency symbol within character-string-1 shall be equivalent characters.29) For floating insertion, at least one insertion symbol shall be specified to the left of the decimal point position.30) The symbols 'A' and 'X' shall not be specified in character-string-1 when a USAGE NATIONAL clause is specified for the subject of the entry.31) The symbol 'S' shall not be specified in character-string-1 when the NO SIGN phrase of the USAGE Clause is specified for the subject of the entry.FORMAT 232) A format 2 PICTURE clause shall not be specified in a data item described with the CONSTANT RECORD clause, or in any data item subordinate to a data item described with the CONSTANT RECORD clause.33) Character-string-1 shall contain at least one of the symbols 'Z' or '9'.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 445

34) Each of the symbols from the set '+', '.', the currency symbol may appear only once in character-string-1.35) The number of digit positions described by character-string-1 shall range from 1 through 31.36) The currency symbol and the symbol '+' may be specified only to the left of the decimal point position.37) Locale-name-1 shall be specified in the LOCALE clause in the SPECIAL-NAMES paragraph.
13.18.40.4 General rulesALL FORMATS1) When the usage of the subject of the entry is national, each symbol representing a character position defines a national character position. When the usage of the subject of the entry is display, each symbol representing a character position defines an alphanumeric character position.2) The value of insertion and replacement characters in a resultant edited item is the value of those characters in the computer's runtime coded character set. When the usage of the item being edited is national, the value is the national character representation; otherwise, the value is the alphanumeric character representation.FORMAT 13) A PICTURE clause defines the subject of the entry to fall into one of the following categories of data: — alphabetic— alphanumeric— alphanumeric-edited— boolean— national— national-edited— numeric— numeric-editedA BLANK WHEN ZERO clause specified for the subject of the entry defines the item as numeric-edited.4) The size in boolean positions or character positions of an elementary data item that has been defined with a PICTURE clause is determined by the number of symbols in character-string-1 that represent either boolean positions or character positions.5) To define an item as alphabetic, character-string-1 shall contain only one or more occurrences of the symbol 'A'.6) To define an item as alphanumeric, character-string-1 shall contain a combination of symbols from the set 'A', 'X', and '9', that includes

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

446 ©ISO/IEC 2023

— at least one symbol 'X', or— at least two different symbols from this set.7) To define an item as alphanumeric-edited, character-string-1 shall include— at least one symbol 'A' or one symbol 'X', and— at least one instance of character-1 or one of the symbols from the set 'B', '0', '/'.8) To define an item as boolean, character-string-1 shall contain only one or more occurrences of the symbol '1'.9) To define an item as national, character-string-1 shall contain only one or more occurrences of the symbol 'N'.10) To define an item as national-edited, character-string-1 shall include— at least one symbol 'N', and— at least one instance of character-1 or one of the symbols from the set 'B', '0', '/'.11) To define an item as fixed-point numeric, character-string-1— shall include at least one symbol '9', and— may contain a combination of symbols from the set 'P', 'S', and 'V'.12) In the following general rules, for a PICTURE clause with the FOR phrase all references to ‘+’ apply to POSITIVE is literal-2, and all references to ‘-‘ apply to NEGATIVE IS literal-3 unless otherwise indicated.13) To define an item as numeric-edited, one of the following options shall be specified:a) To define a fixed-point numeric-edited item, character-string-1 shall include:— at least one symbol 'Z'; or— at least one symbol '*'; or— at least two identical symbols from the set '+', '-', currency symbol; or— at least one symbol '9' and at least one instance of character-1 or at least one of the symbols from the set 'B', 'CR', 'DB', '0', '/', ',', '.', '+', '-', the currency symbol.b) To define a floating-point numeric-edited item, characters-string-1 shall consist of two parts, separated without any spaces, by the symbol 'E'. The first part represents the significand; the second part represents the exponent.The significand shall be a valid character-string for either a numeric item or a numeric-edited item for a fixed-point result. Neither floating insertion editing nor zero suppression with replacement shall be specified for the significand.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 447

The exponent shall be '+9', '+99', '+999', '+9999', or '+9(n)' where n = 1, 2, 3, or 4.14) The meaning of the symbols used in character-string-1 are as follows:A Each symbol 'A' represents a character position that shall contain any character from the computer's alphanumeric character set. Each symbol 'A' is counted in the size of the item.The characters represented may be graphic characters or non-graphic characters.NOTE 1 The symbol ‘A’ is equivalent to the symbol ‘X’ except within the execution of a VALIDATE statement. The meaning of the symbol ‘A’ within the VALIDATE statement is specified in General rule 15, below.B Each symbol 'B' represents a character position into which the character space will be inserted during editing. Each symbol 'B' is counted in the size of the item.E The symbol 'E' represents a character position into which the character 'E' will be inserted during editing. The symbol 'E' is counted in the size of the item.The symbol 'E' is used to separate the significand and the exponent of a floating-point numeric-edited item.N Each symbol 'N' represents a national character position that shall contain a character from the computer's national character set. Each symbol 'N' is counted in the size of the item.P The symbol 'P' specifies the location of an assumed decimal point when that point is not within the number that appears in the data item. The symbol 'P' is not counted in the size of the item, but each symbol 'P' is counted in the maximum number of digit positions.The symbol 'P' implies an assumed decimal point that is either— to the left of the string of 'P's if they indicate the leftmost digit positions in character-string-1; or— to the right of the string of 'P's if they indicate the rightmost digit positions in character-string-1.In certain operations that reference a data item whose picture character-string contains the symbol 'P', the algebraic value of the data item is used rather than the actual value of the data item. This algebraic value assumes the decimal point in the prescribed position and zero in place of each digit position specified by the symbol 'P'. The size of the value is the number of digit positions represented by the picture character-string.The operations that use the algebraic value are the following:a) Any operation requiring a numeric sending operand.b) An elementary move operation where the sending operand is numeric and its picture character-string contains one or more symbols 'P'.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

448 ©ISO/IEC 2023

c) A move operation where the sending operand is numeric-edited, its picture character-string contains one or more symbols 'P', and the receiving operand is numeric or numeric-edited.d) A comparison operation where both operands are numeric.In all other operations, the digit positions specified with the symbol 'P' are ignored and are not counted in the size of the operand.S The symbol 'S' indicates the presence, but neither the representation nor, necessarily, the position of an operational sign. For usages display and national, the symbol 'S' is counted in the size of the item only when the subject of the entry is described with a SIGN clause with the SEPARATE phrase. For other numeric usages, the effect of the 'S' is described in the rules for the USAGE clause.V The symbol 'V' indicates the position of the assumed decimal point for alignment purposes. The symbol 'V' is not counted in the size of the item.When the assumed decimal point position is to the right of the rightmost digit position, the symbol 'V' is redundant.X Each symbol 'X' represents a character position that shall contain any character from the computer's alphanumeric character set. Each symbol 'X' is counted in the size of the item.The characters represented may be graphic characters or non-graphic characters.Z Each symbol 'Z' represents a leading numeric position that during editing will contain a numeric character in the range 0 through 9, or a character space when the content of that position is a leading zero. Each symbol 'Z' is counted in the size of the item.0 Each symbol '0' (zero) represents a character position into which the character zero will be inserted during editing. Each symbol '0' is counted in the size of the item.1 Each symbol '1' represents a boolean position that shall contain a boolean character. Each boolean character can be represented in storage as a bit, an alphanumeric character, or a national character. Each symbol '1' is counted in the size of the item.9 Each symbol '9' represents a decimal digit position of the value of the item. For usages display and national, each '9' represents a character position that shall contain a numeric character in the range 0 through 9 with the possible inclusion of an operational sign; each '9' is counted in the size of the item. For other numeric usages, the effect of the number of '9's is described in the rules for the USAGE clause./ Each symbol '/' (slant) represents a character position into which the character slant will be inserted during editing. Each symbol '/' is counted in the size of the item., Each symbol ',' (comma) represents a character position into which the character comma will be inserted during editing. Each symbol ',' is counted in the size of the item.. The symbol '.' (period) represents a character position into which the character period will be inserted during editing. The symbol '.' is counted in the size of the item.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 449

In addition, the symbol '.' indicates the decimal point position for alignment purposes.+ – CR DB These symbols represent the character position(s) into which the editing sign control character(s) is (are) placed during editing. Each character used in the symbol is counted in the size of the item.* Each symbol '*' represents a leading numeric position that during editing will contain a numeric character in the range 0 through 9, or a character asterisk when the content of that position is a leading zero. Each symbol '*' is counted in the size of the item.cs A currency symbol represents character positions into which the currency string will be placed during editing. A currency symbol is represented in character-string-1 either by the currency sign or by the currency symbol specified in a CURRENCY SIGN clause in the SPECIAL-NAMES paragraph.The first occurrence of the currency symbol adds the number of characters in the currency string to the size of the item. Each subsequent occurrence of the currency symbol adds one to the size of the item.es Character-1 in character-string-1 represents a character position into which the associated literal-1, literal-2, or literal-3 is to be placed. If character-1 is a simple insertion symbol or a fixed insertion symbol, the size of literal-1 is counted in the size of the item. For fixed editing sign control symbols, each character used in the symbol is counted in the size of the item. For extended editing sign control symbols with fixed insertion, each occurrence of the character(s) specified in the associated literal are counted in the size of the item. For floating inserting, one occurrence of literal-2 or literal-3 is counted in the size of the item plus one character for each repetition of character-1.NOTE 2 If reference modification is used to reference part of a data item described with floating extended editing sign control symbols, care is needed to account for the repetitions.15) The PICTURE clause takes effect during the format validation stage of the execution of a VALIDATE statement that refers directly or indirectly to the subject of the entry.If the usage of the subject of the entry is not display or national, character-string-1 is used in combination with the USAGE clause to check, where applicable, that the contents are compatible with character-string-1. The rules for compatibility are implementor-defined.If the usage of the subject of the entry is binary, computational or packed-decimal, and the range of values permitted by character-string-1 is less than that used by the hardware for the representation of the item, the unused portion of the hardware allocation is checked to contain only the value zero.If the usage is display or national, the effects of each symbol in character-string-1 are explained as follows:A Each symbol 'A' represents a character position that will be checked to contain an alphabetic character. The classification of characters as alphabetic is determined in accordance with the rules for the ALPHABETIC class condition as specified in 8.8.4.4, Simple class condition.B Each symbol 'B' represents a character position that will be checked to contain

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

450 ©ISO/IEC 2023

— the character space if the symbol 'B' is neither part of floating insertion editing nor of zero suppression with replacement editing;— otherwise, the character space or, if no significant numeric character appears to its left, the corresponding floating insertion character or replacement character respectively.E The symbol 'E' represents a character position that will be checked to contain the character 'E'.N Each symbol 'N' represents a character position that will be checked to contain a character from the computer's national character set.S The symbol 'S' specifies that the data item will be checked for the presence of an operational sign.— If the subject of the entry is not specified with a SIGN clause, the position and the mode of representation of this operational sign are checked according to the specifications of the implementor;— If the subject of the entry is specified with a SIGN clause without the SEPARATE phrase, then either the first or the last digit position and the mode of representation of the operational sign are checked according to the specifications of the implementor;— If the subject of the entry is specified with a SIGN clause with the SEPARATE phrase, then the corresponding position of the data item is checked to contain the character '+' or the character '-'.Z Each symbol 'Z' represents a character position that will be checked to contain:— the space character, if the symbol 'Z' is specified to the left of the decimal point position and the content of the character position is a leading zero, or— the space character, if the symbol 'Z' is specified at the rightmost digit position after the decimal point position and the content of the data item is zero, or— a numeric character in the range 0 through 9 otherwise.0 Each symbol '0' (zero) represents a character position that will be checked to contain— the character zero if the symbol '0' is neither part of floating insertion editing nor of zero suppression with replacement editing;— otherwise, the character zero or, if no significant numeric character appears to its left, the corresponding floating insertion character or replacement character respectively.1 Each symbol '1' represents a boolean position that will be checked to contain a boolean character.9 Each symbol '9' represents a character position that will be checked to contain a numeric character in the range 0 through 9 with the possible inclusion of an operational sign./ Each symbol '/' (slant) represents a character position that will be checked to contain— the character slant if the symbol '/' is neither part of floating insertion editing nor of zero suppression with replacement editing;— otherwise, the character slant or, if no significant numeric character appears to its left, the corresponding floating insertion character or replacement character respectively.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 451

, Each symbol ',' (comma) represents a character position that will be checked to contain— the character comma if the symbol ',' is neither part of floating insertion editing nor of zero suppression with replacement editing;— otherwise, the character comma or, if no significant numeric character appears to its left, the corresponding floating insertion character or replacement character respectively.. The symbol '.' (period) represents a character position that will be checked to contain the character period.+ – CR DB These symbols represent character positions that will be checked to contain a valid sign, according to the following:— the character position corresponding to the symbol '+' or '-' when such a symbol is used as a fixed insertion symbol, will be checked to contain a valid sign character as defined in Table 8, Results of fixed insertion editing;— the character positions corresponding to the symbols '+' or '-' when such symbols are used as floating insertion symbols, will all be checked to contain valid characters, including a valid sign character, as specified in 13.18.40.5, Editing rules, rule 6;— the character positions corresponding to the symbols 'CR' and 'DB' will be checked to contain valid sign characters as defined in Table 8, Results of fixed insertion editing.* Each symbol '*' represents a character position that will be checked to contain:— the character asterisk, if the symbol '*' is specified to the left of the decimal point position and the content of the character position is a leading zero, or — the character asterisk, if the symbol '*' is specified at the rightmost digit position after the decimal point position and the content of the data item is zero, or — a numeric character in the range 0 through 9 otherwise.cs The character position(s) corresponding to the currency symbol will be checked as follows:— when used as a fixed insertion symbol, the character position(s) will be checked to contain the currency string,— when used as floating insertion symbols, the character position(s) will be checked to contain valid characters, including a valid currency string, as specified in 13.18.40.5, Editing rules, rule 6.es If the FOR clause is not specified, the character position (s) corresponding to character-1 shall be checked to contain literal-1. If the FOR clause is specified, the character positions following NEGATIVE shall be checked to contain literal-2 and the character positions following POSITIVE shall be checked to contain literal-3.All other symbols have no effect on format validation.FORMAT 216) Format 2 of the PICTURE clause defines the item to be fixed-point numeric-edited.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

452 ©ISO/IEC 2023

17) The number of character positions in the item is specified by integer-1.18) The meaning of the symbols used in character-string-1 are as follows:Z Each symbol 'Z' represents a leading numeric position that during editing will contain a numeric character in the range 0 through 9, or a character space when the content of that position is a leading zero.9 Each symbol '9' represents a digit position that shall contain a numeric character in the range 0 through 9.. The symbol '.' (period) represents a character position into which the decimal separator taken from the locale will be inserted during editing.In addition, the symbol '.' indicates the decimal point position for alignment purposes.+ The symbol '+' indicates that the item is to be signed in accordance with the specifications in the locale. If the symbol '+' is not specified, the item will be unsigned.cs The currency symbol indicates that the item is to include a currency string in accordance with the specifications in the locale.19) The PICTURE clause takes effect during the format validation stage of the execution of a VALIDATE statement that refers directly or indirectly to the subject of the entry. The validation is carried out in accordance with the character classification and monetary specification in the locale.
13.18.40.5 Editing rulesFORMAT 11) There are two methods of performing editing: either insertion or suppression with replacement.There are four types of insertion editing:— simple insertion— special insertion— fixed insertion— floating insertionThere are two types of suppression with replacement:— zero suppression with replacement with spaces— zero suppression with replacement with asterisks

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 453

2) The type of editing that may be performed upon an item is dependent upon the category to which the item belongs. Table 7, Category and type of editing, specifies which type of editing may be performed upon a given category:

3) Simple insertion editingCharacter-1 and the symbols 'B', '0', '/', ',' and, if literal=1 is specified, character-1 are used as the simple insertion editing symbols.Simple insertion editing results in the insertion character occupying the same character position in the edited item as the associated symbol occupies in character-string-1.4) Special insertion editingThe symbol '.' is used as the special insertion editing symbol.Special insertion editing results in the period character occupying the same character position in the edited item as the symbol '.' occupies in character-string-1.5) Fixed insertion editingCharacter-1, the currency symbol and the editing sign control symbols '+', '-', 'CR' and 'DB' are used as the fixed insertion editing symbols. Fixed insertion editing results in the insertion character(s) occupying the same character position(s) in the edited item as the associated symbol occupies in character-string-1.When character-1 is used, and is not a simple insertion character, it represents literal-2, or literal-3 as the insertion characters.

Table 7 — Category and type of editing

Category Type of editingAlphabetic NoneAlphanumeric NoneBoolean NoneNational NoneNumeric NoneAlphanumeric-edited Simple insertionNational-edited Simple insertionNumeric-edited (fixed-point edited result) AllNumeric-edited (floating-point edited result) Simple insertion, special insertion, and fixed insertion for the significand partNone for the exponent part

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

454 ©ISO/IEC 2023

Table 8, Results of fixed insertion editing, shows the character(s) produced by an editing sign control symbol, depending on the value of the data item.

The uppercase letters CR and DB are the insertion characters for the insertion symbols 'CR' and 'DB'.6) Floating insertion editingThe currency symbol, the extended editing sign control symbols, if specified, and the fixed editing sign control symbols '+' and '-' are used as the floating insertion symbols.Floating insertion editing is indicated by specifying a string of at least two identical floating insertion editing symbols. Any of the simple insertion editing symbols embedded in this string or to the immediate right of this string are part of the string.The leftmost symbol of the insertion string represents the leftmost limit of the floating characters in the data item. The rightmost symbol of the insertion string represents the rightmost limit of the floating characters in the data item.The second floating symbol represents the leftmost limit of the numeric data that may be stored in the item. During editing, nonzero numeric characters may replace all the insertion symbols at or to the right of this limit.If truncation occurs, the value of the data that is used for editing is the value after truncation as specified in 14.6.8, Alignment and transfer of data into data items.NOTE 1 If the size of character-string-1 is not at least the number of characters in the sending operand, plus the number of non-floating insertion symbols to be inserted in the item, plus one. unwanted truncation of data can result.There are two ways of representing floating insertion editing:a) One way is to represent any or all of the leading numeric character positions to the left of the decimal point position by the same insertion symbol. The result is that a single occurrence of the replacement character(s) is (are) placed into the character position(s) immediately preceding

Table 8 — Results of fixed insertion editing

Editing symbol Result
Positive or zero value Negative value

+ + –

– space –

CR 2 spaces CR

DB 2 spaces DB

character-1, NEGATIVE phrase literal-2 literal-2 or spaces

character-1, POSITIVE phrase literal-3 or spaces literal-3

Literal-2 or literal-3 or spaces means one instance of literal-2 or literal-3 or as many spaces as there are characters
in literal-2 or literal-3.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 455

whichever of the following is encountered first: — the first nonzero numeric character in the item— the first character position for which no floating insertion editing is specified— the decimal point position.Any character positions preceding this (these) insertion character(s) will contain the space character.b) The second way is to represent all of the numeric character positions by the same insertion symbol. The result depends upon the value of the data to be stored. If the value is not zero, the result is the same as if the floating insertion editing were defined only to the left of the decimal point position. If the value is zero, all character positions will contain the space character.Table 9, Results of floating insertion editing, shows the character produced by the floating editing sign control symbols ‘es’, '+' and '-', depending on the value of the data item.

7) Zero suppression with replacement editingThe symbols 'Z' and '*' are used as the symbols for zero suppression with replacement. If the symbol 'Z' is used, the replacement character is the character space; if the symbol '*' is used, the replacement character is the character asterisk.Zero suppression with replacement is indicated by specifying a string of one or more identical zero-suppression characters. Any of the simple insertion editing symbols embedded in this string or to the immediate right of this string are part of the string.There are two ways of representing zero suppression with replacement:a) One way is to represent any or all of the leading numeric character positions to the left of the decimal point position by the zero-suppression symbol. The result is that the corresponding replacement character is placed into any character position immediately preceding whichever of the following is encountered first: — the first nonzero numeric character in the item— the first character position for which no zero suppression with replacement is specified— the decimal point position.

Table 9 — Results of floating insertion editing

Editing symbol in
picture

character-string

Result
Data item

positive or zero
Data item
negative

+ + –

– space –

character-1 NEGATIVE phrase literal-2 or spaces literal-2

character-1 POSITIVE phrase literal-3 literal-3 or spaces

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

456 ©ISO/IEC 2023

b) The second way is to represent all of the numeric character positions by the zero-suppression symbol. The result depends upon the value of the data to be stored. If the value is not zero, the result is the same as if the zero suppression with replacement were defined only to the left of the decimal point position. If the value is zero and the zero-suppression symbol is the symbol 'Z', all character positions of the item will contain the character space. If the value is zero and the zero-suppression symbol is the symbol '*', all character positions of the item will contain the character asterisk, but the decimal separator, when specified, will appear in the item.8) Zero value of a floating-point edited itemIf the value to be edited into a floating-point edited item is zero, then after editing all digit positions of the significand and all digit positions of the exponent shall be zero; the sign of the significand, if present, shall be positive; and the sign of the exponent shall be positive.FORMAT 29) The locale category LC_MONETARY is used for locale editing. The position, length, and character(s) used for the currency symbol are determined from that locale category.10) A BLANK WHEN ZERO clause takes precedence over locale editing.11) When locale-name-1 is specified, the locale used in editing and de-editing the item is the one associated with that name by the LOCALE clause in the SPECIAL-NAMES paragraph; otherwise, the current locale is used.NOTE 2 Switching locales between editing and de-editing of a given data item can result in unpredictable behavior. The programmer is responsible for ensuring that the locale used for de-editing is the same as the one used for editing.12) The decimal separator, the grouping separator, and the number of digits in a group are determined from the locale category LC_MONETARY.13) If the symbol '+' is specified, the manner of representing positive and negative numbers is determined from the locale.14) During editing, the data is aligned on the decimal point position with zero fill or truncation on either end, within a hypothetical data item, with grouping and separators in accordance with the locale specifications.The hypothetical data item is then moved to the data item being edited. The following rules apply:a) If the size of the data item is larger than the size of the hypothetical data item, the data is right justified, with space fill for the leftmost character positions.b) If the size of the data item is smaller than the size of the hypothetical data item, the leftmost character positions of the hypothetical data item are truncated. If any truncated character is neither a zero nor a space caused by a suppressed zero, the EC-LOCALE-SIZE exception condition is set to exist.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 457

15) Zero suppression with replacement editingThe symbol 'Z' is used as the symbol for zero suppression with replacement. The replacement character is the character space.Zero suppression with replacement is indicated by specifying a string of one or more symbols 'Z'.There are two ways of representing zero suppression with replacement:a) One way is to represent any or all of the leading numeric character positions to the left of the decimal point position by the symbol 'Z'. The result is that the space character is placed into any character position immediately preceding whichever of the following is encountered first: — the first nonzero numeric character in the item— the first character position for which no zero suppression with replacement is specified— the decimal point position.b) The second way is to represent all of the numeric character positions by the symbol 'Z'. The result depends upon the value of the data to be stored. If the value is not zero, the result is the same as if the zero suppression with replacement were defined only to the left of the decimal point position. If the value is zero, all character positions of the item will contain the character space.
13.18.40.6 Precedence rulesWhere an 'x' appears in Table 10 and in Table 11, additional syntax rules or general rules may apply further restrictions.FORMAT 1Table 10, Format 1 picture symbol order of precedence, shows the order of precedence of symbols in a Format 1 picture character-string. An 'x' at an intersection indicates that the symbol(s) at the top of the column may precede (but not necessarily immediately) in character-string-1 the symbol(s) at the left of the row. The currency symbol is indicated by the symbol 'cs'.The currency symbol when used as a fixed insertion symbol appears in two columns and two rows. The leftmost column and the uppermost row for this symbol represent its use as the first or second symbol in character-string-1. The rightmost column and the lowermost row for this symbol represent its use as the last or penultimate symbol in character-string-1.The symbol '+' that appears in a column and in a row by itself, represents its use in the exponent part of character-string-1 for a floating-point numeric-edited item.The symbols '+' and '-' when used as a non-floating insertion symbol appear in two columns and two rows. The leftmost column and the uppermost row for these symbols represent their use as the first symbol in character-string-1. The rightmost column and the lowermost row for these symbols represent their use as the last symbol in character-string-1.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

458 ©ISO/IEC 2023

The symbol 'P', the currency symbol when used as a floating insertion symbol, the pair of zero-suppression symbols 'Z' and '*', and the pair of floating insertion symbols '+' and '-' appear in two columns and in two rows in Table 10. The leftmost column and the uppermost row for these symbols represent their use to the left of the decimal point position. The rightmost column and the lowermost row for these symbols represent their use to the right of the decimal point position.For the purposes of Table 10, character-string-1 for a numeric-edited item for a floating-point edited result is considered as two separate strings, the first of which begins with the first symbol and ends with the symbol 'E', and the second of which begins with the symbol 'E' and ends with the last symbol. The presence of symbols preceding the symbol 'E' has no effect on the validity of symbols following the symbol 'E'.When the DECIMAL-POINT IS COMMA clause is specified, the precedence rules for the symbols comma and period are interchanged.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 459

Table 10 — Format 1 picture symbol order of precedence

Second
Symbol

First Symbol
Simple, special, and fixed

insertion symbols
Zero-suppression

and floating
insertion symbols

Other symbols

B
 0
/

, . + +
–

+
–

C
R
D
B

c
s

c
s

Z
*

Z
*

+
–

+
–

c
s

c
s

9 A
X

S V P P 1 N E

Si
m

pl
e,

 s
pe

ci
al

, a
nd

 fi
xe

d
in

se
rt

io
n

sy
m

bo
ls B 0

/
x x x x x x x x x x x x x x x x

, x x x x x x x x x x x x x x

. x x x x x x x x

+ x

+
–
+
–

x x x x x x x x x x x x x

CR
 DB

x x x x x x x x x x x x x

cs x

cs x x x x x x x x x x

Ze
ro

-s
up

pr
es

si
on

 a
nd

 fl
oa

ti
ng

 in
se

rt
io

n
sy

m
bo

ls

 Z
*

x x x x x

Z
*

x x x x x x x x x

+
–

x x x x

+
–

x x x x x x x

cs x x x x

cs x x x x x x x

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

460 ©ISO/IEC 2023

If the EDITING phrase is specified, the precedence of ‘es’ as related to Table 10, Format 1 picture symbol order of precedence, has the same precedence as the 'cs' symbol in the column and row of non-floating insertion symbols.FORMAT 2Table 11, Format 2 picture symbol order of precedence, shows the order of precedence of symbols in a Format 2 picture character-string. An 'x' at an intersection indicates that the symbol at the top of the column may precede (but not necessarily immediately) in character-string-1 the symbol at the left of the row. The currency symbol is indicated by the symbol 'cs'.

O
th

er
 s

ym
bo

ls

9 x x x x x x x x x x x x x x x

A
X

x x x

S

V x x x x x x x x x x

P x x x x x x x x x x

P x x x x x

1 x

N x x

E x x x x x

Table 11 — Format 2 picture symbol order of precedence

Second
Symbol

First Symbol
9 cs . + Z

9 X X X X X

cs X

. X X X X

+

Z X X X X

Table 10 — Format 1 picture symbol order of precedence

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 461

13.18.41 PRESENT WHEN clause

13.18.41.1 General1) The PRESENT WHEN clause specifies a condition under which a report section entry will be processed.2) The PRESENT WHEN clause also enables conditional selection of data description entries by the VALIDATE statement.NOTE The PRESENT WHEN clause feature of the VALIDATE facility is an obsolete feature.
13.18.41.2 General formatsFormat 1 (report-writer):
Format 2 (validation):
13.18.41.3 Syntax ruleFORMAT 21) The PRESENT WHEN clause shall not be specified for a strongly-typed group item or any item subordinate to a strongly-typed group item.
13.18.41.4 General rulesFORMATS 1 AND 21) If the PRESENT WHEN clause is specified in a report group description entry, the general rules for format 1 apply, otherwise, the general rules for format 2 apply.FORMAT 12) If a report group contains any entries that have a PRESENT WHEN clause, condition-1 of each PRESENT WHEN clause is evaluated before the processing of any LINE clauses for the report group. The effect of the PRESENT WHEN clause depends on the value of condition-1 as follows:a) If condition-1 is true, the corresponding data item is declared to be present and the PRESENT WHEN clause does not affect the processing for this instance of the report group.b) If condition-1 is false, the corresponding data item is declared to be absent and the effect on processing is as though the entry were omitted from the description of the report group. If the data description entry is not an elementary entry, all its subordinate data items are also declared

PRESENT WHEN condition-1
PRESENT WHEN condition-2

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

462 ©ISO/IEC 2023

to be absent, irrespective of any PRESENT WHEN clauses they may also contain. Furthermore, if the entry is a level-01 entry, the effect on processing is as though the entire report group description were omitted.3) Within a report group description, any PRESENT WHEN clauses are taken into account when assessing the validity of the arrangement of LINE and COLUMN clauses, the manner in which the report group will be printed and the effect of sum counters, as follows:a) The rules for positioning the first line of the report group ignore any LINE clauses specified at the start of the report group where the LINE clauses are associated with absent data items. (See 13.18.35, LINE clause.)b) The rules forbidding overlap of absolute lines in the report group are not applied to lines associated with absent data items. (See 13.18.35, LINE clause.)c) The rules preventing trailing relative lines in the report group from exceeding the report group's lower limit are not applied to lines associated with absent data items. (See 13.18.35, LINE clause.)d) The page fit test for body groups disregards all lines associated with absent data items. (See 13.18.35, LINE clause.)e) The rules forbidding overlap of absolute printable items in a report line are not applied to items associated with absent data items. (See 13.18.14, COLUMN clause, General rule 4.)f) The rules preventing trailing relative printable items in the line from exceeding the page width are not applied to items associated with absent data items. (See 13.18.14, COLUMN clause.)g) If an entry with a SUM clause is associated with an absent data item, the sum counter is not printed and is not reset to zero.FORMAT 24) The PRESENT WHEN clause takes effect during the execution of a VALIDATE statement that directly or indirectly references the subject of the entry.5) Condition-2 is evaluated at the beginning of the execution of the format validation stage, with the following two possible results:a) If condition-2 is true, the data item that is the subject of the entry is processed during further execution of the VALIDATE statement.b) If condition-2 is false, the data item that is the subject of the entry and all data items subordinate to it are not processed at this and all subsequent stages of the execution of the VALIDATE statement.NOTE If condition-2 is false, the contents of the data item will not be checked unless the data item is redefined.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 463

6) Condition-2 shall not reference any data item that is, or shares any storage with, an operand of a DESTINATION clause appearing later in the description of a data item referred to by the same VALIDATE statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

464 ©ISO/IEC 2023

13.18.42 PROPERTY clause

13.18.42.1 GeneralThe PROPERTY clause indicates that this data item is a property of the object and that GET and/or SET methods are to be generated accordingly.
13.18.42.2 General format

13.18.42.3 Syntax rules1) The PROPERTY clause may be specified only in the working-storage section of a factory definition or an instance definition.2) The PROPERTY clause shall not be specified for data items subject to an OCCURS clause.3) The PROPERTY clause may be specified only for an elementary item whose name does not require qualification for uniqueness of reference.4) The data-name for the subject of the entry shall not be the same as a property-name defined in a superclass.NOTE A property-name can be defined in a superclass either by defining a method or a pair of methods with the PROPERTY phrase or by describing a data description entry with the PROPERTY clause.5) If the PROPERTY clause is specified in a data item described with the CONSTANT RECORD clause, or in any data item subordinate to a data item described with the CONSTANT RECORD clause, the SET phrase shall be specified.6) The PROPERTY clause shall not be specified for data items of usage object reference described with an ACTIVE-CLASS phrase.
13.18.42.4 General rules1) If the GET phrase is not specified, the PROPERTY clause causes a method to be defined for the containing object.If the subject of this entry is of class index, message-tag, object, or pointer, the implicit definition of this method is as follows:

METHOD-ID. GET PROPERTY data-name.
DATA DIVISION.
LINKAGE SECTION.
01 LS-data-name data-description.

PROPERTY WITH NO GETSET

 [IS FINAL]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 465

PROCEDURE DIVISION RETURNING LS-data-name.
par-name.

 SET LS-data-name TO data-name
 GOBACK.

END METHOD.If the subject of this entry is of category alphanumeric-edited, national-edited, or numeric-edited, the implicit definition of this method is as follows:
METHOD-ID. GET PROPERTY data-name.
DATA DIVISION.
LINKAGE SECTION.
01 LS-data-name data-description.
PROCEDURE DIVISION RETURNING LS-data-name.
par-name.

MOVE data-name TO LS-data-name (1:)
GOBACK.

END METHOD.NOTE 1 If the subject of the entry is edited, reference modification of the receiving item as the whole of itself prevents the editing rules from being reapplied to the data.Otherwise, the implicit definition of this method is as follows:
METHOD-ID. GET PROPERTY data-name.
DATA DIVISION.
LINKAGE SECTION.
01 LS-data-name data-description.
PROCEDURE DIVISION RETURNING LS-data-name.
par-name.

 MOVE data-name TO LS-data-name
 GOBACK.

END METHOD.Where LS-data-name has the data description of the subject of the entry with the exception of:— PROPERTY clauses— VALUE clauses— a REDEFINES clause in the description of the subject of the entry.2) If the SET phrase is not specified, the PROPERTY clause causes a method to be defined for the containing object.If the subject of this entry is of class index, message-tag, object, or pointer, the implicit definition of this method is as follows:
METHOD-ID. SET PROPERTY data-name.
DATA DIVISION.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

466 ©ISO/IEC 2023

LINKAGE SECTION.
01 LS-data-name data-description.
PROCEDURE DIVISION USING LS-data-name.
par-name.
 SET data-name TO LS-data-name

GOBACK.
END METHOD.If the subject of this entry is of category alphanumeric-edited, national-edited, or numeric-edited, the implicit definition of this method is as follows:
METHOD-ID. SET PROPERTY data-name.
DATA DIVISION.
LINKAGE SECTION.
01 LS-data-name data-description.
PROCEDURE DIVISION USING LS-data-name.
par-name.

MOVE LS-data-name TO data-name(1:)
GOBACK.

END METHOD.NOTE 2 If the subject of the entry is edited, reference modification of the receiving item as the whole of itself prevents the editing rules from being reapplied to the data.Otherwise, the implicit definition of this method is as follows:
METHOD-ID. SET PROPERTY data-name.
DATA DIVISION.
LINKAGE SECTION.
01 LS-data-name data-description.
PROCEDURE DIVISION USING LS-data-name.
par-name.

 MOVE LS-data-name TO data-name
 GOBACK.

END METHOD.Where LS-data-name has the data description of the subject of the entry with the exception of:— PROPERTY clauses— VALUE clauses— a REDEFINES clause in the description of the subject of the entry.3) If the FINAL phrase is specified, the implicit method definitions generated by the PROPERTY clause shall include the FINAL phrase in their METHOD-ID paragraphs.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 467

13.18.43 RECORD clause

13.18.43.1 GeneralThe RECORD clause specifies the number of bytes in a fixed length record, or specifies the range of bytes in a variable-length record. If the number of bytes does vary, the clause specifies the minimum and maximum number of bytes.
13.18.43.2 General formatsFormat 1 (fixed-length):

Format 2 (variable-length):

Format 3 (fixed-or-variable-length):

13.18.43.3 Syntax rulesALL FORMATS1) If no record description entries are specified in a file description entry for a file that is not a report file, the RECORD clause shall be specified.2) The words BYTES and CHARACTERS are synonymous and may be used interchangeably.FORMAT 13) No record description entry for the file may specify a number of bytes greater than integer-1.FORMAT 24) Record descriptions for the file shall describe neither records that contain a lesser number of bytes than that specified by integer-2 nor records that contain a greater number of bytes than that specified by integer-3.

RECORD CONTAINS integer-1 BYTESCHARACTERS

RECORD IS VARYING IN SIZE [FROM integer-2] [TO integer-3] BYTESCHARACTERS

[DEPENDING ON data-name-1]
RECORD CONTAINS integer-4 TO integer-5 BYTESCHARACTERS

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

468 ©ISO/IEC 2023

5) Integer-3 shall be greater than integer-2.6) Data-name-1 shall describe an elementary unsigned integer in the working-storage, local-storage, or linkage section.7) Integer-2 shall be greater than or equal to zero.FORMAT 38) Integer-4 shall be greater than or equal to zero.9) Integer-5 shall be greater than integer-4.
13.18.43.4 General rulesALL FORMATS1) Each integer in a RECORD clause specifies a record size in terms of bytes. 2) The implicit or explicit RECORD clause specifies the size of records in the record area. The size of records on physical storage media may be different due to control information required by the operating environment. Factors in the source element other than the RECORD clause that may affect the size of records on physical storage medium are the CODE-SET clause and the FORMAT clause. The implementor shall specify the calculations necessary for the user to derive the size for records on the storage medium.3) The size of each record is specified in terms of the number of bytes required to store the logical record, regardless of the types of characters used to represent the items within the logical record. The size of a record is determined by the sum of the number of bytes in all fixed length elementary items plus the sum of the maximum number of bytes in any occurs-depending table subordinate to the record. Implicit filler positions, if any, are included in the size.4) If the last data item in the logical record does not end at a byte boundary, the record size includes the entire byte in which that data item ends, and the value of implicit filler bit positions necessary to complete the byte is undefined.5) If the RECORD clause is not specified, an implicit format 1 or format 2 RECORD clause is assumed to be specified. This implicit RECORD clause is defined by the implementor with the following characteristics:a) If format 1 is implied, integer-1 shall be the record size of the largest record description entry in this file description entry.b) If format 2 is implied, integer-2 shall be the record size of the smallest record description entry in this file description entry, and integer-3 shall be the largest record description entry in this file description entry. The DEPENDING ON phrase is not specified.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 469

FORMAT 16) Format 1 is used to specify fixed-length records. Integer-1 specifies the number of bytes contained in each record in the file.FORMAT 27) Format 2 is used to specify variable-length records. Integer-2 specifies the minimum number of bytes to be contained in any record of the file. Integer-3 specifies the maximum number of bytes in any record of the file.8) The number of bytes associated with a record description is determined by the sum of the number of bytes in all elementary data items excluding redefinitions and renamings, plus any implicit FILLER due to synchronization. If a table is specified:a) The minimum number of table elements described in the record is used in the summation above to determine the minimum number of bytes associated with the record description.b) The maximum number of table elements described in the record is used in the summation above to determine the maximum number of bytes associated with the record description.9) If integer-2 is not specified, the minimum number of bytes to be contained in any record of the file is equal to the least number of bytes described for a record in that file.10) If integer-3 is not specified, the maximum number of bytes to be contained in any record of the file is equal to the greatest number of bytes described for a record in that file.11) If data-name-1 is specified, the number of bytes in the record shall be placed into the data item referenced by data-name-1 before any RELEASE, REWRITE, or WRITE statement is executed for the file.12) If data-name-1 is specified, the execution of a DELETE, RELEASE, REWRITE, START, or WRITE statement or the unsuccessful execution of a READ or RETURN statement does not alter the content of the data item referenced by data-name-1.13) During the execution of a RELEASE, REWRITE, or WRITE statement, the number of bytes in the record is determined by the following conditions:a) If data-name-1 is specified, by the content of the data item referenced by data-name-1.b) If data-name-1 is not specified and the record does not contain a variable-occurrence data item, by the number of bytes in the record.c) If data-name-1 is not specified and the record does contain a variable-occurrence data item, by the sum of the fixed portion and that portion of the table described by the number of occurrences at the time of execution of the output statement.14) If the number of bytes in the record to be written is less than integer-2 or greater than integer-3, the following occurs:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

470 ©ISO/IEC 2023

a) If a REWRITE or WRITE statement is being executed, the EC-I-O-LOGIC-ERROR exception condition is set to exist, and the execution of the REWRITE or WRITE statement is unsuccessful.b) If a RELEASE statement is being executed, the EC-SORT-MERGE-RELEASE exception condition is set to exist and the execution of the RELEASE statement is unsuccessful.15) If data-name-1 is specified, after the successful execution of a READ or RETURN statement for the file, the contents of the data item referenced by data-name-1 will indicate the number of bytes in the record just read.16) If the INTO phrase is specified in the READ or RETURN statement, the number of bytes in the current record that participate as the sending operands in the implicit MOVE statement is determined by the following conditions:a) If data-name-1 is specified, by the content of the data item referenced by data-name-1.b) If data-name-1 is not specified, by the value that would have been moved into the data item referenced by data-name-1 had data-name-1 been specified.If the number of bytes determined as above is zero, the record is a zero-length item.FORMAT 317) It is implementor defined whether format 3 of the RECORD clause produces fixed-length records or variable-length records.18) When format 3 of the RECORD clause is used, integer-4 and integer-5 refer to the minimum number of bytes in the smallest size record and the maximum number of bytes in the largest size record, respectively. However, in this case, the size of each record is completely defined in the record description entry.19) If the number of bytes in the logical record to be written is less than integer-4 or greater than integer-5, the following occurs:a) If a REWRITE or WRITE statement is being executed, the EC-I-O-LOGIC-ERROR exception condition is set to exist and the execution of the REWRITE or WRITE statement is unsuccessful.b) If a RELEASE statement is being executed, the EC-SORT-MERGE-RELEASE exception condition is set to exist and the execution of the RELEASE statement is unsuccessful.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 471

13.18.44 REDEFINES clause

13.18.44.1 GeneralThe REDEFINES clause allows the same computer storage area to be described by different data description entries.
13.18.44.2 General format

where entry-name-clause is described in 13.18.20, Entry-name clauseNOTE Level-number and entry-name-clause are shown in the above format to provide context. Level-number and entry-name-clause are not part of the REDEFINES clause.
13.18.44.3 Syntax rules1) The REDEFINES clause shall immediately follow the entry-name clause; if the entry-name clause is not specified, the REDEFINES clause shall immediately follow the level-number.2) The level-numbers of data-name-2 and the subject of the entry shall be identical, but shall not be 66 or 88.3) This clause shall not be specified in level 1 entries in the file section or in any entry subordinate to a file description entry that contains a FORMAT clause.4) No entry having a level-number numerically lower than the level-number of data-name-2 may occur between the data description entries of data-name-2 and the subject of the entry.5) The data description entry for data-name-2 shall not contain an OCCURS clause. However, data-name-2 may be subordinate to an item whose data description entry contains an OCCURS clause. In this case, the reference to data-name-2 in the REDEFINES clause shall not be subscripted. Neither the original definition nor the redefinition shall include an occurs-depending table.6) Data-name-2 shall not be qualified.NOTE 1 If data-name-2 is not unique, no ambiguity of reference exists because of the required placement of the REDEFINES clause.7) Multiple redefinitions of the same storage area shall each specify as data-name-2 the data-name of the entry that originally defined the area.8) The storage area required for the subject of the entry shall not be larger than the storage area required for the data item referenced by data-name-2, unless the data item referenced by data-name-2 has been specified with level number 1 and without the EXTERNAL clause.9) Neither this entry nor any entry subordinate to it shall contain a VALUE clause, unless that VALUE clause is specified in an entry with the level-number 88.

level-number [entry-name-clause] REDEFINES data-name-2

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

472 ©ISO/IEC 2023

10) The entries giving the new descriptions of the storage area shall follow the entries defining the area of data-name-2, without intervening entries that define new storage areas.11) Data-name-2 may be subordinate to an entry that contains a REDEFINES clause.12) The REDEFINES clause shall not be specified for a data item of class object, message-tag, or pointer or a strongly-typed group item.13) The data description entry for data-name-2 shall not contain the CONSTANT RECORD clause.14) Data-name-2 shall not be of class object, message-tag, or pointer, a strongly-typed group item, or an item subordinate to a strongly-typed group item.15) The description of the subject of the entry shall be such that its required alignment is the same as the alignment of the data item referenced by data-name-2.NOTE 2 This Working Draft International Standard places requirements on the alignment and an implementation can place additional requirements on the alignment.16) Data-name-2 shall not be described with the ANY LENGTH clause.17) Neither data-name-2 nor the subject of the entry shall be a variable-length group or a dynamic-length elementary item.NOTE 3 REDEFINES can however be specified in an entry subordinate to a variable-length group or a dynamic-capacity table.
13.18.44.4 General rules1) Storage association for the subject of the entry starts at the first bit of the data item referenced by data-name-2 and continues over an area sufficient to contain the number of bits required by the data item referenced by the subject of the entry. If the subject of the entry requires more bits than the data item referenced by data-name-2, the storage area allocated for the data item referenced by data-name-2 and the subject of the entry is the number of bits required by the data item referenced by the subject of the entry. The size used for references to the data item referenced by data-name-2 is not changed.2) When the same storage area is defined by more than one data description entry, the data-name associated with any of those data description entries may be used to reference that storage area.3) If a REDEFINES clause is specified in the data description entry for a data item subordinate to the operand of a VALIDATE statement, each definition is used by the VALIDATE statement independently of the others, subjecting the same data locations to more than one set of checks. ThePRESENT WHEN clause may be used to select one or more of a set of redefinitions, according to the specified conditions.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 473

13.18.45 RENAMES clause

13.18.45.1 GeneralThe RENAMES clause permits alternative, possibly overlapping, groupings of elementary items.
13.18.45.2 General format

NOTE Level-number 66 and data-name-1 are shown in the above format to provide context. Level-number and data-name-1 are not part of the RENAMES clause.
13.18.45.3 Syntax rules1) Any number of RENAMES entries may be written for a record. 2) All RENAMES entries referring to data items within a given record shall immediately follow the last data description entry of the associated record description entry.3) Data-name-1 shall not be used as a qualifier. Data-name-1 may be qualified only by the names of the associated level 01, FD, or SD entries. Data-name-1, data-name-2 and data-name-3 shall not be subject to any OCCURS clauses.4) Data-name-2 and data-name-3 shall be names of elementary items or groups of elementary items in the same record, and shall not be the same data-name.5) Neither data-name-2 nor data-name-3 shall refer to an entry that is described with level-number 1, 66, 77, or 88.6) Neither data-name-2 nor data-name-3 shall refer to an entry within a record whose data description entry includes the CONSTANT RECORD clause.7) Data-name-2 and data-name-3 shall not be subscripted.8) None of the items within the range, including data-name-2 and data-name-3, if specified, shall be of class object, message-tag, or pointer, a strongly-typed group item, an item subordinate to a strongly-typed group item, a variable-length data item, or an occurs-depending table.9) The words THROUGH and THRU are equivalent.10) The area described by data-name-2 THROUGH data-name-3 shall define an integral number of bytes.11) The beginning of the storage area described by data-name-3 shall not precede the beginning of the storage area described by data-name-2. The end of the storage area described by data-name-3 shall follow the end of the storage area described by data-name-2.

66 data-name-1 RENAMES data-name-2 THROUGHTHRU

 data-name-3 .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

474 ©ISO/IEC 2023

NOTE Data-name-3, therefore, cannot be subordinate to data-name-2.
13.18.45.4 General rules1) When the THROUGH phrase is not specified, all of the data attributes of data-name-2 become the data attributes of data-name-1 and the storage area occupied by data-name-2 becomes the storage area occupied by data-name-1.2) When the THROUGH phrase is specified, data-name-1 defines an alphanumeric group item that includes all elementary items starting with data-name-2 (if data-name-2 is an elementary item) or the first elementary item in data-name-2 (if data-name-2 is a group item), and concluding with data-name-3 (if data-name-3 is an elementary item) or the last elementary item in data-name-3 (if data-name-3 is a group item).

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 475

13.18.46 REPORT clause

13.18.46.1 GeneralThe REPORT clause identifies the reports that may be written to a report file.
13.18.46.2 General format

13.18.46.3 Syntax rules1) Each report-name-1 shall be the subject of a report description entry in the report section of the same source element. The order of appearance of each report-name-1 is not significant.2) Each report-name-1 may appear in only one REPORT clause.3) The subject of a file description entry that specifies a REPORT clause may be referenced in the procedure division only by the USE statement, the WHEN phrase of a PERFORM statement, the CLOSE statement, or the OPEN statement with the OUTPUT or EXTEND phrase.
13.18.46.4 General rules1) The presence of more than one report-name-1 indicates that more than one report may be written to the file.2) After execution of an INITIATE statement and before the execution of a TERMINATE statement for the same report, no OPEN or CLOSE statements shall be executed that reference the report file.

REPORT ISREPORTS ARE

 { report-name-1 } ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

476 ©ISO/IEC 2023

13.18.47 REQUIRED clause

13.18.47.1 GeneralThe REQUIRED clause specifies that in the context of an ACCEPT screen statement, the user shall enter at least one character in the input field.
13.18.47.2 General format

13.18.47.3 General rules1) The REQUIRED clause has an effect only during the execution of an ACCEPT statement referencing the screen item.2) The REQUIRED clause has no effect until the cursor enters a screen item subject to the REQUIRED clause.3) The effect of the REQUIRED clause is to reject the terminator keystroke and any other cursor-moving keystrokes that would cause the cursor to move to another screen item unless the required termination condition is satisfied. The required termination condition is satisfied:— if a screen item is alphanumeric or alphanumeric-edited and contains at least one non-space character;— if a screen item is national or national-edited and contains at least one non-space character;— if a screen item is numeric or numeric-edited and contains a nonzero value;— if a screen item is boolean and contains a nonzero value.4) For fields that are both input and output, the REQUIRED clause may be satisfied by the contents of the identifier or literal referenced in the FROM or USING clause, as well as data keyed by the terminal operator.5) The REQUIRED clause is not effective if a function key is used to terminate the execution of the ACCEPT statement.6) The specification of the FULL and REQUIRED clauses together requires that the field be filled entirely before the normal termination key has any effect.7) If a REQUIRED clause is specified in a group screen item, it applies to each elementary input screen item in that group.

REQUIRED

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 477

13.18.48 REVERSE-VIDEO clause

13.18.48.1 GeneralThe REVERSE-VIDEO clause specifies that the screen item is to be displayed by exchanging the foreground and background colors that would otherwise be in effect.
13.18.48.2 General format

13.18.48.3 General rules1) If the REVERSE-VIDEO clause is specified at group level, it applies to each elementary screen item in that group.2) When the REVERSE-VIDEO clause is specified, the screen item will be displayed so that the characters that constitute the screen item will be shown with the foreground and background colors being exchanged when the screen item is referenced in an ACCEPT screen or a DISPLAY screen statement. For monochrome displays, the reverse-video attribute is used.

REVERSE-VIDEO

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

478 ©ISO/IEC 2023

13.18.49 SAME AS clause

13.18.49.1 GeneralThe SAME AS clause specifies that a data-name has the same description as that specified by another data description entry.
13.18.49.2 General format

13.18.49.3 Syntax rules1) Data-name-1 shall not be subject to any OCCURS clauses.2) A data description entry that specifies the SAME AS clause shall not be immediately followed by a subordinate data description entry or level 88 entry.3) Neither the description of data-name-1 nor the description of any data items subordinate to the subject of the entry shall directly or indirectly contain a SAME AS clause that references the subject of the entry or any group item to which this entry is subordinate.4) The description of data-name-1, including its subordinate data items, shall not contain a TYPE clause that references the record to which this entry is subordinate.5) The description of data-name-1 shall not contain an OCCURS clause. However, items subordinate to data-name-1 may contain OCCURS clauses.6) When the SAME AS clause is specified in the file section, the description of data-name-1, including its subordinate data items, shall not contain a data item described with a USAGE OBJECT REFERENCE clause.7) Data-name-1 shall reference an elementary item or a level 1 group item described in the file, working-storage, local-storage, or linkage section.8) If the subject of the entry is a level 77 item, data-name-1 shall reference an elementary item.9) A group item to which the subject of the entry is subordinate shall not contain a GROUP-USAGE, SIGN, or USAGE clause.10) The description of data-name-1 shall not contain a CONSTANT RECORD clause.
13.18.49.4 General rules1) The effect of the SAME AS clause is as though the data description identified by data-name-1 had been coded in place of the SAME AS clause, excluding the level-number, name, and the CONSTANT RECORD, EXTERNAL, GLOBAL, REDEFINES, and SELECT WHEN clauses specified for data-name-1; level numbers of subordinate items may be adjusted as described in General rule 2.

SAME AS data-name-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 479

2) If data-name-1 describes a group item:a) the subject of the entry is a group whose subordinate elements have the same names, descriptions, and hierarchy as the subordinate elements of data-name-1,b) the level-numbers of items subordinate to that group are adjusted, if necessary, to preserve the hierarchy of data-name-1,c) level-numbers in the resulting hierarchy may exceed 49.NOTE If alignment according to 8.5.1.6.4, Item alignment for increased object-code efficiency, inserts implicit fillers in either data-name-1 or the subject of the entry, the alignment of the corresponding data items may differ.3) If an alphanumeric group item or strongly-typed group item to which data-name-1 is subordinate contains a USAGE clause, the effect is as though that USAGE clause had been specified for the subject of the entry.4) If a group item to which data-name-1 is subordinate contains a GROUP-USAGE clause and the subject of the entry is a group item, the effect is as if that GROUP-USAGE clause had been specified for the subject of the entry.5) If an alphanumeric group item, national group item, or strongly-typed group item to which data-name-1 is subordinate contains a SIGN clause, the effect is as though that SIGN clause had been specified for the subject of the entry.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

480 ©ISO/IEC 2023

13.18.50 SECURE clause

13.18.50.1 GeneralThe SECURE clause prevents data entered from the keyboard or contained in the screen item from appearing on the screen at the screen location that corresponds to the screen item for which it is specified.
13.18.50.2 General format

13.18.50.3 General rules1) If a SECURE clause is specified at the group level, it applies to each elementary input screen item in that group.2) The SECURE clause has an effect only during the execution of an ACCEPT statement referencing the screen item.3) The effect of the SECURE clause is to prevent data corresponding to a screen item that has been specified with the SECURE clause from being displayed on the screen. During the execution of an ACCEPT statement, the cursor will appear at the screen location that corresponds to an input screen item, but any data keyed by the terminal operator will not be displayed. For fields that are both input and output, the contents of the screen location of the screen item prior to the execution of the ACCEPT screen statement remain unchanged and are unchangeable by the terminal operator.4) It is implementor-defined whether the cursor moves as data is entered into a field for which the SECURE clause is specified.

SECURE

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 481

13.18.51 SELECT WHEN clause

13.18.51.1 GeneralThe SELECT WHEN clause specifies a condition-name condition under which a record description entry is associated with a record during input and output operations.
13.18.51.2 General format

13.18.51.3 Syntax rules1) A SELECT WHEN clause may be specified only at the 01 level of a record description entry in the file, linkage, local-storage, or working-storage section.2) If a SELECT WHEN clause is specified for any record description entry associated with a given file-name, then a SELECT WHEN clause shall be specified for all record description entries associated with that file-name.3) A given condition-name-1 shall be specified in the SELECT WHEN clause of only one record description entry associated with a given file-name.4) For a given file description entry, all instances of condition-name-1 shall be associated with a conditional variable defined at the same position in the record, with the same usage, and with the same size.5) If a FORMAT clause is specified for the file description entry, the conditional variable associated with condition-name-1 shall be the first elementary data item in the record description entry.6) The OTHER phrase may be specified only in the last record description entry associated with a given file.
13.18.51.4 General rules1) For a given file-description entry, any SELECT WHEN clauses of associated record description entries are evaluated for READ statements, for REWRITE statements with the FILE phrase, and for WRITE statements with the FILE phrase, if the associated file description entry also contains a CODE-SET clause or FORMAT clause.2) SELECT WHEN clauses of record description entries specified in the working-storage section, local-storage section, or the linkage section have no effect. SELECT WHEN clauses of record description entries specified in the file section have no effect for statements other than READ statements, REWRITE statements with the FILE phrase, and WRITE statements with the FILE phrase, when those statements reference the associated file.

SELECT WHEN condition-name-1OTHER

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

482 ©ISO/IEC 2023

3) The condition-name condition specified in a SELECT WHEN clause is evaluated for each record description entry, in the order the record description entries are written, until the evaluation is true. When the evaluation is true, the associated record description entry is selected for use with theCODE-SET and FORMAT clauses. The evaluation is always true when the OTHER phrase is specified.4) If no record description entry is selected, the input-output operation is unsuccessful and the I-O status is set to a value indicating a record identification failure. (See 9.1.13, I-O status.)5) The implementor shall specify whether a SELECT WHEN clause takes effect for READ statements, for REWRITE statements with the FILE phrase, or for WRITE statements with the FILE phrase, when the associated file-description entry contains neither a CODE-SET clause nor a FORMAT clause.NOTE This permits code-set conversion based on record layout in circumstances that the implementor defines; a CODE-SET clause need not be present in the source element in this case.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 483

13.18.52 SIGN clause

13.18.52.1 GeneralThe SIGN clause specifies the position and the mode of representation of the operational sign.
13.18.52.2 General format

13.18.52.3 Syntax rules1) The SIGN clause may be specified only for:— a numeric data or screen description entry whose picture character-string contains the symbol 'S'— a numeric report group description entry whose picture character-string contains the symbol 'S'— an alphanumeric group item, national group item, or strongly-typed group item.2) The usage of an elementary item for which the SIGN clause is specified shall be display or national.3) If the CODE-SET clause is specified in a file description entry, any signed numeric data description entries associated with that file description entry shall be described with the SIGN IS SEPARATE clause.
13.18.52.4 General rules1) The SIGN clause specifies the position and the mode of representation of the operational sign for the numeric item to which it applies, or for each numeric item subordinate to the group to which it applies. The SIGN clause applies only to numeric items whose picture character-string contains the symbol 'S'.2) If a SIGN clause is specified in a group item subordinate to a group item for which a SIGN clause is specified, the SIGN clause specified in the subordinate group item takes precedence for that subordinate group item.3) If a SIGN clause is specified in an elementary numeric item subordinate to a group item for which a SIGN clause is specified, the SIGN clause specified in that elementary entry takes precedence for that elementary entry.4) A numeric item whose picture character-string contains the symbol 'S', and to which no SIGN clause applies, has an operational sign. Neither the representation nor the position of that operational sign is specified by the symbol 'S'. The implementor shall specify the position and representation of the operational sign. General rules 5 and 6 do not apply to such signed numeric items.5) If the SEPARATE CHARACTER phrase is not specified, then:

[SIGN IS] LEADINGTRAILING

 [SEPARATE CHARACTER]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

484 ©ISO/IEC 2023

a) The operational sign is presumed to be associated with the leading (or, respectively, trailing) digit position of the data item to which it applies.b) The implementor defines what constitutes valid signs for data items.6) If the SEPARATE CHARACTER phrase is specified, then:a) The operational sign is presumed to be the leading (or, respectively, trailing) character position of the data item to which it applies; this character position is not a digit position.b) The operational signs for positive and negative are the basic special characters '+' and '–', respectively.7) Each numeric item whose picture character-string contains the symbol 'S' is a signed item. If a SIGN clause applies to such an item and conversion is necessary for purposes of computation or comparisons, conversion takes place automatically.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 485

13.18.53 SOURCE clause

13.18.53.1 GeneralThe SOURCE clause identifies a data item or expression to be moved automatically to a printable item.
13.18.53.2 General format

where rounded-phrase is described in 14.7.4, ROUNDED phrase.
13.18.53.3 Syntax rules1) SOURCE and SOURCES are synonyms.2) If identifier-1 is specified without the ROUNDED phrase, identifier-1 shall be described such that a MOVE statement is valid with identifier-1 as the sending operand and the printable item as the receiving operand.3) If arithmetic-expression-1 or the ROUNDED phrase is specified, the entry shall define either a numeric data item or a numeric-edited data item.4) Identifier-1 specifies a data item defined in any section of the data division. If identifier-1 specifies a report section item, it shall be a report counter identifier or a sum counter defined in the current report. This same Syntax rule applies to any identifier appearing in arithmetic-expression-1.5) If identifier-1 is specified with the ROUNDED phrase, it is considered to be an arithmetic-expression.6) If the SOURCE clause has more than one operand, the entry shall be a repeating entry or shall be subordinate to a repeating entry, and the number of operands of the SOURCE clause shall be equal to the number of repetitions of the repeating entry or the same number multiplied by the number of repetitions of any number of successive repeating entries at higher levels than the repeating entry.7) If the SOURCE clause has more than one operand of which at least one is an arithmetic-expression, each operand shall be enclosed in parentheses.8) Identifier-1 shall not reference a variable-length group.
13.18.53.4 General rules1) If identifier-1 is specified without the ROUNDED phrase, it specifies the sending operand of an implicit MOVE statement in which the data item referenced by identifier-1 is moved to the printable item.

SOURCE ISSOURCES ARE

 identifier-1arithmetic-expression-1

 ... [rounded-phrase]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

486 ©ISO/IEC 2023

2) Arithmetic-expression-1 specifies the operand of an implicit COMPUTE statement that is executed implicitly whenever the associated item is printed. If the ROUNDED phrase is specified, the implicit COMPUTE statement has the corresponding ROUNDED phrase.3) If the entry containing the SOURCE clause contains no COLUMN clause and therefore defines an unprintable item, the SOURCE clause causes no action, except where the entry is referred to by means of a SUM clause. In all other cases, a MOVE or COMPUTE statement is implicitly executed before the associated report line is printed. If identifier-1 is specified without the ROUNDED phrase, the statement executed is the MOVE statement defined in General rule 1 above. Otherwise, the statement executed is the COMPUTE statement defined in General rule 2 above.4) If the SOURCE clause has more than one operand, successive operands are assigned to successive repeating printable items, horizontally and then vertically, as applicable, in that hierarchic order. If no further operands remain, assignment begins again from the first operand. If any of the printable items are suppressed as a result of a PRESENT WHEN clause or an OCCURS clause with a DEPENDING phrase, SOURCE operands are nevertheless assigned to them, even though they are not printed.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 487

13.18.54 SUM clause

13.18.54.1 GeneralThe SUM clause specifies one or more data items that are to be totaled to provide the value of the associated elementary report item.
13.18.54.2 General format

where rounded-phrase is described in 14.7.4, ROUNDED phrase.
13.18.54.3 Syntax rules1) Each data-name-1, identifier-1 or arithmetic-expression-1 is an addend. The whole clause is referred to as a SUM clause even though the SUM keyword may appear more than once.2) The category of the subject of the entry shall be valid as the category of a receiving operand in a MOVE statement for a sending operand of the category numeric.3) The ROUNDED phrase may be specified in the SUM clause only if the COLUMN clause is specified for the subject of the entry.4) Data-name-1 shall be the name of a numeric data item in the report section. If it is associated with an OCCURS clause, it shall be specified without the subscripting normally required. When data-name-1 is specified, the following rules also apply:a) The UPON phrase shall not be specified.b) If data-name-1 is specified in the same report group description as the subject of the entry, data-name-1 shall be a repeating item, as defined in 13.15, Report group description entry, General rule 3, and subject to at least one more level of repetition than the subject of the entry.c) If data-name-1 is specified in a different report group description than the subject of the entry, data-name-1 either shall not reference a repeating item or shall reference a repeating item that is subject to at least the same number of levels of repetition as the subject of the entry.

SUM OF data-name-1identifier-1arithmetic-expression-1

 ... [UPON { data-name-2 } ...]

 RESET ON data-name-3FINAL

 [rounded-phrase]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

488 ©ISO/IEC 2023

d) The maximum number of repetitions of data-name-1 and the subject of the entry shall be equal at each corresponding level taken in order beginning with the lowest level of nesting. Levels superordinate to those corresponding levels may specify any number of repetitions.e) Any chain of reference shall terminate at an entry that does not contain a SUM clause referring to a data-name-1 defined in the report section.f) If data-name-1 specifies an entry in a report group description other than the current report group description, only the following combinations of report types of each report group are permitted:The current report group may be a control footing and data-name-1 may be defined in a detail or in a control footing associated with a lower level of control.The current report group may be a detail and data-name-1 may be defined in a different detail.The current report group may be a report footing and data-name-1 may be defined in any other report group other than a report heading.The current report group may be a page footing and data-name-1 may be defined in any body group.g) If data-name-1 specifies an entry in a different report description, there are no restrictions on the combinations of report types of each report group.5) If the addend is identifier-1, it shall specify a numeric data item not defined in the report section.6) If the addend is arithmetic-expression-1, any identifiers it contains may reference entries in any section of the data division other than the report section.7) Data-name-2 shall be the name of a detail. It may be qualified only by a report-name.8) Data-name-3 may be qualified and reference-modified. Data-name-3 or FINAL shall be an operand of the CONTROL clause of the current report description. If data-name-3 is reference-modified, leftmost-position and length shall be integer literals. If the current report group is a control footing, its level of control shall be a lower level than that of data-name-3.9) Within a report description entry, if the keyword SUM is preceded by the keyword FUNCTION, SUM is a reference to the SUM intrinsic function. Otherwise, SUM refers to the report writer SUM clause, even when SUM is implicitly or explicitly included as an intrinsic-function-name in the intrinsic format of a function-specifier in the REPOSITORY paragraph.
13.18.54.4 General rules1) Each entry containing a SUM clause establishes an independent sum counter and size error indicator. The sum counter is a conceptual data item that behaves as a data item of the category numeric. The number of decimal digits in the sum counter, both integral and fractional, is derived from the corresponding number of digits, excluding insertion editing characters, in the PICTURE

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 489

clause of the entry containing the SUM clause. The sum counter is signed, whether or not the corresponding PICTURE clause has an operational sign.2) The sum counter is set to zero and its associated size error indicator is unset when the INITIATE statement for the current report is executed. Subsequently, the sum counter is reset to zero and the size error indicator is unset at the end of the processing of the report group in which it is printed or, if the RESET phrase is specified, at the end of the processing of the control footing for the specified level of control. If no such control footing is defined, it is assumed to be present and to consist of a 01-level entry alone.3) The current content of each addend is implicitly added into the sum counter during execution of GENERATE and TERMINATE statements at specific times defined below. The adding is consistent with the general rules of the ADD statement with the ON SIZE ERROR phrase or, in the case of an arithmetic expression, the COMPUTE statement with the ON SIZE ERROR phrase. Any algebraic sign of the addend is taken into account. Each addition is tested for size error; if a size error occurs, the EC-REPORT-SUM-SIZE exception condition is set to exist. (See 14.7.7, Arithmetic statements.)4) If the entry also contains a COLUMN clause, the sum counter acts as a source data item. If the ROUNDED phrase is specified in the SOURCE clause, the content of the sum counter is computed according to the general rules for the COMPUTE statement with the ROUNDED phrase, as described under 13.18.53, SOURCE clause. If the associated size error indicator is not set, the content of the sum counter is moved, according to the general rules of the MOVE statement, to the printable item for printing. If the associated size error indicator is set, an EC-REPORT-SUM-SIZE exception condition is set to exist and the printable item is filled with spaces.5) If a data-name immediately follows the level number in the entry containing the SUM clause, the data-name is the name of the sum counter, not the name of the associated printable item, if any.6) If data-name-1 specifies an item whose entry contains a SUM clause, the value added is that of the corresponding sum counter. The additions necessary to compute its value are completed before the adding of the operand into the current sum counter. If data-name-1 specifies an item whose entry has a SOURCE or VALUE clause, the value added is that of the operand of the SOURCE or VALUE clause.7) The times at which addition takes place are defined as follows:a) If data-name-1 is the name of an entry in a different report group description, adding takes place when the report group description containing data-name-1 is processed.b) If data-name-1 is the name of an entry in the current report group description, adding takes place during the processing of the current report group before any of the report group's lines are printed.c) If the addend is identifier-1 or arithmetic-expression-1, adding takes place either:1. if no UPON phrase is specified, whenever any GENERATE statement is executed for the current report or any detail defined for the current report, or

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

490 ©ISO/IEC 2023

2. If an UPON phrase is specified, whenever any GENERATE statement is executed for a detail referenced by the UPON phrase.If two or more instances of data-name-1 or identifier-1 specify the same data item, this data item is added into the sum counter as many times as data-name-1 or identifier-1 is referenced in the SUM clause. It is permissible for the UPON phrase to contain two or more instances of data-name-2 that specify the same detail. When a GENERATE statement for such a detail is executed, the adding takes place as many times as data-name-2 appears in the UPON phrase.8) If the addend is data-name-1 and data-name-1 is a repeating item, repetitions of the addend are either all added into the same sum counter or are each added into a different corresponding occurrence of the sum counter, according to the following rules:a) If the addend and the sum counter are subject to the same number of levels of repetition, each occurrence of the addend is added into the corresponding occurrence of the sum counter.b) If the addend is subject to a greater number of levels of repetition than the sum counter, the number of levels of repetition of the addend is effectively reduced to that of the sum counter by forming the total of a complete table of occurrences of the addend at one or more levels into each occurrence of the sum counter. The levels at which these totals are formed are those of the highest level of repetition of the addend, excluding any OCCURS, multiple LINE, or multiple COLUMN clauses to which the addend and the entry containing the SUM clause are both subject.9) If the SUM clause specifies more than one addend, the result is the same as when all the addends were summed separately according to the above rules and the results added together.10) If the entry is associated with an absent data item as a result of a PRESENT WHEN clause or an OCCURS clause with the DEPENDING phrase, the corresponding sum counter is not printed and is not reset to zero for the current instance of the report group.11) If the operand is data-name-1 and is declared to be absent as a result of a PRESENT WHEN clause or an OCCURS clause with the DEPENDING phrase, data-name-1 is not added into the sum counter during the processing of that instance of the report group in which data-name-1 is defined.12) It is permissible for procedure division statements to alter the content of sum counters.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 491

13.18.55 SYNCHRONIZED clause

13.18.55.1 GeneralThe SYNCHRONIZED clause specifies the alignment of an elementary item on the natural boundaries of the computer memory (see 8.5.1.6.4, Item alignment for increased object-code efficiency).
13.18.55.2 General format

13.18.55.3 Syntax rules1) The SYNCHRONIZED clause may be specified for group and elementary items.2) SYNC is an abbreviation for SYNCHRONIZED.
13.18.55.4 General rules1) When this clause is specified for a group item, it is treated as though it had instead been separately specified for each of the subordinate elementary items for which this clause is permitted.2) This clause specifies that the subject elementary data item is to be aligned in the computer such that no other data item occupies any of the byte positions between the leftmost and rightmost natural boundaries delimiting this data item. If the number of bytes required to store this data item is less than the number of bytes between those natural boundaries, the unused bytes or portions thereof shall not be used for any other data item. The unused bytes are not included in the bytes redefined when the elementary item is the object of a REDEFINES clause. Such unused bytes, however, are included in:a) The size of any alphanumeric group item, bit group item, national group item, or strongly-typed group item that contains the subject of the entry; andb) The number of bytes allocated when any such group item is the object of a REDEFINES clause.3) SYNCHRONIZED not followed by either RIGHT or LEFT specifies that the elementary item is to be positioned between natural boundaries in such a way as to effect efficient utilization of the elementary data item. The specific positioning is determined by the implementor.4) SYNCHRONIZED LEFT specifies that the elementary item is to be positioned such that it will begin at the left byte of the natural boundary in which the elementary item is placed.5) SYNCHRONIZED RIGHT specifies that the elementary item is to be positioned such that it will terminate on the right byte of the natural boundary in which the elementary item is placed.

SYNCHRONIZEDSYNC

 LEFTRIGHT

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

492 ©ISO/IEC 2023

6) Any adjustment in storage position resulting from the SYNCHRONIZED clause does not affect the size of the synchronized data item.7) If the data description of an item contains an operational sign and any form of the SYNCHRONIZED clause, the sign of the item appears in the sign position explicitly or implicitly specified by the SIGN clause.8) When the SYNCHRONIZED clause is specified in the data description entry that contains an OCCURS clause, or in the data description entry of a data item subordinate to the data description entry that contains an OCCURS clause, then:a) The SYNCHRONIZED clause applies to each occurrence of the data item.b) Any implicit FILLER generated for other data items within that same table is generated for each occurrence of those data items (see General rule 9b).9) The effect of this clause is defined by the implementor and in addition to the other general rules for the SYNCHRONIZED clause, the implementor shall specify how elementary items associated with this clause are handled regarding:a) The format on the external media of records or groups containing elementary items whose data description contains the SYNCHRONIZED clause.b) Any necessary generation of implicit FILLER, if the elementary item immediately preceding an item containing the SYNCHRONIZED clause does not terminate at an appropriate natural boundary. Such automatically generated FILLER positions are included in:1. The size of any group item to which the FILLER item belongs; and 2. The number of bytes allocated when the group item of which the FILLER item is a part appears as the object of a REDEFINES clause.10) An implementor may optionally specify automatic alignment for any internal data representations except for bit data items and, within a record, data items described with usage display or national. A record itself may be automatically synchronized.11) Any rules for synchronization of the records of a file, as this affects the synchronization of elementary items, shall be specified by the implementor.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 493

13.18.56 TO clause

13.18.56.1 GeneralThe TO clause identifies the destination of the data in an ACCEPT screen statement.
13.18.56.2 General format

13.18.56.3 Syntax rules1) The category of identifier-1 shall be a permissible category as a receiving operand in a MOVE statement where the sending operand has the same PICTURE clause as the subject of the entry. 2) Identifier-1 shall be defined in the file, working-storage, local-storage, or linkage section. Identifier-1 shall not specify a variable-length group.3) If the subject of this entry is subject to an OCCURS clause, identifier-1 shall be specified without the subscripting normally required. Additional requirements are specified in 13.18.38, OCCURS clause, Syntax rule 13.
13.18.56.4 General rules1) The subject of the entry is an input screen item.2) The TO clause has an effect only during execution of an ACCEPT screen statement referencing the screen item.

TO identifier-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

494 ©ISO/IEC 2023

13.18.57 TYPE clause

13.18.57.1 GeneralThe TYPE clause in a data description entry specifies that the data description of the entry is specified by a type declaration.The TYPE clause in a report group description entry identifies the circumstances under which a report group will be printed.
13.18.57.2 General formatsFormat 1 (type-name):
Format 2 (report-group):

13.18.57.3 Syntax rulesFORMAT 11) The description of any data item subordinate to type-name-1 shall not contain a SAME AS clause that references the subject of this entry or any group item to which this entry is subordinate.

TYPE TO type-name-1

TYPE IS

REPORT HEADINGRH

PAGE HEADINGPH

CONTROL HEADINGCH

 ONFOR data-name-1FINAL

 [OR PAGE]

DETAILDE

CONTROL FOOTINGCF

 ONFOR data-name-2FINAL

PAGE FOOTINGPF

REPORT FOOTINGRF

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 495

2) A data description entry in which a TYPE clause is specified shall not be followed immediately by a subordinate data description entry or a level 88 entry.3) If type-name-1 is described with the STRONG phrase, the subject of the entry shall not be renamed in whole or in part.4) If type-name-1 is described with the STRONG phrase, the subject of the entry shall not be implicitly or explicitly redefined in whole or in part.5) No group item to which the subject of the entry is subordinate shall contain a GROUP-USAGE, SIGN, or USAGE clause.6) If type-name-1 is described with the STRONG phrase, the subject of the entry shall be specified only with level number 1 or be subordinate to a type declaration that includes the STRONG phrase.7) If the subject of the entry is a level 77 item, type-name-1 shall be an elementary item.8) When the TYPE clause is specified in the file section, the description of type-name-1, including its subordinate data items, shall not contain a data item described with a USAGE OBJECT REFERENCE clause.FORMAT 29) RH is an abbreviation for REPORT HEADING.PH is an abbreviation for PAGE HEADING.CH is an abbreviation for CONTROL HEADING.DE is an abbreviation for DETAIL.CF is an abbreviation for CONTROL FOOTING.PF is an abbreviation for PAGE FOOTING.RF is an abbreviation for REPORT FOOTING.10) Data-name-1 and data-name-2 may be qualified and reference-modified. If data-name-1 or data-name-2 is reference-modified, leftmost-position and length shall be integer literals. Each data-name-1, data-name-2, and FINAL, if specified, shall be the same as one of the operands of the CONTROL clause of the corresponding report description entry.11) Following CONTROL HEADING or CONTROL FOOTING, data-name-1, data-name-2, or FINAL may be omitted only if the CONTROL clause in the corresponding report description entry contains exactly one operand.12) PAGE HEADING and PAGE FOOTING and the OR PAGE phrase are allowed only if a PAGE clause that defines the page limit is specified in the report description entry.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

496 ©ISO/IEC 2023

13) REPORT HEADING, PAGE HEADING, REPORT FOOTING, and PAGE FOOTING may each appear no more than once in any given report description.14) At most one CONTROL HEADING and at most one CONTROL FOOTING may be defined for each control data item or FINAL of the CONTROL clause for any given report. Either or both of CONTROL HEADING and CONTROL FOOTING may be omitted for any given level of control.15) Groups of type DETAIL, CONTROL HEADING, and CONTROL FOOTING are referred to as body groups. Each report description shall include at least one body group.16) If no GENERATE data-name statements are specified in the procedure division, the report description need not contain a DETAIL.
13.18.57.4 General rulesFORMAT 11) The TYPE clause specifies that the data description of the subject of the entry is specified by type-name-1. The effect of the TYPE clause is as though the data description identified by type-name-1 had been coded in place of the TYPE clause, excluding the level-number, name, alignment, and the GLOBAL, SELECT WHEN, and TYPEDEF clauses specified for type-name-1; level numbers of subordinate items may be adjusted as described in General rule 2.2) If type-name-1 describes a group item:a) the subject of the entry is a group whose subordinate elements have the same names, descriptions, and hierarchy as the subordinate elements of type-name-1,b) the level-numbers of items subordinate to that group are adjusted, if necessary, to preserve the hierarchy of type-name-1,c) level-numbers in the resulting hierarchy may exceed 49,d) the subject of the entry is aligned as though it were a level 1 item.3) If a VALUE clause is specified in the data description of the subject of the entry, the content of the literal associated with that VALUE clause is used for the initial value associated with the subject of the entry. When the description of type-name-1 includes an implicit PICTURE clause derived from a VALUE clause, that implicit PICTURE clause becomes part of the description of the subject of the entry.NOTE Syntax rule 15 of the VALUE clause prevents the VALUE clause from being used in elementary items when it is specified for a containing group item.4) If a BASED clause is specified in the data description of the subject of the entry, that BASED clause applies and any BASED clause specified in the description of type-name-1 is ignored for this entry.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 497

FORMAT 25) Report groups are printed only during the execution of a GENERATE or a TERMINATE statement. Detail report groups are printed when referenced explicitly in a GENERATE statement. All other report groups are printed implicitly according the general rules that follow.6) The conditions under which a given report group is printed depend on its type as follows:a) The report heading, if defined, is printed as the first report group in the report, when the chronologically first GENERATE statement for the report, if any, is executed.b) The page heading, if defined, is printed immediately before, and on the same page as, the chronologically first body group to be printed for the report, and subsequently as the first report group in each new page whenever a page advance takes place, except when the report group about to be printed is a report footing on a page by itself.c) Each control heading without the OR PAGE phrase, wherever defined, is printed automatically, in either of the following events:1. when the chronologically first GENERATE statement following an INITIATE statement for the report is executed, in order of control levels from highest to lowest, 2. immediately preceding any detail printed as the result of the execution of a GENERATE statement when a control break has been detected, in order of control levels from the level of the control break down to the lowest.The OR PAGE phrase causes the associated control heading to be printed in addition after each page advance, following any page heading, provided that the page advance did not take place just before the printing of a control footing at a lower control level.d) A detail is printed as the result of the execution of an explicit GENERATE statement that references it.e) Each control footing, wherever defined, is printed automatically in either of the following events:1. when a GENERATE statement is executed where a control break has been detected, preceding any control heading and detail groups, in order of controls from the lowest up to the level of the control break,2. when the TERMINATE statement is executed for the report, provided that at least one GENERATE statement has been executed after the chronologically last INITIATE statement for the report, in order of controls from lowest to highest.f) The page footing, if defined, is printed as the last report group on each page of the current report, except in the following cases:1. on the first page, if it is occupied only by a report heading group;2. on the last page, if it is occupied only by a report footing group;

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

498 ©ISO/IEC 2023

If a report footing is defined and is not on a page by itself, the page footing on the last page is immediately followed by the report footing.g) The report footing, if defined, is printed, as the very last report group in the report, when a TERMINATE for the report is executed, provided that at least one GENERATE statement has been executed for the report since the chronologically last INITIATE statement was executed for the report.7) The upper limit is defined to be the uppermost permitted line on the page that may be occupied by the report group's first line. It is calculated as follows:a) The upper limit for a report heading or a page heading where no report heading appears on the same page is the line given by the HEADING integer.b) The upper limit for a page heading where a report heading appears on the same page is the line following the last line of the report heading.c) The upper limit for a body group, if there is no control heading defined in the report with the OR PAGE phrase, is the line given by the FIRST DETAIL integer.d) If there is at least one control heading defined in the report with the OR PAGE phrase, the upper limit for a body group is determined as follows:1. If the body group is a control heading at the same or a higher control level than the highest-level control heading that has an OR PAGE phrase, the upper limit is the line given by the FIRST DETAIL integer.2. If the body group is a control heading at a lower control level than the highest-level control heading that has an OR PAGE phrase, the upper limit is the line following the last line of the next higher-level control heading.3. If the body group is a detail, the upper limit is the line following the last line of the lowest-level control heading that has an OR PAGE phrase.4. If the body group is a control footing, the upper limit is the line following the last line of the lowest-level control heading with an OR PAGE phrase at the same level as the control footing, or higher. If no such control heading is defined, the upper limit is the FIRST DETAIL integer.e) The upper limit for a page footing is the line number obtained by adding 1 to the FOOTING integer.f) The upper limit for a report footing that appears on a page by itself is the line given by the HEADING integer.g) The upper limit for a report footing that does not appear on a page by itself is the line following the last line of the page footing, if specified, or the line number obtained by adding 1 to the FOOTING integer, if no page footing is defined for the report.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 499

8) The lower limit is defined to be the lowermost permitted line on the page that may be occupied by the report group's last line. It is calculated as follows:a) The lower limit for a report heading that appears on a page by itself is the page limit.b) The lower limit for a report heading that does not appear on a page by itself is the line preceding the first line of the page heading. If no page heading is defined for the report, the lower limit is the value obtained by subtracting 1 from the FIRST DETAIL integer.c) The lower limit for a page heading is the line number obtained by subtracting 1 from the FIRST DETAIL integer.d) The lower limit for a control heading is the line given by the LAST CONTROL HEADING integer.e) The lower limit for a detail is the line given by the LAST DETAIL integer.f) The lower limit for a control footing is the line given by the FOOTING integer.g) The lower limit for a page footing or report footing is the page limit.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

500 ©ISO/IEC 2023

13.18.58 TYPEDEF clause

13.18.58.1 GeneralThe TYPEDEF clause specifies that the data description entry is a type declaration.NOTE A data description entry declared at level-number 1 that includes a TYPEDEF clause is not a record description entry.
13.18.58.2 General format

13.18.58.3 Syntax rules1) If the subject of the entry is an elementary item, the STRONG phrase shall not be specified.2) The description of the subject of the entry, including its subordinate items, shall not contain a TYPE clause that directly or indirectly references this type definition.3) If the TYPEDEF clause is specified with the EXTERNAL clause, the type declaration shall be at level-number 1.
13.18.58.4 General rules1) If the TYPEDEF clause is specified, the data description entry is a type declaration. The data-name specified in the entry is the type-name. Subordinate data description entries, condition-name entries, and RENAMES clauses are part of the type declaration of that type. The data-names of the items described in these subordinate entries may be referenced only as subordinate items of groups defined using the type-name. If there is more than one such group, qualification with the name of the group is necessary. If there is no such group, any reference to a name that is the same as a data-name in the subordinate entry is a reference to another resource, if there is another resource with that name, or is an invalid reference.2) A type declaration has no storage associated with it.3) The GLOBAL clause applies to the scope of the type-name. All other data description clauses and subordinate data descriptions are assumed by data defined using the type-name.NOTE If the EXTERNAL clause is used in a type declaration, the external attribute also applies to any record description in which the type declaration is referenced.

IS TYPEDEF [STRONG]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 501

13.18.59 UNDERLINE clause

13.18.59.1 GeneralThe UNDERLINE clause specifies that each character of the field is underlined when it is displayed on the screen.
13.18.59.2 General format

13.18.59.3 General rules1) If the UNDERLINE clause is specified at group level, it applies to each elementary screen item in that group.2) When the UNDERLINE clause is specified, the screen item will be displayed so that the characters that constitute the screen item are underlined when the screen item is referenced in an ACCEPT screen or a DISPLAY screen statement.

UNDERLINE

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

502 ©ISO/IEC 2023

13.18.60 USAGE clause

13.18.60.1 GeneralThe USAGE clause specifies the representation of a data item in the computer storage.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 503

13.18.60.2 General format

[USAGE IS]

BINARYBINARY-CHAR SIGNED UNSIGNED

BINARY-SHORT SIGNEDUNSIGNED

BINARY-LONG SIGNEDUNSIGNED

BINARY-DOUBLE SIGNEDUNSIGNED

BITCOMPUTATIONALCOMPDISPLAYFLOAT-BINARY-32 [endianness-phrase]FLOAT-BINARY-64 [endianness-phrase]FLOAT-BINARY-128 [endianness-phrase]
FLOAT-DECIMAL-16 encoding-phrase endianness-phrase
FLOAT-DECIMAL-34 encoding-phrase endianness-phrase FLOAT-EXTENDEDFLOAT-LONGFLOAT-SHORTINDEXMESSAGE-TAGNATIONAL
OBJECT REFERENCE interface-name-1[FACTORY OF] ACTIVE-CLASS[FACTORY OF] object-class-name-1 [ONLY]PACKED-DECIMAL WITH NO SIGN POINTER [TO type-name-1]FUNCTION-POINTER TO function-prototype-name-1 PROGRAM-POINTER [TO program-prototype-name-1]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

504 ©ISO/IEC 2023

where encoding-phrase is:

where endianness-phrase is:

13.18.60.3 Syntax rules1) The USAGE clause shall not be specified in a data description entry that has a level-number of 66 or 88.2) If the USAGE clause is written in the data description entry for a group item, it may also be written in the data description entry for any subordinate elementary item or group item, but the same usage shall be specified in both entries.3) An elementary data item whose declaration contains, or an elementary data item subordinate to a group item whose declaration contains, a USAGE clause specifying BINARY, COMPUTATIONAL, or PACKED-DECIMAL shall be specified only with a picture character-string that describes a numeric item.4) The INDEX, MESSAGE-TAG, OBJECT REFERENCE, POINTER, FUNCTION-POINTER, and PROGRAM-POINTER phrases shall not be specified in a data item described with the CONSTANT RECORD clause, or in any item subordinate to a data item described with the CONSTANT RECORD clause.5) An elementary data item with usage bit shall be specified only with a picture character-string that describes a boolean data item.6) COMP is an abbreviation for COMPUTATIONAL.7) Only the DISPLAY or NATIONAL phrase may be specified in any USAGE clause associated with a report group item.8) A program-pointer data item may be referenced explicitly only in a CALL statement, an INITIALIZE statement, an INVOKE statement, a SET statement, a relation condition, a procedure division header, the argument list of an inline invocation of a method, and as an argument in a function-identifier.9) A data-pointer data item may be referenced explicitly only in a CALL statement, an INITIALIZE statement, an INVOKE statement, a SET statement, a relation condition, a procedure division header, the argument list of an inline invocation of a method, as an argument in a function-identifier, in the RETURNING phrase of an ALLOCATE statement, or in a FREE statement.

BINARY-ENCODINGDECIMAL-ENCODING

HIGH-ORDER-LEFTHIGH-ORDER-RIGHT

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 505

10) An index data item may be referenced explicitly only in a SEARCH or SET statement, a relation condition, an intrinsic function argument, an inline method invocation argument, the USING phrase of a procedure division header, or the USING phrase of a CALL or INVOKE statement.11) An elementary data item of class index, message-tag, object, or pointer shall not be a conditional variable.12) An elementary data item with usage national shall be described with a picture character-string that describes a boolean, national, national-edited, numeric, or numeric-edited data item.13) When a USAGE clause is not specified for an elementary data item or for any group to which the data item belongs:a) if the explicit or implicit picture character-string contains the symbol 'N', a USAGE NATIONAL clause is implied;b) otherwise, a USAGE DISPLAY clause is implied.14) A USAGE clause with the MESSAGE-TAG, OBJECT REFERENCE, POINTER, FUNCTION-POINTER, or PROGRAM-POINTER phrase may be specified only for an elementary data item at level 1 or an elementary data item subordinate to a type declaration that includes the STRONG phrase.15) The USAGE OBJECT REFERENCE clause shall not be specified in the file section.16) The ACTIVE-CLASS phrase may be specified only in a factory definition, an instance definition, or the linkage or local-storage section of a method definition.17) In a screen description entry, only DISPLAY or NATIONAL may be specified.18) If type-name-1 is specified, the TYPEDEF clause shall be specified for the subject of the entry.19) If program-prototype-name-1 is specified, the TYPEDEF clause shall be specified for the subject of the entry.20) Only the NATIONAL phrase may be specified in a USAGE clause associated with an elementary data item whose explicit or implicit picture character-string contains the symbol 'N'.21) If MESSAGE-TAG is specified, no other usage clauses shall be specified in the data description entry.
13.18.60.4 General rules1) If the USAGE clause is specified or implied at a group level, it applies only to each elementary item in the group. Unless the GROUP-USAGE clause is also specified or implied, the USAGE clause applies only to each elementary item in the group and not to the group itself.2) The USAGE clause specifies the manner in which a data item is represented in the storage of a computer. It does not affect the use of the data item, although the specifications for some statements in the procedure division may restrict the USAGE clause of the operands referred to. The USAGE clause may affect the radix or type of character representation of the item.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

506 ©ISO/IEC 2023

3) The VALIDATE statement may be used to check that the content of a data item is compatible with any PICTURE, SIGN and USAGE clauses specified in the description of the item. Rules for compatibility are implementor-defined. Failure of this check results in the setting of the data item's internal indicator to invalid on format. A data item with usage index, message-tag, object reference, pointer, function-pointer, or program-pointer is ignored by the VALIDATE statement.4) The USAGE BINARY clause specifies that a radix of 2 is used to represent a numeric item in the storage of the computer. Each implementor specifies the precise effect of the USAGE BINARY clause upon the alignment and representation of the data item in the storage of the computer, including the representation of any algebraic sign. Sufficient computer storage shall be allocated by the implementor to contain the maximum range of values implied by the associated decimal picture character-string.5) The USAGE BIT clause specifies that bits shall be used to represent a boolean data item. A data item described with USAGE BIT is a bit data item. The alignment of a data item described with USAGE BIT is specified in 8.5.1.6.3, Alignment of data items of usage bit.6) The USAGE COMPUTATIONAL clause specifies that a radix and format specified by the implementor is used to represent a numeric item in the storage of the computer. Each implementor specifies the precise effect of the USAGE COMPUTATIONAL clause upon the alignment and representation of the data item in the storage of the computer, including the representation of any algebraic sign, and upon the range of values that the data item may hold.7) The implicit or explicit USAGE DISPLAY clause specifies that an alphanumeric coded character set shall be used to represent a data item in the storage of the computer, and that the data item is aligned on a character boundary. Alphanumeric characters shall be represented in the storage of the computer as characters of uniform size equal to or less than the size of characters in the computer's national character set. Each implementor shall specify the size and representation of characters stored for usage DISPLAY.8) The implicit or explicit USAGE NATIONAL clause specifies that a national coded character set shall be used to represent a data item in the storage of the computer, and that the data item shall be aligned on a character boundary. National characters shall be represented in the storage of the computer as characters of a uniform size equal to or a multiple of the size of characters in the computer's alphanumeric character set. Each implementor shall specify the size and representation of characters stored for usage NATIONAL.9) The MESSAGE-TAG clause specifies that a data item is a message-tag data item and contains an implementor-defined value that identifies a message and a server or requestor. The class and category of a message-tag data item are message-tag. Each implementor specifies the precise effect of the USAGE MESSAGE-TAG clause upon the alignment and representation of the data item in the storage of the computer, including the number of bytes contained in the data item.10) The USAGE INDEX clause specifies that a data item is an index data item and contains a value that shall correspond to an occurrence number of a table element. The class and category of an index data item are index. Each implementor specifies the precise effect of the USAGE INDEX clause upon the alignment and representation of the data item in the storage of the computer, including the actual value assigned for any given occurrence number.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 507

11) The USAGE PACKED-DECIMAL clause specifies that a radix of 10 is used to represent a numeric item in the storage of the computer. Furthermore, this clause specifies that each digit position shall occupy the minimum possible configuration in computer storage. Each implementor specifies the precise effect of the USAGE PACKED-DECIMAL clause upon the alignment and representation of the data item in the storage of the computer, including the representation of any algebraic sign. Sufficient computer storage shall be allocated by the implementor to contain the maximum range of values implied by the associated decimal picture character-string. If the WITH NO SIGN phrase is specified the representation of the data item in the storage of the computer reserves no storage for representing any sign value. The PICTURE character string of the data item shall not contain the symbol ‘S’; the data item is always considered to have a zero, or positive value.12) The usages binary-char, binary-short, binary-long, and binary-double define integer numeric data items that are held in a binary format suitable for the machine on which the runtime module is to run. The minimum range requirements for each of these usages are shown below. Any integer value of n within the specified range shall be expressible in the given usage. The implementor may allow a wider range. However, for signed items, any number that may be expressed as BINARY-CHAR shall also be expressible as BINARY-SHORT, any number that may be expressed as BINARY-SHORT shall also be expressible as BINARY-LONG, and any number that may be expressed as BINARY-LONG shall also be expressible as BINARY-DOUBLE.The minimum ranges are:

13) The usages float-short, float-long and float-extended define signed numeric data items that are held in a floating-point format suitable for the machine on which the runtime module is to run. The size and permitted range of values for these fields is defined by the implementor. Any value that may be held in a data item of usage float-short shall also be expressible in a data item of usage float-long. Any value that may be held in a data item of usage float-long shall also be expressible in a data item of usage float-extended.14) The FLOAT-BINARY-32 phrase specifies that the data item is a floating-point data item in 32-bit basic binary interchange format (binary32) as specified in ISO/IEC 60559:2020, 3.4.NOTE 1 The value in a data item described with the FLOAT-BINARY-32 usage can be no greater than +(2**128 - 2**104), nor can it be less than -(2**128 - 2**104). The nonzero values closest to zero that can be represented are -(2**-149) and +(2**-149). The largest positive integer value with a nonzero trailing digit that

BINARY-CHAR SIGNED -128 [-2**7] < n < 128 [2**7]BINARY-CHAR UNSIGNED 0 £ n < 256 [2**8]BINARY-SHORT SIGNED -32768 [-2**15] < n < 32768 [2**15]BINARY-SHORT UNSIGNED 0 £ n < 65536 [2**16]BINARY-LONG SIGNED -2147483648 [-2**31] < n < 2147483648 [2**31]BINARY-LONG UNSIGNED 0 £ n < 4294967296 [2**32]BINARY-DOUBLE SIGNED -2**63 < n < 2**63BINARY-DOUBLE UNSIGNED 0 £ n < 2**64

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

508 ©ISO/IEC 2023

can be represented is +(2**24 - 1), or 16,777,213. Every value is a representation of the product of an integer and the value +(2**-149).15) The FLOAT-BINARY-64 phrase specifies that the data item is a floating-point data item in 64-bit basic binary interchange format ('binary64') as specified in ISO/IEC 60559:2020, 3.4.NOTE 2 The value in a data item described with the FLOAT-BINARY-64 usage can be no greater than +(2**1024 - 2**971), nor can it be less than -(2**1024 - 2**971). The nonzero values closest to zero that can be represented are -(2**-1074) and +(2**-1074). The largest positive integer value with a nonzero trailing digit that can be represented is +(2**53 -1), or 9,007,199,254,740,991. Every value is a representation of the product of an integer and the value +(2**-1074).16) The FLOAT-BINARY-128 phrase specifies that the data item is a floating-point data item in 128-bit basic binary interchange format (binary128) as specified in ISO/IEC 60559:2020, 3.4.NOTE 3 The value in a data item described with the FLOAT-BINARY-128 usage can be no greater than +(2**16394 - 2**16271), nor can it be less than (2**16394 - 2**16271). The nonzero values closest to zero that can be represented are -(2**-16494) and +(2**-16494). The largest positive integer value with a nonzero trailing digit that can be represented is +(2**113 - 1), or 10 384 593 717 069 655 257 060 992 658 440 191.Every value is the product of an integer and the value +(2**-16494)17) The FLOAT-DECIMAL-16 phrase specifies that the data item is a floating-point data item in 64-bit basic decimal interchange format (decimal64) as specified in ISO/IEC 60559:2020, 3.5.NOTE 4 The value in a data item described with the FLOAT-DECIMAL-16 USAGE can be no greater than +9.999 999 999 999 999E+384,nor can it be less than -9.999 999 999 999 99E+384.The nonzero values closest to zero that can be represented are -1.0E-398 and +1.0E-398. The largest positive integer value with a nonzero trailing digit that can be represented is +(1.0E+17 - 1), or 9 999 999 999 999 999. Every value is the product of an integer and the value 1.0E-398.18) The FLOAT-DECIMAL-34 phrase specifies that the data item is a floating-point data item in 128-bit basic decimal interchange format (decimal128) as specified in ISO/IEC 60559:2020, 3.5.NOTE 5 The value in a data item described with the FLOAT-DECIMAL-34 usage can be no greater than +9.999 999 999 999 999 999 999 999 999 999 999E+6144,nor can it be less than -9.999 999 999 999 999 999 999 999 999 999 999E+6144.The nonzero values closest to zero that can be represented are 1.0E-6176 and +1.0E-6176. The largest positive integer value with a nonzero trailing digit that can be represented is +(1.0E+35 - 1), or

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 509

 9 999 999 999 999 999 999 999 999 999 999 999. Every value is the product of an integer and the value 1.0E-6176.19) For the standard floating-point usages:a) The HIGH-ORDER-LEFT phrase specifies that the endianness of the data item is big-endian.b) The HIGH-ORDER-RIGHT phrase specifies that the endianness of the data item is little-endian.c) For the standard binary floating-point usages, if neither the HIGH-ORDER-LEFT phrase nor the HIGH-ORDER-RIGHT phrase is specified, 11.9.8, FLOAT-BINARY clause, specifies which of these phrases is implied.d) For the standard decimal floating-point usages, if neither the HIGH-ORDER-LEFT phrase nor the HIGH-ORDER-RIGHT phrase is specified, 11.9.9, FLOAT-DECIMAL clause, specifies which of these phrases is implied.20) For the standard decimal floating-point usages:a) The BINARY-ENCODING phrase specifies that the encoding of the information in a data item described with any standard decimal floating-point usage is the binary encoding as specified in ISO/IEC 60559:2020, 3.5.b) The DECIMAL-ENCODING phrase specifies that the encoding of the information in a data item described with any standard decimal floating-point usage is the decimal encoding as specified in ISO/IEC 60559:2020, 3.5.c) If an encoding-phrase is not specified, 11.9.9, FLOAT-DECIMAL clause, specifies whether the BINARY-ENCODING phrase or the DECIMAL-ENCODING phrase is implied.21) The representation and length of a data item described with USAGE BINARY-CHAR, BINARY-SHORT, BINARY-LONG, BINARY-DOUBLE, FLOAT-SHORT, FLOAT-LONG, or FLOAT-EXTENDED is implementor-defined. The length and alignment of a data item described with the SIGNED phrase shall be the same as the length and alignment of a data item described with the UNSIGNED phrase.22) A data item described with a USAGE OBJECT REFERENCE clause is called an object reference. An object reference is a data item of class object and category object-reference. It shall contain either null or a reference to an object, subject to the following rules:a) The amount of storage allocated for an object reference data item is implementor-defined and is not necessarily the same for every object reference.b) If none of the optional phrases is specified, this data item is called a universal object reference. Its content may be a reference to any object.c) If interface-name-1 is specified, the object referenced by this data item shall implement interface-1.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

510 ©ISO/IEC 2023

d) If object-class-name-1 is specified, the object referenced by this data item shall be an object of object-class-name-1 or of a subclass of object-class-name-1, subject to the following rules:1. If the ONLY phrase is not specified:a. If the FACTORY phrase is specified, the object referenced by this data item shall be the factory object of the specified class or of a subclass of the specified class.b. If the FACTORY phrase is not specified, the object referenced by this data item shall be an instance object of the specified class or of a subclass of the specified class.2. If the ONLY phrase is specified:a. If the FACTORY phrase is specified, the object referenced by this data item shall be the factory object of the specified class.b. If the FACTORY phrase is not specified, the object referenced by this data item shall be an instance object of the specified class.e) If ACTIVE-CLASS is specified, the object referenced by this data item shall be of the same class as the object that was used to invoke the method in which this data description entry is specified, subject to the following rules:1. If the FACTORY phrase is specified, the object referenced by this data item shall be the factory object of that class.2. If the FACTORY phrase is not specified, the object referenced by this data item shall be an instance object of that class.23) A data description entry that specifies the USAGE POINTER clause specifies a data-pointer data item, also called a data-pointer, that may contain the address of a data item. Each implementor defines the precise effect of the USAGE POINTER clause upon alignment, size, representation, and range of values of the data item in the storage of the computer. If type-name-1 is specified, this data item is a restricted data-pointer. A restricted data-pointer shall contain only the predefined address NULL or the address of a data item of the specified type.24) A data description entry that specifies the USAGE PROGRAM-POINTER clause specifies a program-pointer data item, also called a program-pointer, that may contain the address of a program. Each implementor defines the precise effect of the USAGE PROGRAM-POINTER clause upon alignment, size, and representation of the data item in the storage of the computer.The program addressed by a program-pointer data item may be written in COBOL or in another language for which the implementor has declared support for access by program pointers. For a COBOL program, the address is for an outermost program.25) If program-prototype-name-1 is specified, this data item is a restricted program-pointer. A restricted program-pointer shall contain only the predefined address NULL or the address of a program with the same signature as that identified by the specified program-prototype-name.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 511

26) A data description entry that specifies the USAGE FUNCTION-POINTER clause specifies a function-pointer data item, also called a function-pointer, that may contain the address of a function. Each implementor defines the precise effect of the USAGE FUNCTION-POINTER clause upon alignment, size, and representation of the data item in the storage of the computer.The function addressed by a function-pointer data item may be written in COBOL or in another language for which the implementor has declared support for access by function pointers.A function-pointer shall contain only the predefined address NULL or the address of a function with the same signature as that identified by the specified function-prototype-name-1.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

512 ©ISO/IEC 2023

13.18.61 USING clause

13.18.61.1 GeneralThe USING clause identifies data to be used both as the destination in an ACCEPT screen statement and the source for a DISPLAY screen statement.
13.18.61.2 General format

13.18.61.3 Syntax rules1) The category of the data item referenced by identifier-1 shall be a permissible category as a receiving operand in a MOVE statement where the sending operand has the same PICTURE clause as the subject of the entry.2) The category of the data item referenced by identifier-1 shall be a permissible category as a sending operand in a MOVE statement where the receiving operand has the same PICTURE clause as the subject of the entry.3) Identifier-1 shall be defined in the file, working-storage, local-storage, or linkage section. Identifier-1 shall not specify a variable-length group.4) If the subject of this entry is subject to an OCCURS clause, identifier-1 shall be specified without the subscripting normally required. Additional requirements are specified in 13.18.38, OCCURS clause, Syntax rule 13.
13.18.61.4 General rules1) Specifying the USING clause is equivalent to specifying both the TO and FROM clauses, each specifying the same identifier.2) The subject of the entry is both an input screen item and an output screen item.

USING identifier-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 513

13.18.62 VALIDATE-STATUS clause

13.18.62.1 GeneralThe VALIDATE-STATUS clause enables messages and flags to be generated automatically when a specific error condition arises or does not arise as a result of the execution of a VALIDATE statement.NOTE The VALIDATE-STATUS clause feature of the VALIDATE facility is an obsolete feature.
13.18.62.2 General format

13.18.62.3 Syntax rules1) Literal-1 or the data item referenced by identifier-1 shall be valid as a sending operand for a MOVE statement specifying the subject of the entry as the receiving operand.2) Literal-1 shall not be a zero-length literal.3) The entry containing the VALIDATE-STATUS clause shall not contain or be subordinate to an OCCURS clause with the DEPENDING phrase.4) The data item referenced by identifier-2 shall be the operand of a VALIDATE statement, or shall be subordinate to such an item.5) Identifier-2 shall not be reference-modified.6) Identifier-2 shall not be of class index, message-tag, object, or pointer.7) If identifier-2 references a data item whose data description entry is not subject to any OCCURS clause, the VALIDATE-STATUS clause shall not be specified in an entry that is subject to any OCCURS clause.If identifier-2 references a data item whose data description entry is subject to one or more OCCURS clauses, the following rules apply:a) If the VALIDATE-STATUS clause is specified in an entry that is not subject to any OCCURS clause, identifier-2 shall be subscripted. The number of subscripts shall be the same as the number of nested OCCURS clauses to which the data item referenced by identifier-2 is subject. Only literal subscripts may be specified.

VALIDATE-STATUSVAL-STATUS

 IS identifier-1literal-1

 WHEN ERRORNO ERROR

 ON FORMATCONTENTRELATION

FOR { identifier-2 } ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

514 ©ISO/IEC 2023

b) If the VALIDATE-STATUS clause is specified in an entry that is subject to one or more OCCURS clauses, identifier-2 shall not be subscripted. The data item referenced by identifier-2 and the subject of the entry shall both be subject to the same number of OCCURS clauses and the number of occurrences specified in the corresponding OCCURS clauses shall be equal. If an OCCURS clause associated with identifier-2 has a DEPENDING phrase, the maximum integer of the TO phrase is used in determining the number of occurrences of identifier-2.8) If identifier-2 references a global name, the subject of the entry shall be global.9) The words VAL-STATUS and VALIDATE-STATUS are equivalent.
13.18.62.4 General rules1) The VALIDATE-STATUS clause takes effect during the final, error indication stage of the execution of a VALIDATE statement that directly or indirectly references the data item referenced by identifier-2. The VALIDATE-STATUS clause is ignored during the execution of any statement other than a VALIDATE statement.2) The ERROR phrase takes effect in the following circumstances:a) if ON phrase is not specified, when the associated internal indicator of the data item referenced by identifier-2 is not set to its initial valid value;b) if the ON phrase is specified, when the associated internal indicator of the item referenced by identifier-2 is set to the value or one of the values corresponding to the stage of validation specified in the ON phrase.3) The NO ERROR phrase takes effect in the following circumstances:a) if ON phrase is not specified, when the associated internal indicator of the data item referenced by identifier-2 is still set to its initial valid value;b) if the ON phrase is specified, when the associated internal indicator of the item referenced by identifier-2 is not set to the value or one of the values corresponding to the stage of validation specified in the ON phrase.4) The ERROR and NO ERROR phrases take effect by executing an implicit MOVE statement in which literal-1 or the current content of the data item referenced by identifier-1 is the sending operand and the data item that is the subject of the entry is the receiving operand.5) If a data description entry contains more than one VALIDATE-STATUS clause, these clauses are applied as described above in the order in which they are specified until either the action defined under General rule 4 has occurred or all the clauses have been processed.6) If neither an ERROR phrase nor a NO ERROR phrase for a given entry takes effect during the execution of a given VALIDATE statement, the effect on the data item that is the subject of the entry is as follows: if any VALIDATE-STATUS clause specified in the entry has an identifier-2 that is referenced directly or indirectly as the operand of the VALIDATE statement, the data item is

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 515

initialized by the execution of an implicit INITIALIZE statement without the VALUE or REPLACING phrases; otherwise, the data item remains unchanged.7) Data items that are subordinate to the operand of a VALIDATE statement and are not processed during the statement's execution, as indicated by a value in their internal indicators signifying not processed, are considered to be neither valid nor invalid by the VALIDATE-STATUS clause but will cause the VALIDATE-STATUS clause's data item to be initialized, where applicable, as described in General rule 6. (See 13.18.38, OCCURS clause, and 13.18.41, PRESENT WHEN clause.)8) If the entry containing the VALIDATE-STATUS clause is subject to one or more OCCURS clauses, the processing defined in the above General rules applies to each occurrence of the subject of the entry and each corresponding occurrence of the data item referenced by identifier-2.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

516 ©ISO/IEC 2023

13.18.63 VALUE clause

13.18.63.1 GeneralThe VALUE clause specifies the initial value of local-storage section and working-storage section data items, the values used by explicit and implicit INITIALIZE statements, the values used by the INITIALIZED phrases of the ALLOCATE and OCCURS clauses, the values associated with condition-names, the value of report section printable items and screen section displayable items, and the values used by the VALIDATE statement.
13.18.63.2 General formatsFormat 1 (data-item):
Format 2 (table):

Format 3 (condition-name):

Format 4 (report-section):

Format 5 (content-validation-entry):

VALUE IS literal-1
VALUE ISVALUES ARE

 { { literal-1 } ... FROM ({ subscript-1 } ...) [TO ({ subscript-2 } ...)] } ...

VALUE ISVALUES ARE

 literal-2 THROUGHTHRU

 literal-3

 ... [IN alphabet-name-1]

[WHEN SET TO FALSE IS literal-4]
VALUE ISVALUES ARE

 { literal-1 } ...

VALUEVALUES

 literal-5 THROUGHTHRU

 literal-6

 IS ARE INVALIDVALID

 [WHEN condition-1]

 ... [IN alphabet-name-1]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 517

NOTE The CONTENT-VALIDATION-ENTRY feature of the VALIDATE facility is an obsolete feature.
13.18.63.3 Syntax rulesALL FORMATS1) The subject of the entry shall not be a strongly-typed group item or a variable-length group.2) If the category of the subject of the entry is numeric, all literals in the VALUE clause shall be numeric and shall be permissible values within the range indicated by the PICTURE clause or the USAGE clause. The values specified shall be representable exactly in the subject of the entry, without truncation of leading or trailing nonzero digits, except under the following circumstances:a) When the usage of the subject of the entry is float-short, float-long, or float-extended, the implementor defines whether truncation of any nonzero leading or trailing digits may occur.b) When the usage of the subject of the entry is a standard binary floating-point usage and the value is a noninteger literal, truncation of trailing nonzero digits can occur.NOTE 1 Conversion from the decimal form of a noninteger value to the format of a standard binary floating-point usage frequently involves a result that can require truncation of trailing nonzero digits.3) If a signed numeric literal is specified, the subject of the entry shall be either a signed numeric data item or a numeric-edited data item with a representation of a sign.4) If the item is of category alphabetic, alphanumeric, or alphanumeric-edited literals in the VALUE clause shall be alphanumeric literals. Alphanumeric literals in the VALUE clause of an elementary item shall not exceed the size indicated by an explicit PICTURE clause. Alphanumeric literals in the VALUE clause of an alphanumeric group item shall not exceed the size of the group item.5) If the item is of category national or national-edited, literals in the VALUE clause shall be national literals. National literals in the VALUE clause of an elementary item shall not exceed the size indicated by an explicit PICTURE clause. National literals in the VALUE clause of a national group item shall not exceed the size of the group item.6) If the item is of category numeric-edited, then, subject to Syntax rules 2 and 3, literals in formats 1, 2, and 4 of the VALUE clause may be numeric when they shall be converted to their numeric-edited forms according to the rules for the MOVE statement, such that no truncation of digits or sign is required. Further validation and processing then proceeds as for items of category numeric-edited. Literals for fixed-point formats shall be specified as fixed-point, while literals for floating-point formats shall be specified as floating-point, though the figurative constant ZERO or ZEROES and the integer and decimal forms of the literal zero may also be specified for either format and shall be treated identically as the literal zero.7) If the item is of category numeric-edited and the literal is of class alphanumeric or national, the class of the literal shall conform to that of the data item, if the class is otherwise undefined, then the class of the data item shall be that of the literal.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

518 ©ISO/IEC 2023

8) When a numeric-edited data description includes the BLANK WHEN ZERO clause and the VALUE clause uses either an alphanumeric or national literal, the BLANK WHEN ZERO clause has no effect on initialization.NOTE 2 When the BLANK WHEN ZERO clause appears in the data description entry of a numeric-edited item and the VALUE clause is a numeric literal, including the figurative constant ZERO, then the BLANK WHEN ZERO clause does effect initialization.9) The VALUE clause shall not be specified if a USAGE clause with a phrase of FUNCTION-POINTER, MESSAGE-TAG, OBJECT-REFERENCE, or PROGRAM-POINTER is also specified.FORMAT 110) If the category of the subject of the entry is boolean, literals in the VALUE clause shall be boolean literals. Boolean literals in the VALUE clause of an elementary item shall not exceed the size indicated by an explicit PICTURE clause. Boolean literals in the VALUE clause of a bit group item shall not exceed the size of the group item.11) Editing characters in a picture character-string for a numeric-edited data item are used in editing of the initial value when the data item is initialized and the literal is numeric. Editing characters in a picture character-string for an alphanumeric-edited or national-edited data item do not cause editing of the initial value when the data item is initialized.NOTE 3 The programmer is responsible for specifying the value of a literal associated with an alphanumeric-edited or national-edited item in edited form.12) The VALUE clause shall not be specified in a data description entry that contains a REDEFINES clause or in an entry that is subordinate to an entry containing a REDEFINES clause.13) If the VALUE clause is specified at the group level, literal-1 shall be of the same category as the group item or shall be a figurative constant that is permitted in a MOVE statement to a receiving item of that category. The VALUE clause shall not be specified at subordinate levels within this group.14) If a VALUE clause is specified at the group level, subordinate items within that group shall not be described with a JUSTIFIED or SYNCHRONIZED clause, and all data items subordinate to an alphanumeric group item shall be explicitly or implicitly described with usage DISPLAY.15) In the screen section, literal-1 shall be an alphanumeric literal if usage display is specified or a national literal if usage national is specified. Literal-1 shall not be a figurative constant.NOTE 4 Where a numeric literal is used for a numeric-edited data item, after conversion it is treated as though it were an alphanumeric or national literal according to the specified usage.FORMAT 216) Syntax rules 10, 11,12,13,14,and 15 above apply.17) The words VALUE and VALUES are equivalent.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 519

18) A data description entry that contains the VALUE clause shall contain an OCCURS clause or be subordinate to a data description entry that contains an OCCURS clause. 19) Subscript-1 and subscript-2 shall be integer numeric literals.20) In one FROM phrase, there shall be one subscript-1 specified for each OCCURS clause for the subject of the entry or superordinate to that entry, specified in the same order as a subscripted reference to the subject of the entry would be specified. Each instance of subscript-1 shall not exceed the maximum number of occurrences specified in the OCCURS clause associated with that instance.21) If the TO phrase is specified, there shall be one subscript-2 specified for each OCCURS clause for the subject of the entry or superordinate to that entry, specified in the same order as a subscripted reference to the subject of the entry would be specified. Each instance of subscript-2 shall not exceed the maximum number of occurrences specified in the OCCURS clause associated with that instance. The specification of subscript-2 in one TO phrase shall be such that the table element associated with subscript-2 is the same occurrence or a successive occurrence of the table element associated with the corresponding subscript-1.22) A VALUE clause without the TO phrase shall not be specified in the same entry as an OCCURS clause with a DYNAMIC phrase but no TO phrase, or in any entry subordinate to such an OCCURS clause.23) If the TO phrase is specified and an OCCURS clause with a DYNAMIC phrase but no TO phrase is specified in the same entry or in any superordinate entry, the values of subscript-1 and subscript-2 corresponding to all levels higher than that of the OCCURS clause, if applicable, shall be equalFORMAT 324) Syntax rules 10 and 17 above apply.25) A format 3, 4, or 5 VALUE clause shall not be specified in any data description entry that contains the CONSTANT RECORD clause, or in any data description entry subordinate to a data description entry that contains the CONSTANT RECORD clause.26) When the THROUGH phrase is specified:a) when literal-2 is of a class other than alphanumeric or national, the value of literal-2 shall be less than the value of literal-3.b) when literal-2 is of class alphanumeric or national, and the runtime collating sequence is known, the value of literal-2 shall be less than the value of literal-3. The runtime collating sequence is unknown when the collating sequence is defined by a locale or the collating sequence is otherwise determined at runtime.NOTE 5 The compiler can know the runtime collating sequence for a variety of reasons; perhaps only one is possible or one is specified by a compiler option. However, this is not a requirement of an implementor, and specifying an alphabet-name for a fixed collating sequence ensures that the range of values will always be the same. 27) The value of literal-4 shall not be equal to the value of any occurrence of literal-2. When the THROUGH phrase is specified:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

520 ©ISO/IEC 2023

a) when literal-2 is of a class other than alphanumeric or national, the value of literal-4 shall not be equal to any value in the range of any occurrence of literal-2 through literal-3, inclusive.b) when literal-2 is of class alphanumeric or national, and the runtime collating sequence is known, the value of literal-4 shall not be equal to the value of any literal-2 or any value in the range of any occurrence of literal-2 through literal-3, inclusive.NOTE 6 When the THROUGH phrase is specified and the runtime collating sequence is not known at compile time, it is possible that the value used in SET condition-name TO FALSE is also a value for which the condition will evaluate TRUE. This can be avoided by specifying a list of values rather than specifying a range in a THROUGH phrase.28) The words THROUGH and THRU are equivalent.29) If the category of the subject of the entry is boolean, the THROUGH phrase shall not be specified.30) Condition-name and content-validation formats shall not be specified in the report section.31) Alphabet-name-1 may be specified only when the literals specified in the THROUGH phrase are of class alphanumeric or national. If literal-2 and literal-3 or literal-5 and literal-6 are of class national, alphabet-name-1 shall reference an alphabet that defines a national collating sequence; otherwise, alphabet-name-1 shall reference an alphabet that defines an alphanumeric collating sequence.32) The manner of determining the range of values specified by the THROUGH phrase is described in 14.7.8, THROUGH phrase.33) Formats 3 and 5 may be specified only when the level-number of the subject of the entry is 88.FORMAT 434) Syntax rules 11, 17, and 25 above apply.35) If the VALUE clause has more than one operand, the entry shall be a repeating entry or shall be subordinate to a repeating entry. The number of operands of the VALUE clause shall be equal to the number of repetitions of the repeating entry or the same number multiplied by the number of repetitions of any number of successive repeating entries at higher levels than the repeating entry.FORMAT 536) Syntax rules 10, 11, 13, 17, 26, 27, 28, 29, 30, and 31 above apply.37) The VALID phrase and the INVALID phrase shall not both be specified for the same conditional variable.38) When the THROUGH phrase is specified:a) when literal-6 is of a class other than alphanumeric or national, the value of literal-5 shall be less than the value of literal-6.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 521

b) when literal-5 is of class alphanumeric or national, and the runtime collating sequence is known, the value of literal-5 shall be less than the value of literal-6. The runtime collating sequence is unknown when the collating sequence is defined by a locale or the collating sequence is otherwise determined at runtime.NOTE 7 The compiler can know the runtime collating sequence for a variety of reasons; perhaps only one is possible or one is specified by a compiler option. However, this is not a requirement of an implementor, and specifying an alphabet-name for a fixed collating sequence ensures that the range of values will always be the same.39) If the word VALUE is specified, the word IS may be specified. If the word VALUES is specified, the word ARE may be specified.
13.18.63.4 General rulesFORMAT 11) If the usage of the subject of the entry is float-short, float-long or float-extended, the actual value given to the item is an approximation of the arithmetic value of the literal.2) In the file section, VALUE clauses take effect only during the execution of an INITIALIZE statement. The initial value of the data items in the file section is undefined.3) In the linkage section, VALUE clauses take effect only during the execution of an explicit or implicit INITIALIZE statement. The initial value of the data items in the linkage section is specified in 13.7, Linkage section.4) VALUE clauses in the working-storage and local-storage sections take effect:a) for external items, during the execution of an INITIALIZE statementb) for based items and their subordinate items, during the execution of an ALLOCATE or an explicit or implicit INITIALIZE statementc) for all other items— when the object or runtime element is placed in initial state, and— during the execution of an INITIALIZE statement.When VALUE clauses take effect, data items with a VALUE clause are initialized to the specified value and data items of class message-tag, class object, and class pointer are initialized to null; the values of other data items and indexes are undefined and set to a value that may or may not be allowed for that data item or index.5) If a VALUE clause is specified in a data description entry of a group item, the group area is initialized without consideration for the individual elementary or group items contained within this group.6) If a VALUE clause is specified in a data description that also contains an OCCURS clause with the DEPENDING phrase, the initialization of the associated data item behaves as if the value of the data item referenced by the DEPENDING phrase in the OCCURS clause specified for the variable-

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

522 ©ISO/IEC 2023

occurrence data item is set to the maximum number of occurrences as specified by that OCCURS clause. A data item is associated with an occurs-depending table when a data item is one of the following:a) a group data item that contains an occurs-depending table.b) an occurs-depending table.c) a data item that is subordinate to an occurs-depending table.If a VALUE clause is associated with the data item referenced by a DEPENDING phrase, that value is considered to be placed in the data item after the occurs-depending table is initialized. Further rules for initializing tables are specified in 13.18.38, OCCURS clause.7) Each literal is aligned in the associated data item in accordance with 14.6.8, Alignment and transfer of data into data items, except that initialization is not affected by a JUSTIFIED clause and no editing takes place.8) When a numeric-edited data description includes the BLANK WHEN ZERO clause and the VALUE clause uses either an alphanumeric or national literal, the BLANK WHEN ZERO clause has no effect on initialization.NOTE 1 When the BLANK WHEN ZERO clause appears in the data description entry of a numeric-edited item and literal-1 in the VALUE clause is specified as zero, then the BLANK WHEN ZERO clause does affect initialization.9) A VALUE clause specified in a data description entry that contains an OCCURS clause or in an entry that is subordinate to an OCCURS clause causes every occurrence of the associated data item to be assigned the specified value.10) If a VALUE clause is specified for a screen item, literal-1 specifies the value of the screen item that is displayed on the screen when directly or indirectly referenced by an ACCEPT screen statement or a DISPLAY screen statement.FORMAT 211) General rules 1, 2, 3, 4, 5, 6, 7, 8, and 10 above apply.12) A format 2 VALUE clause initializes a table element to the value of literal-1. The table element initialized is identified by subscript-1. Consecutive table elements are initialized, in turn, to the value of successive occurrences of the literal-1. Consecutive table elements are referenced by incrementing by 1 the subscript that represents the least inclusive dimension of the table. When any reference to a subscript, prior to incrementing it, is equal to the maximum number of occurrences, or, in the case of a dynamic-capacity table, the expected number of occurrences, specified by its corresponding OCCURS clause, that subscript is set to 1 and the subscript for the next most inclusive dimension of the table is incremented by 1.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 523

13) If the TO phrase is specified, all occurrences of literal-1 are reused, in the order specified, as a source during the initialization described in General rule 12. This repetition is done until the table element identified by subscript-2 is initialized.14) If the TO phrase is not specified, it is as if the TO phrase were specified with each subscript-2 as the maximum number of occurrences, or, in the case of a dynamic-capacity table, the expected number of occurrences, of the table associated with each corresponding subscript-1.15) If multiple specifications of the FROM phrase reference the same table element, the value defined by the last specified FROM phrase in the VALUE clause is assigned to the table element.16) If an OCCURS clause with the DYNAMIC phrase is specified in the same entry as the VALUE clause, or in any entry superordinate to it, the initial capacity of the associated dynamic-capacity table is calculated according to the following subrules. If more than one VALUE clause applies, the maximum value thus calculated becomes the initial capacity.a) If a TO phrase is specified in the VALUE clause, the initial capacity is increased, if necessary, to the value of the corresponding subscript-2, provided that this value does not lie outside the range defined by the minimum and expected capacity specified in the OCCURS clause. If the value of subscript-2 lies outside this range, the initial capacity is unchanged.b) If no TO phrase is specified in the VALUE clause, the initial capacity is set equal to the expected capacity specified in the OCCURS clause.FORMAT 317) General rule 1 above applies.18) The manner of determining the range of values specified by the THROUGH phrase is described in 14.7.8, THROUGH phrase.NOTE 2 The range of values can be determined at compile time only when the runtime collating sequence is known at compile time.19) The characteristics of a condition-name are implicitly those of its conditional variable.20) When a condition-name is referenced in a 'SET condition-name TO FALSE' statement, the value of literal-4 from the FALSE phrase is placed in the associated conditional-variable. NOTE 3 The true values of a conditional-variable are all the values associated with its condition-names; all other values are false values. The WHEN SET TO FALSE phrase specifies just one of possibly many false values; the purpose is to define a single value to be used by 'SET condition-name TO FALSE'. When a condition-name condition is tested, all the non-true values give a false result, not just the one false value defined by the WHEN SET TO FALSE phrase.FORMAT 421) General rules 1, 7, 8, and 9 above apply.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

524 ©ISO/IEC 2023

22) The value of literal-1 is used for the content of the printable item whenever it is printed, except that a GROUP INDICATE, PRESENT WHEN, or OCCURS clause with the DEPENDING phrase may suppress the appearance of the item, as described in 13.18.28, GROUP INDICATE clause; 13.18.41, PRESENT WHEN clause; and 13.18.38, OCCURS clause. 23) If the VALUE clause has more than one operand, successive operands are assigned to successive repeating printable items, horizontally and then vertically, as applicable, in that hierarchy. If no further operands remain, assignment begins again from the first operand. If any of the printable items are suppressed as a result of a PRESENT WHEN clause or an OCCURS clause with a DEPENDING phrase, VALUE operands are nevertheless assigned to them, even though they are not printed.FORMAT 524) General rule 18 applies.25) Format 5 entries take effect during the content validation stage of the execution of a VALIDATE statement.26) If the associated conditional variable is an elementary item, the content validation entries take effect only if the conditional variable's associated internal indicator indicates that the item is valid on format.27) If the WHEN phrase is specified, condition-1 is evaluated. If condition-1 is true, the clause takes effect as described in the following general rules; otherwise, that content validation entry is ignored for the purpose of the current VALIDATE statement and the effect is as though that content validation entry had been omitted.28) Each entry with the VALID phrase defines a set of allowable values or ranges of values for the associated data item. If several entries with the VALID phrase are associated with the same data item, the union of all their sets of values defines the allowable set of values. If this check fails, the item's associated internal indicator is set to invalid on content.29) Each entry with the INVALID phrase defines a set of forbidden values or ranges of values for the associated data item. If several entries with the INVALID phrase are associated with the same data item, the union of all their sets of values defines the forbidden set of values. If this check fails, the item's associated internal indicator is set to invalid on content.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 525

13.18.64 VARYING clause

13.18.64.1 GeneralThe VARYING clause establishes counters to enable different source items to be placed in each occurrence of a repeated printable item in report writer.The VARYING clause also establishes counters to enable a VALIDATE statement to store different occurrences of a data item in different occurrences of a destination data item, or to compare different occurrences of a data item during content or relation validation.NOTE The VARYING clause feature of the VALIDATE facility is an obsolete feature.
13.18.64.2 General format

13.18.64.3 Syntax rules1) The entry containing the VARYING clause shall also contain an OCCURS clause or, if the VARYING clause appears in a report group description entry, a multiple LINE or multiple COLUMN clause.2) Data-name-1 shall not be defined elsewhere in the source element, except as data-name-1 in another VARYING clause of an entry not subordinate to the subject of the current entry.NOTE Such a reuse refers to a completely independent data item.This definition of data-name-1 may be referenced only within the current entry or a subordinate entry.3) Data-name-1 shall not be referenced in arithmetic-expression-1 of the same VARYING clause, but may be referenced in arithmetic-expression-2 of the same VARYING clause or in arithmetic-expression-1 or arithmetic-expression-2 of a VARYING clause in a subordinate entry.
13.18.64.4 General rules1) Each entry containing a VARYING clause establishes an independent temporary integer data item that shall be large enough to contain the maximum expected value.2) If the VARYING clause is not specified in a report description entry, it is ignored during the execution of any statement other than a VALIDATE statement.3) When the data item that is the subject of the entry is processed by the VALIDATE statement or the report item that is the subject of the entry is processed, the content of data-name-1 is established for each repetition of the associated data item during each stage of execution of the VALIDATE statement or each repetition of the report item, as follows:a) For the first occurrence, the value of arithmetic-expression-1 is moved to data-name-1. If the FROM phrase is absent, 1 is moved to data-name-1.

VARYING { data-name-1 [FROM arithmetic-expression-1] [BY arithmetic-expression-2] } ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

526 ©ISO/IEC 2023

b) For the second and subsequent occurrences, the value of arithmetic-expression-2 is added to data-name-1. If the BY phrase is absent, 1 is added to data-name-1.4) Each value of data-name-1, established in this way, persists throughout the processing of the associated occurrence of the data item or report item.NOTE For example, this allows data-name-1 to be used as a source data item, as a subscript to a source data item or as part of the identifier in the DEFAULT clause.5) If the evaluation of arithmetic-expression-1 or arithmetic-expression-2 produces a noninteger value and the VARYING clause was specified in a report description entry, the EC-REPORT-VARYING exception condition is set to exist, the execution of the INITIATE, GENERATE, or TERMINATE statement is unsuccessful, and the content of the print line is undefined.6) If the evaluation of arithmetic-expression-1 or arithmetic-expression-2 produces a noninteger value and the VARYING clause was not specified in a report description entry, the EC-VALIDATE-VARYING exception condition is set to exist, the execution of the VALIDATE statement is unsuccessful, and the content of the receiving items is undefined

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 527

14 Procedure division

14.1 GeneralThe procedure division in a function, a method, or a program contains statements that are to be executed.The procedure division in an instance definition and a factory definition contains the methods that may be invoked on the instance object or factory object.The procedure division in an interface contains method prototypes.The procedure division in a function prototype, method prototype, or program prototype specifies the parameters, any returning item, and any exceptions that may be raised.
14.2 Procedure division structure

14.2.1 General formatsFormat 1 (with-sections):

Format 2 (without-sections):
Format 3 (object-oriented):

procedure-division-header[DECLARATIVES.{ section-name-1 SECTION. use-statement.[sentence] ... [paragraph-name-1. [sentence] ...] ... } ...END DECLARATIVES.] [{ section-name-1 SECTION. [sentence] ... [paragraph-name-1.] [sentence] ...] ... } ...]
procedure-division-header[sentence] ... [{ paragraph-name-1. [sentence] ... } ...]
PROCEDURE DIVISION.[{ method-definition } ...]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

528 ©ISO/IEC 2023

where procedure-division-header is:

where using-phrase is:

where the following meta-language terms are described in the indicated subclauses:
Term Subclausemethod-definition 10.6, COBOL compilation group sentence 14.5, Procedural statements and sentences use-statement 14.9.49, USE statement
14.2.2 Syntax rulesFORMATS 1 AND 21) Data-name-1 shall be defined as a level 01 entry or a level 77 entry in the linkage section. A particular user-defined word shall not appear more than once as data-name-1. The data description entry for data-name-1 shall not contain a BASED clause or a REDEFINES clause.NOTE 1 This restriction for based items does not prohibit passing based items as arguments.NOTE 2 A data item defined subsequently in the linkage section can specify REDEFINES data-name-1.2) Each data-name-1 specified in a BY VALUE phrase shall be defined as a data item of class numeric, message-tag, object, or pointer.3) The RETURNING phrase shall be specified in a function definition and in a function prototype definition.4) The RETURNING phrase may be specified in a method definition, a program definition, or a program prototype. 5) Data-name-2 shall be defined as a level 01 entry or level 77 entry in the linkage section. The data description entry for data-name-2 shall not contain a BASED clause or a REDEFINES clause.

PROCEDURE DIVISION [using-phrase] [RETURNING data-name-2]
RAISING exception-name-1[FACTORY OF] object-class-name-1interface-name-1

USING [BY REFERENCE] { [OPTIONAL] data-name-1 } ...BY VALUE { data-name-1 } ...

 ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 529

NOTE 3 This restriction for based items does not prohibit specifying a based item as the returning item in the activating element.NOTE 4 A data item defined subsequently in the linkage section can specify REDEFINES data-name-2.6) Data-name-2 shall not be the same as data-name-1.7) Exception-name-1 shall be a level-3 exception-name for EC-USER.8) Object-class-name-1 shall be the name of a class specified in the REPOSITORY paragraph.9) Interface-name-1 shall be the name of an interface specified in the REPOSITORY paragraph.10) Formats 1 and 2 may be specified in a source element if and only if that source element is a function definition, a function prototype definition, a method definition, a program definition, or a program prototype definition.11) A procedure division in a method prototype shall contain only a procedure division header.FORMAT 312) Format 3 may be specified in a source element if and only if that source element is a factory definition, an instance definition, or an interface definition, but not in a method definition.13) A procedure division in an interface definition, an instance definition, or a factory definition that is not in a method definition shall be an object-oriented format procedure division.
14.2.3 General rulesFORMATS 1 AND 21) Execution begins with the first statement of the procedure division, excluding declaratives. Statements are then executed in the order in which they are presented for compilation, except where the rules indicate some other order.2) The USING phrase identifies the formal parameters used by the function, method, or program for any arguments passed to it. The arguments passed from the activating element are:— the arguments specified in the USING phrase of a CALL statement— the arguments specified in the USING phrase of an INVOKE statement— the arguments specified in an inline invocation of a method— the arguments specified in a function reference— the argument defined by the rules of an object-property for invocation of an implicit SET property method.The correspondence between the arguments and the formal parameters is established on a positional basis.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

530 ©ISO/IEC 2023

The conformance requirements for formal parameters and returning items are specified in 14.8.2, Parameters and 14.8.3, Returning items.3) If the OPTIONAL phrase is specified for data-name-1, the OMITTED phrase may be specified as the corresponding argument; otherwise, the OMITTED phrase shall not be specified as the corresponding argument.4) Both the BY REFERENCE and the BY VALUE phrases are transitive across the parameters that follow them until another BY REFERENCE or BY VALUE phrase is encountered. If neither the BY REFERENCE nor the BY VALUE phrase is specified prior to the first parameter, the BY REFERENCE phrase is assumed.5) Data-name-1 is a formal parameter for the function, method, or program.6) Data-name-2 is the name used in the function, method, or program for the result that is returned to the activating element according to 14.6.5, Results of runtime element execution.NOTE 1 In COBOL, the storage for the returning item is allocated in the activating source unit. The activated element contains only a formal description in its linkage section.7) The initial value of the returning item, data-name-2, is undefined.8) If the argument is passed by reference, the activated runtime element operates as if the formal parameter occupies the same storage area as the argument.9) If the argument is passed by content, the activated runtime element operates as if the record in the linkage section were allocated by the activating runtime element during the process of initiating the activation and as if this record does not occupy the same storage area as the argument in the activating runtime element.If the activated runtime element is a program for which there is no program-specifier in the REPOSITORY paragraph of the activating runtime element and there is no NESTED phrase specified on the CALL statement, this allocated record is of the same length as the argument, where the maximum length is used if the argument is described as a variable-occurrence data item. That argument is moved to this allocated record without conversion. This record is then treated by the activated runtime element as if it were the argument and as if it were passed by reference.If the activated runtime element is one of the following:— a program for which there is a program-specifier in the REPOSITORY paragraph of the activating runtime element— a program and the NESTED phrase is specified on the CALL statement— a method— a function then this allocated record is— a data item of the same category, usage, and length as the argument, if the formal parameter is described with the ANY LENGTH clause,

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 531

— a dynamic-length elementary item of the same category and described with the same dynamic-length-structure-name as the formal parameter, if the formal parameter is described with the elementary format of the DYNAMIC LENGTH clause,— otherwise, a data item with the same description and the same number of bytes as the formal parameter, where the maximum length is used if the formal parameter is described as a variable-occurrence data item.The argument is used as the sending operand and the allocated record as the receiving operand in the following:— if the formal parameter is numeric, a COMPUTE statement without the ROUNDED phrase— if the formal parameter is of class index, object, or pointer, a SET statement— otherwise, a MOVE statement.The allocated record is then treated as if it were the argument and it were passed by reference.10) If the argument is passed by value, the activated runtime element operates as if the record in the linkage section were allocated by the activating runtime element during the process of initiating the activation.The allocated record is a data item of the same description as the formal parameter. The argument is used as the sending operand and the allocated record, whose description is specified in the linkage section, is used as the receiving operand in the following:— if the formal parameter is numeric, a COMPUTE statement without the ROUNDED phrase— if the formal parameter is of class object or pointer, a SET statement.The activated runtime element is given access to the allocated record.11) At all times in the activated element, references to data-name-1 and to data-name-2 are resolved in accordance with their description in the linkage section.12) Exception-name-1 specifies an exception that this runtime element may raise in an EXIT or GOBACK statement. Exception-names defined in Table 13, Exception-names and exception conditions and user-defined exception-names may be raised. If object-class-name-1 is specified, an object of object-class-name-1 or from a subclass of object-class-name-1 may be raised by EXIT or GOBACK statements within this runtime element. If interface-name-1 is specified, an object that implements interface-1 may be raised by EXIT or GOBACK statements within this runtime element.13) When either the activating or the activated runtime element is other than a COBOL runtime element, the implementor shall specify the restrictions and mechanisms for all supported language products.NOTE 2 The details of these restrictions and mechanisms might include parameter matching, representation of a data type, return of a value, and omission of parameters.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

532 ©ISO/IEC 2023

14.3 DeclarativesA Declarative is a procedure that is to be executed when a specific exception or condition occurs based on the USE statement. Declarative sections shall be grouped at the beginning of the procedure division preceded by the keyword DECLARATIVES and followed by the keywords END DECLARATIVES.The sections specified between the keywords DECLARATIVES and END DECLARATIVES constitute the declarative portion of a source element. All other sections in a source element constitute the nondeclarative portion.
14.4 Procedures

14.4.1 GeneralA procedure is composed of a paragraph, or a group of successive paragraphs, or a section, or a group of successive sections within the procedure division. If one paragraph is in a section, all paragraphs shall be in sections. A procedure-name is a word used to refer to a paragraph or section in the source element in which it occurs. It consists of a paragraph-name (that may be qualified) or a section-name.
14.4.2 SectionsA section consists of a section header followed by zero, one, or more successive paragraphs. A section ends immediately before the next section or at the end of the procedure division or, in the declaratives portion of the procedure division, at the keywords END DECLARATIVES.
14.4.3 ParagraphsA paragraph consists of a paragraph-name followed by a separator period and by zero, one, or more successive sentences or, if the paragraph-name is omitted, one or more successive sentences following the procedure division header or a section header. A paragraph ends immediately before the next paragraph-name or section-name or at the end of the procedure division or, in the declaratives portion of the procedure division, at the keywords END DECLARATIVES.
14.5 Procedural statements and sentences

14.5.1 GeneralA procedural statement is a unit of the COBOL language that specifies an action to be taken. Statement names are identified in Table 12, Procedural statements.Within the procedure division, there are the following types of statements:— declarative statements, which specify actions that may be taken during the processing of other statements— imperative statements, which specify unconditional actions— conditional statements, which specify, or contain one or more phrases that specify, actions that depend on the truth value of a condition.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 533

A declarative statement begins with the statement name USE and directs that actions be taken in response to specified conditions encountered during the processing of other statements.An imperative statement specifies an unconditional action to be taken by the runtime element or is a conditional statement that is delimited by its explicit scope terminator, as specified in Table 12, Procedural statements.A conditional statement specifies that the truth value of a condition is evaluated and used to determine subsequent flow of control. Any statement with a conditional phrase that is not terminated by its explicit scope terminator is a conditional statement.A sentence is a sequence of one or more procedural statements, the last of which is terminated by a separator period.Wherever 'imperative-statement' appears in the general format of a statement, 'imperative-statement' refers to one or more imperative statements ended either by a separator period or by any phrase associated with that general format.
Table 12 — Procedural statements

Statement name Conditional phrase Explicit scope
terminatorACCEPT [NOT] ON EXCEPTION END-ACCEPTADD [NOT] ON SIZE ERROR END-ADDALLOCATECALL [NOT] ON EXCEPTION END-CALLCANCELCLOSECOMMITCOMPUTE [NOT] ON SIZE ERROR END-COMPUTECONTINUEDELETE [NOT] INVALID KEY[NOT] ON EXCEPTION END-DELETE

DISPLAY [NOT] ON EXCEPTION END-DISPLAYDIVIDE [NOT] ON SIZE ERROR END-DIVIDEEVALUATE WHEN END-EVALUATEEXITFREEGENERATEGOBACK

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

534 ©ISO/IEC 2023

GO TOIF THENELSE END-IF
INITIALIZEINITIATEINSPECTINVOKEMERGEMOVEMULTIPLY [NOT] ON SIZE ERROR END-MULTIPLYOPENPERFORM END-PERFORMRAISEREAD [NOT] AT END[NOT] INVALID KEY END-READ
RECEIVE [NOT] ON EXCEPTION END-RECEIVERELEASERESUMERETURN [NOT] AT END END-RETURNREWRITE [NOT] INVALID KEY END-REWRITEROLLBACKSEARCH WHENAT END END-SEARCH
SEND [NOT] ON EXCEPTION END-SENDSETSORTSTART [NOT] INVALID KEY END-STARTSTOPSTRING [NOT] ON OVERFLOW END-STRINGSUBTRACT [NOT] ON SIZE ERROR END-SUBTRACTSUPPRESS

Table 12 — Procedural statements (Continued)

Statement name Conditional phrase Explicit scope
terminator

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 535

14.5.2 Conditional phraseA conditional phrase specifies the action to be taken upon determination of the truth value of a condition resulting from the execution of a conditional statement.The conditional phrases are specified in Table 12, Procedural statements.
14.5.3 Scope of statements

14.5.3.1 GeneralA procedure division statement begins with the first word of the statement name and continues until the statement is either explicitly or implicitly terminated, and includes any procedural statements occurring syntactically between the start and termination of that statement.
14.5.3.2 Explicit scope terminationThe scope of a statement may be explicitly terminated by using its associated scope terminator as specified in Table 12, Procedural statements. A statement written with its explicit scope terminator is a subset of imperative statements and is termed a delimited scope statement.An explicit scope terminator terminates the scope of:1) the most-recently preceding unterminated statement having the statement-name for which that scope terminator is defined, and2) any unterminated statements that appear between that statement-name and the explicit scope terminator.
14.5.3.3 Implicit scope terminationThe scope of a statement that is not explicitly terminated is implicitly terminated as follows:1) for a single imperative statement not contained within another statement, bya) any element that follows the exhaustion of the statement's syntax, or

TERMINATEUNLOCKUNSTRING [NOT] ON OVERFLOW END-UNSTRINGVALIDATEWRITE [NOT] INVALID KEY[NOT] END-OF-PAGE END-WRITE

Table 12 — Procedural statements (Continued)

Statement name Conditional phrase Explicit scope
terminator

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

536 ©ISO/IEC 2023

b) the next-encountered statement-name, orc) a separator period.2) for a single imperative statement contained within another statement, bya) any element that terminates an imperative statement not contained within another statement,b) the termination of the scope of any containing statement, or c) the next phrase of any containing statement.3) for a conditional statement not contained within another statement, by a separator period.4) for a conditional statement contained within another statement, bya) the termination of any containing statement, orb) the next phrase of any containing statement.Any phrase encountered is the next phrase of the most-recently preceding unterminated statement with which that phrase may be syntactically associated. If all permitted occurrences of a phrase have already been specified for a given statement, a subsequent occurrence of that phrase is not syntactically associated with that statement. An unterminated statement is any statement that has begun but has not yet been either explicitly or implicitly terminated.A contained statement is also referred to as a nested statement.
14.6 Execution

14.6.1 Run unit organizationAt runtime, the highest-level unit of a COBOL application is the run unit. A run unit is an independent entity that may be executed without communicating with, or being coordinated with, any other run unit except that it may communicate via messages with other run units, process files, and set and test switches that were written or will be read by other run units. A run unit contains one or more runtime modules.A runtime module results from compiling a compilation unit. Each runtime module contains one or more runtime elements.A runtime element results from the compilation of a function, method, or program. When a runtime element is activated, parameters upon which it is to operate may be passed to it by the runtime element that calls it.A run unit and each of its contained runtime modules may also contain resources and data storage areas needed for the execution and intercommunication of the runtime elements contained in the run unit.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 537

A run unit may additionally contain runtime modules and data storage areas derived from the compilation of compilation units written in languages other than COBOL; in this case the requirements for the relationship and interaction between the COBOL and the non-COBOL modules are defined by the implementor.
14.6.2 State of a function, method, object, or program

14.6.2.1 GeneralThe state of a function, method, or program at any point in time in a run unit may be active or inactive. When a function, method, or program is activated, its state may also be initial or last-used.
14.6.2.2 Active stateA function, method, or program may be activated recursively. Therefore, several instances of a function, method, or program may be active at once. When a rule indicates that the active state of a runtime element is tested, it is in the active state if any instance of the element is active.An instance of a function is placed in an active state when it is successfully activated and remains active until the execution of a GOBACK or STOP statement within this instance of this function.An instance of a method is placed in an active state when it is successfully activated and remains active until the execution of a GOBACK or STOP statement within this instance of this method.An instance of a program is placed in an active state when it is successfully activated by the operating system or successfully called from a runtime element. An instance of a program remains active until the execution of one of the following:— a STOP statement— in a called program, an implicit or explicit program format of an EXIT statement within that program— a GOBACK statement within either that same called program or a program that is not under the control of a calling runtime element.Whenever an instance of a function, method, or program is activated, the control mechanisms for all PERFORM statements contained in that instance of the function, method, or program are set to their initial states and the initial program collating sequences are in effect.
14.6.2.3 Initial and last-used states of data

14.6.2.3.1 GeneralWhen a function, method, or program is activated, the data within is in either the initial state or the last-used stateNOTE The presence or absence of the INITIALIZE clause can affect the contents of data items in the initial state as indicated below.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

538 ©ISO/IEC 2023

14.6.2.3.2 Initial stateAutomatic data and initial data is placed in the initial state every time the function, method, or program in which it is described is activated.Static data is placed in the initial state:1) The first time the function, method, or program in which it is described is activated in a run unit.2) The first time the program in which it is described is activated after the execution of an activating statement referencing a program that possesses the initial attribute and directly or indirectly contains the program.3) The first time the program in which it is described is activated after the execution of a CANCEL statement referencing the program or CANCEL statement referencing a program that directly or indirectly contains the program.When data in a function, method, or program is placed in the initial state, the following occurs in the order specified:1) If the INITIALIZE clause is specified in the OPTIONS paragraph, the storage allocated for the implied or associated sections is set to the specified-fill-character.2) The internal data described in the working-storage section and local-storage section is initialized as described in 13.18.63, VALUE clause.3) The function, method, or program's internal file connectors are initialized by setting them to not be in any open mode.4) The attributes of screen items are set as specified in the screen description entry.5) The address of each based item is set to null.6) For each dynamic-capacity table, except where the table is defined by an elementary entry with a VALUE clause, the capacity of the table is set to the minimum capacity specified in the corresponding OCCURS clause. If the INITIALIZED keyword is present in the OCCURS clause, all the occurrences, if any, of the table are then initialized.7) The length of each dynamic-length elementary item that is specified without a VALUE clause is set to zero.Before data is placed in the initial state, the initial alphanumeric and national program collating sequences are determined as specified in 12.3.6, OBJECT-COMPUTER paragraph.
14.6.2.3.3 Last-used stateStatic and external data are the only data that are in the last-used state. External data is always in the last-used state except when the run unit is activated. Static data is in the last-used state except when it is in the initial state as defined above.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 539

14.6.2.4 Initial state of object dataThe initial state of an object is the state of the object immediately after it is created. Internal data, internal file connectors, and the attributes of screen items are initialized in the same manner as when data in a function, method, or program is placed in the initial state, in accordance with 14.6.2.3.2, Initial state.Before object data is placed in the initial state, the initial alphanumeric and national program collating sequences are determined as specified in 12.3.6, OBJECT-COMPUTER paragraph.
14.6.3 Explicit and implicit transfers of controlThe flow of control mechanism transfers control from statement to statement in the sequence in which they were written unless an explicit transfer of control overrides this sequence or there is no next executable statement to which control may be passed. The transfer of control from statement to statement occurs without the writing of an explicit procedure division statement, and, therefore, is an implicit transfer of control.COBOL provides both explicit and implicit means of altering the implicit control transfer mechanism.In addition to the implicit transfer of control between consecutive statements, implicit transfer of control also occurs when the normal flow is altered without the execution of a procedure branching statement. COBOL provides the following types of implicit control flow alterations that override the statement-to-statement transfers of control:1) If a procedure is being executed under control of another COBOL statement such as PERFORM, USE, SORT, and MERGE, and the procedure is the last procedure in the range of the controlling statement, then an implied transfer of control occurs from the last statement in the procedure to the control mechanism of the last executed controlling statement. Further, if a procedure is being executed under the control of a PERFORM statement that causes iterative execution, and that procedure is the first procedure in the range of that PERFORM statement, an implicit transfer of control occurs between the control mechanism associated with that PERFORM statement and the first statement in that procedure for each iterative execution of the procedure. 2) When a SORT or MERGE statement is executed, an implicit transfer of control occurs to any associated input or output procedures.3) When any COBOL statement is executed that results in the execution of exception processing procedures, an implicit transfer of control to those procedures occurs as specified in 14.6.13.1, Exception conditions.NOTE Another implicit transfer of control occurs after execution of the exception processing procedures as specified in 14.6.13.1.3, Fatal exception conditions and 14.6.13.1.4, Nonfatal exception conditions.An explicit transfer of control may be caused only by the execution of a procedure branching or conditional statement. The procedure branching statement EXIT PROGRAM causes an explicit transfer of control only when the statement is executed in a called program.If control is transferred either implicitly or explicitly to a procedure containing no statements, execution proceeds as if the procedure contained only a single sentence consisting of a CONTINUE statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

540 ©ISO/IEC 2023

In this document, the term 'next executable statement' is used to refer to the next COBOL statement to which control is transferred according to the rules above and the rules associated with each language element.There is no next executable statement when the execution of an EXIT PROGRAM, GOBACK, or STOP statement transfers control outside the COBOL source element.In the declarative section for a fatal exception condition, there is no next executable statement after either the last statement when the paragraph in which it appears is not being executed under the control of some other COBOL statement, or the last statement when the statement is in the range of an active PERFORM statement executed in a different section and this last statement of the declarative section is not also the last statement of the procedure that is the exit of the active PERFORM statement. In these cases, unless the exception occurs in a MERGE statement, a SORT statement, or an I-O statement for which the implementor specifies otherwise, the run unit is terminated abnormally as specified in 14.6.12, Abnormal run unit termination.There is also no next executable statement after the last statement in a source element when the procedure in which it appears is not being executed under the control of some other COBOL statement in that source element, after the end marker, and when there are no procedure division statements in a program, function, or method. In these cases, an implicit GOBACK statement without any optional phrases is executed.
14.6.4 Item identificationItem identification is the process of identifying a specific data item referenced by an identifier by evaluating all of that identifier's references. If a step in the evaluation of an identifier requires evaluation of another identifier or an arithmetic expression, that evaluation is done in full before proceeding to the next step. The item identification steps that are applicable to that identifier are evaluated in the following order:1) locale identification2) function evaluation3) inline method invocation4) subscript evaluation5) object property evaluation6) length evaluation for an occurs-depending group item7) reference modificationUnless otherwise specified, item identification is done for an identifier as the first step in the evaluation of that identifier and the identifiers within a statement are evaluated in left to right order as the first operation of the execution of that statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 541

14.6.5 Results of runtime element executionThe result of the execution of a program, function, or method that specifies a RETURNING phrase in its procedure division header, is the content of the data item referenced by that RETURNING phrase.The result becomes available to the activating element after the activated element returns as follows: — If the runtime element is activated by a CALL or INVOKE statement, the result is placed in the data item referenced by that RETURNING phrase of that activating statement. — If the runtime element is activated by a function-identifier or an inline method invocation, the result is placed in the temporary data item referenced by that identifier.
14.6.6 Locale identificationLocale identification is the process of identifying a specific locale for use in locale-based processing. Locale identification occurs as follows:1) At run unit activation, the user default locale becomes the current locale for the run unit for all locale categories. The implementor specifies whether a locale set by COBOL is recognized in a non-COBOL runtime module, and whether a locale set by a non-COBOL runtime module is recognized in COBOL. In order to use a locale set by a non-COBOL runtime module, it is necessary to execute a SET statement specifying the USER-DEFAULT phrase. 2) On activation of a runtime element, if the CHARACTER CLASSIFICATION clause is specified in the OBJECT-COMPUTER paragraph, category LC_CTYPE in the specified locale is used for character classification in the class test and the UPPER-CASE and LOWER-CASE intrinsic functions.3) When execution of a set-locale format SET statement switches the locale for one or more locale categories, the new locale becomes the current locale for the run unit for the switched categories; the current locale remains unchanged for categories that are not switched.4) If an alphabet-name specified in the PROGRAM COLLATING SEQUENCE clause of the OBJECT-COMPUTER paragraph is associated with a locale, category LC_COLLATE in the associated locale is used for comparisons and ordering as specified in 12.3.6, OBJECT-COMPUTER paragraph.5) For a SORT or MERGE statement specifying an alphabet-name associated with a locale in the COLLATING SEQUENCE phrase, category LC_COLLATE in the associated locale is used for that statement. A locale switch during execution of a SORT or MERGE statement has no effect on the processing of that SORT or MERGE statement.6) For a data item described with a LOCALE phrase, if a locale-name is specified, locale category LC_MONETARY in that locale is used for editing and de-editing of the data item. If a locale-name is not specified, category LC_MONETARY in the locale current at the time of editing or de-editing is used.7) For a LOCALE-COMPARE intrinsic function specifying a locale as an argument, category LC_COLLATE from the specified locale is used for evaluation of that function-identifier; if a locale is not specified as an argument, category LC_COLLATE from the current locale is used.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

542 ©ISO/IEC 2023

8) For a LOCALE-DATE or LOCALE-TIME intrinsic function specifying a locale as an argument, category LC_TIME from the specified locale is used for evaluation of that function-identifier; if a locale is not specified as an argument, category LC_TIME from the current locale is used.9) Upon return of control from another COBOL runtime element, the locale in effect for each locale category at the time of exit from the returning runtime element becomes the current locale for that category.NOTE The intended behavior might be that the invoked program, function, or method switches locale for its caller; if not, the invoked program, function, or method is responsible for saving the locale on entry and restoring it before returning.
14.6.7 Sending and receiving operandsAn operand is a sending operand if its contents prior to the execution of a statement may be used by the execution of the statement. An operand is a receiving operand if its contents may be changed by the execution of the statement. Operands may be referenced either explicitly or implicitly by a statement. For some statements, an operand is both a sending operand and a receiving operand. The rules for a statement specify whether operands are sending operands, receiving operands, or both when this is not clear from the context of the statement.
14.6.8 Alignment and transfer of data into data items

14.6.8.1 GeneralUnless specified elsewhere in rules, information is aligned and transferred into receiving data items in a manner dependent on the category and data description entry of the receiving data item, and on the characteristics of the sending operand.
14.6.8.2 Fixed-point numeric and fixed-point numeric-edited receiving data itemsWhen the receiving data item is a fixed-point numeric data item or a fixed-point numeric-edited data item:1) If the sending operand is an intermediate data item or a data item described with a standard floating-point usage, the value is treated as if it had been converted to a fixed-point value.2) If the sending operand is a data item described with a FLOAT-SHORT, FLOAT-LONG, or FLOAT-EXTENDED usage, the implementor defines the manner in which the value is converted to a fixed-point value.3) If the data description of the receiving data item does not include an explicit decimal point specification, the data item is treated as if it had an assumed decimal point immediately following its rightmost digit.4) If the receiving operand is a fixed-point numeric item, the data is aligned by decimal point and is transferred to the receiving digits with zero fill or truncation on either end as required.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 543

5) If the receiving operand is a fixed-point numeric-edited item, further alignment, zero fill or truncation, and transfer of digits take place as described in the general rules and editing rules in 13.18.40, PICTURE clause.
14.6.8.3 Floating-point numeric receiving data itemsA floating-point numeric data item is a data item described with the FLOAT-SHORT usage, the FLOAT-LONG usage, the FLOAT-EXTENDED usage, or any standard floating-point usage.When the receiving data item is a floating-point numeric data item:1) If the receiving data item is described with a FLOAT-SHORT, FLOAT-LONG, or FLOAT-EXTENDED usage, the implementor specifies any exception conditions that might be set to exist during data conversion. If no fatal exception conditions have been set to exist during data conversion, the content of the receiving operand is set to the algebraic value of the sending operand.2) If the receiving data item is described with a standard floating-point usage, the algebraic value is converted and transferred to the receiving data item in a manner consistent with the specifications of ISO/IEC 60559:2020, Clauses 3 and 5.
14.6.8.4 Floating-point numeric-edited receiving data itemsWhen the receiving data item is a floating-point numeric-edited data item:1) If the algebraic value of the sending operand is not zero, the exponent and significand of the value are adjusted such that the most significant digit of the significand is not zero.2) Alignment and zero fill or truncation take place as described in the general rules and editing rules in 13.18.40, PICTURE clause.
14.6.8.5 Receiving data items of categories alphabetic, alphanumeric, alphanumeric-
edited, national, and national editedThe data in the sending operand is transferred, after any necessary conversion, to the receiving character positions and aligned at the leftmost character position in the data item with space fill or truncation to the right, as required. If the JUSTIFIED clause is specified for the receiving item, alignment differs as specified in 13.18.32, JUSTIFIED clause.NOTE If the sending data item or literal is zero-length, the entire receiving data item is space filled.
14.6.8.6 Receiving data items of category booleanThe data in the sending operand is transferred, after any necessary conversion, into the corresponding boolean positions of the receiving data item, with zero fill or truncation to the right, as required. If the JUSTIFIED clause is specified for the receiving item, alignment within the receiving item differs as specified in 13.18.32, JUSTIFIED clause.NOTE When an item is of usage bit, the item is not necessarily aligned on a byte boundary and the item need not occupy an integral number of bytes.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

544 ©ISO/IEC 2023

14.6.9 Operations on dynamic-capacity tables

14.6.9.1 GeneralOperations may be performed on an entire dynamic table as a result of an operation on a group that contains it. If another operand of the operation is a fixed capacity table, that table shall be treated as a special case of a dynamic capacity table that has a current capacity equal to the fixed number of elements. If another operand is an occurs-depending table, that table shall be treated as a special case of a dynamic capacity table that has a current capacity equal to the value of the corresponding DEPENDING operand.
14.6.9.2 Moving a tableA dynamic-capacity table may be moved as part of a variable-length group to or from another table, whether dynamic-capacity, occurs-depending, or fixed-capacity, defined in a compatible group as specified in 8.5.1.12, Variable-length groups. The operation recreates or overwrites the receiving table with a copy of the sending table, after freeing, if applicable, all the resources previously occupied by the receiving table.If the receiving table is not a dynamic-capacity table:1) If the sending table has a higher current capacity than the receiving table, superfluous elements are not moved and no exception exists,2) If the sending table has a lower current capacity than the receiving table, all the remaining elements of the receiving table are space filled.If the receiving table is a dynamic-capacity table specifying a minimum capacity that is higher than its current capacity, further elements are created and filled with spaces until the current capacity of the table is equal to its minimum capacity as specified in 14.6.9.4, Space filling a dynamic table.Correspondingly numbered elements are moved according to the rules of the MOVE statement specified in 14.9.25, MOVE statement.
14.6.9.3 Comparing two tablesDuring the evaluation of a relation condition, a dynamic-capacity table may be compared with another dynamic-capacity table, an occurs-depending table, or a fixed-capacity table, either directly or subordinate to the comparison of two compatible groups as specified in 8.5.1.12, Variable-length groups.When corresponding tables are to be compared, the first element of the first table, if any, is compared with the first element of the other table. If they are unequal, the comparison terminates. Otherwise, the next elements are compared, continuing until either inequality is detected or the last element of the table with the smallest current capacity has been compared. If the two tables do not have the same current capacity, comparison continues by comparing each successive remaining element of the larger table with spaces.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 545

14.6.9.4 Space filling a dynamic tableIf a dynamic table is subordinate to a variable-length group that is to be space filled as part of the execution of a MOVE statement, the current capacity of the dynamic table is unaffected, and each element of the dynamic table is space-filled.
14.6.10 Overlapping operandsWhen the data items referenced by a sending and a receiving operand in any statement are identified as sharing either a part of or all of their storage areas, and the rules for the statement do not provide for a specific result in the following circumstances, then:1) When the data items are not described by the same data description entry, the result of the statement is undefined.2) When the data items are described by the same data description entry, the result of the statement is the same as if the data items shared no part of their respective storage areas.NOTE 1 The execution of a statement can have side effects on implicitly referenced items. When such items share a part or all of their storage areas with other explicitly or implicitly referenced items, there can be unexpected results.Similarly, when the rules for a statement explicitly or implicitly specify or reference multiple receiving operands, and some or all of those receiving operands share a part or all of their storage areas, there may be unexpected results among those receiving operands.NOTE 2 The impact of overlapping operands for both implicit and explicit references is discussed in D.5, Sharing of storage among data items.In the case of reference modification, the unique data item produced by reference modification is not considered to be the same data description entry as any other data description entry. Therefore, if an overlapping situation exists, the results of the operation are undefined.
14.6.11 Normal run unit terminationWhen normal run unit termination occurs, the runtime system performs the following:1) An implicit COMMIT statement is executed for the files specified in all active APPLY COMMIT clauses in the run unit.2) An implicit CLOSE statement without any phrases is executed for each file that is in the open mode. These implicit close statements shall be executed for all open files in the run unit, even when an error occurs during the execution of one or more of the CLOSE statements. Any exception processing procedures associated with these files are not executed.3) Any storage obtained with an ALLOCATE statement and not yet released by a FREE statement is released.4) All instance objects are destroyed.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

546 ©ISO/IEC 2023

NOTE Any open files in an object are closed before the object is destroyed.5) If a locale was in use in the run unit, the implementor specifies whether the locale is reset to the locale in effect when the run unit was activated.6) Any resources occupied by dynamic-capacity tables or dynamic-length elementary items are freed.7) If the run unit has an active message or messages to which it has not replied, an implicit SEND statement of the form ‘SEND TO data-name FROM temp RAISING EXCEPTION EC-MCS-NORMAL-TERMINATION’ is executed for each such message. Data-name is the name of the appropriate message-tag and temp is a temporary data item that is the size of the receiving data item in the associated RECEIVE statement for that message-tag.
14.6.12 Abnormal run unit terminationIf an exception condition that would cause an abnormal run unit termination occurs, any applicable exception processing procedures are processed and then the following takes place.If commit and rollback is in effect, a rollback is executed. This rollback differs from user specified rollbacks in that only files and not any of the data items specified or implied in APPLY COMMIT clauses are restored to their values at the point of the previous commit or, if none, the beginning of execution.NOTE This means that the state of the records in files restored by the rollback is that at the previous commit or, if none, the start of execution, while those data items still in program storage are available for debugging in the state they were in at the point of abnormal termination being invoked.If the run unit has an active message or messages to which it has not replied, an implicit SEND statement of the form ‘SEND TO data-name FROM temp RAISING EXCEPTION EC-MCS-ABNORMAL-TERMINATION’ is executed for each such message. Data-name is the name of the appropriate message-tag and temp is a temporary data item that is the size of the receiving data item in the associated RECEIVE statement for that message-tag.Then in all cases, unless the exception occurs in a MERGE statement, a SORT statement, or an I-O statement for which the implementor specifies otherwise, the runtime system attempts to perform the operations of normal termination as specified in 14.6.11, Normal run unit termination. The circumstances of abnormal termination may be such that execution of some or all of these operations is not possible. The runtime system performs all operations that are possible.The operating system shall indicate an abnormal termination of the run unit if such a capability exists within the operating system.
14.6.13 Exception condition handling

14.6.13.1 Exception conditions

14.6.13.1.1 GeneralAn exception condition is either a condition associated with a specific exception status indicator or an exception object. An exception object is any object that is raised by the execution of either a RAISE statement or an EXIT, GOBACK, or STOP statement in which the object is specified in the RAISING phrase.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 547

An exception status indicator is a conceptual entity that exists for each function, method, or program for each exception condition and has two states, set or cleared. The initial state of all exception status indicators is cleared. An exception status indicator is set when checking for the associated exception condition is enabled either by a TURN compiler directive or a WHEN phrase in a PERFORM statement and the associated exception occurs. Associated with each exception status indicator are one or more exception-names. These exception names, together with the interface-names and object-class-names of exception objects are used to enable checking for the exception condition, to specify the action to be taken when the exception is raised, and to determine which exception condition caused an exception declarative or statements in a WHEN phrase of a PERFORM statement to be executed.In addition to exception status indicators, a last exception status exists for the entire run unit. It is a conceptual entity that is set to indicate the last level-3 exception condition that was raised in the run unit, the fact that an exception object was raised, or that no exception condition exists. The SET statement may be used to set the indicator to no exception condition exists. The last exception status may be interrogated with the EXCEPTION-STATUS function. Associated with this last exception status is information that is accessed by the EXCEPTION-FILE, EXCEPTION-FILE-N, EXCEPTION-LOCATION, EXCEPTION-LOCATION-N, and EXCEPTION-STATEMENT functions.Exception conditions differ from the exception processing that exists for specific facilities or statements. Input-output statements have an I-O status associated with file connectors. An I-O status is not an exception condition. When checking for EC-I-O exception conditions is enabled, the associated exception conditions are raised based on the resulting I-O status value, but if checking for EC-I-O exception conditions is not enabled, there is no link between EC-I-O exception conditions and I-O status values.If checking for an exception condition is enabled and an exception status indicator is set as a result of an exception detected during the execution of a statement, the associated exception condition is raised, the last exception status is set to indicate that exception condition, and the predefined object reference EXCEPTION-OBJECT is set to null. Unless otherwise specified, if more than one exception is detected during the execution of a statement, the one that is set to exist is undefined. The execution of the statement may be successful or unsuccessful, depending on the rules for the statement, the fatality of the exception condition as specified in Table 13, Exception-names and exception conditions, and implementor-defined actions. If no exception is detected during the execution of a statement or if checking for an exception that occurs is not enabled, no exception condition is raised. If an exception condition is raised and an associated exception declarative is executed or a statement in an associated WHEN phrase in a PERFORM statement is executed, a reference to the EXCEPTION-STATUS function within that declarative or WHEN phrase returns identifying information associated with the exception condition that caused the declarative or WHEN phrase to be executed. All exception status indicators are cleared at the beginning of the execution of any statement.NOTE 1 While I-O status indicators correspond to exception conditions, I-O status indicators are independent from this condition handling facility. I-O status indicators are always enabled and cannot be turned off.NOTE 2 The fatality of an exception condition is either fatal or nonfatal. Exception conditions that would cause corrupted data, undefined execution paths, and incorrect results are specified as fatal. Other exception conditions are specified as nonfatal.NOTE 3 An exception condition is set to exist only if checking for that condition is enabled by default or by the TURN compiler directive. If the exception condition occurs and it is not enabled, the results of the operation are undefined.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

548 ©ISO/IEC 2023

Exception-names are organized into a hierarchy of three levels for the purpose of enabling checking, selecting a declarative or a WHEN phrase of a PERFORM statement, and reporting the exception that occurred. The highest level, level-1, is the exception-name EC-ALL. Level-2 consists of the exception-names EC-ARGUMENT, EC-BOUND, EC-DATA, EC-EXTERNAL, EC-FLOW, EC-FUNCTION, EC-I-O, EC-IMP, EC-LOCALE, EC-MCS, EC-OO, EC-ORDER, EC-OVERFLOW, EC-PROGRAM, EC-RANGE, EC-RAISING, EC-REPORT, EC-SCREEN, EC-SIZE, EC-SORT-MERGE, EC-STORAGE, EC-USER, and EC-VALIDATE. The lowest level, level-3, consists of the level-2 names suffixed by a hyphen and additional characters. Only the lowest level exception-names are associated with exception status indicators. The implementor is not required to raise any exception conditions for level-3 exception-names that are associated with optional language elements or processor-dependent language elements that the implementor has not implemented unless the description of that language element in A.3, Processor-dependent language element list or A.4, Optional language element list, requires that an exception condition be raised.There are two types of level-3 of implementor-defined exception-names. The first type of level-3 exception-names for implementor-defined exceptions are defined by the implementor by creating a level-3 exception-name starting with the characters 'EC-IMP-' and ending with a suffix containing only basic letters, basic digits, and the hyphen and underscore basic special characters. The second type is the suffix ‘-IMP’ added to the end of all of the level-2 exception names with the exception of EC-IMP and EC-USER The implementor defines the action to be taken, the fatality, and when any of these exceptions are raised.The level-3 exception-names for user-defined exceptions shall start with the characters 'EC-USER-' and end with a suffix containing only characters selected from the set of basic letters, basic digits, and the hyphen and underscore basic special characters. The hyphen or underscore shall not appear as the last character of the suffix. The name is defined by specifying it anywhere that an exception-name may be specified. All user-defined exception conditions shall be nonfatal. Checking is not enabled unless the TURN directive or WHEN phrase of the PERFORM statement is used to enable checking for the exception. A user-defined exception condition may be raised only by a RAISE statement or an EXIT or GOBACK statement with the RAISING phrase.All exception-names may be specified in the WHEN phrase of a PERFORM statement or in TURN compiler directives to enable to enable or disable checking for a specific exception condition or exception conditions subordinate to the exception condition that is specified. By default, checking is not enabled for any exception condition. During the execution of any statement, if checking for an exception condition is not enabled, the exception condition will not be raised, even if the events that normally raise the exception condition occur. Therefore, when the general rules for a statement indicate that a specific exception condition exists, it is raised only if checking for that exception condition is enabled.An exception object is a nonfatal exception condition; other exception conditions are either fatal or nonfatal as indicated in Table 13, Exception-names and exception conditions.
14.6.13.1.2 Normal completion of a declarative procedureA declarative procedure is said to complete normally if, during execution of the declarative procedure, none of the following occur:1) An EXIT PROGRAM, GOBACK, RESUME, or STOP statement that is specified in this function, method, or program is executed, or a fatal exception occurs within the scope of the declarative.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 549

2) Any directly or indirectly activated runtime element terminates the run unit.
14.6.13.1.3 Fatal exception conditionsIf a fatal exception condition exists, processing of the statement is interrupted and one of the following occurs in the order specified:1) If a conditional phrase without the NOT phrase is specified in the interrupted statement and the rules for that statement indicate that the fatal exception condition is to be processed by the conditional phrase, the procedures for nonfatal exceptions as specified in 14.6.13.1.4, Nonfatal exception conditions, apply.2) If the executed statement is a MERGE or SORT statement, then the rules for those statements apply.3) If the exception condition is a fatal EC-I-O exception condition, then the rules for 9.1.13, I-O status apply, then if the implementor has not specified otherwise, the following rules apply for all fatal exception conditions.4) If the executed statement is within imperative-statement-1 of a PERFORM statement that contains a WHEN phrase that specifies the exception-name associated with the exception condition or an exception-name of a higher level in the same hierarchy, the imperative statement in the WHEN phrase is executed. If WHEN COMMON is specified, the imperative-statement within the COMMON phrase is executed. Execution of the last imperative statement is terminated abnormally as specified in 14.6.12, Abnormal run unit termination.NOTE 1 The user is able to continue by using a RESUME statement, although this might not be advisable for most fatal conditions.5) If checking for the exception condition is enabled and there is an applicable USE statement in the source unit that specifies the exception-name associated with the exception condition or an exception-name of a higher level in the same hierarchy, the associated declarative is executed. If execution of the declarative completes normally the execution of the run unit is terminated abnormally as specified in 14.6.12, Abnormal run unit termination.NOTE 2 The user is able to continue by using a RESUME statement, although this might not be advisable for most fatal conditions.6) If checking for the exception condition is enabled, and the exception condition is neither EC-FLOW-GLOBAL-EXIT nor EC-FLOW-GLOBAL-GOBACK, and there is an applicable PROPAGATE ON directive, the exception condition is propagated as if a GOBACK statement with the RAISING LAST EXCEPTION phrase were executed.7) If checking for the exception condition is enabled, execution of the run unit is terminated abnormally as specified in 14.6.12, Abnormal run unit termination.8) If checking for the exception condition is not enabled, the implementor defines whether or not execution will continue, how it will continue, and how any receiving operands are affected. However, if there is a fatal exception condition for a file subject to an active APPLY COMMIT clause, then a ROLLBACK statement is executed unconditionally.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

550 ©ISO/IEC 2023

If checking is not enabled for a fatal exception condition and the exception condition is detected by the compiler, the implementor is not required to produce executable code. It is implementor-defined which fatal exception conditions, if any, are detected at compile time, and the circumstances under which they are detected.
14.6.13.1.4 Nonfatal exception conditionsIf a nonfatal exception condition other than an exception object is set to exist, processing depends on whether or not checking for that exception condition is enabled. If checking is not enabled, execution continues as if the exception did not occur unless there are one or more specific rules about special action to be taken for the conditions that caused the exception. If checking for that exception condition is enabled, processing of the statement is interrupted and one of the following occurs in the order specified:1) If a conditional phrase without the NOT phrase is specified in the interrupted statement, the imperative statement associated with that conditional phrase is executed as specified in the rules for the specific statement.2) If the executed statement is within imperative-statement-1 of a PERFORM statement that contains a WHEN phrase that specifies the exception-name associated with the exception condition or an exception-name of a higher level in the same hierarchy, the imperative statement in the WHEN phrase is executed. Execution of the imperative statement in the WHEN phrase completes as specified in the rules for the PERFORM statement. No associated USE EXCEPTION declarative is executed. If a conditional phrase with a NOT phrase is specified in the interrupted statement, the imperative-statement in that phrase is also not executed.3) If there is an applicable USE statement in the source unit that specifies the exception-name associated with the exception condition or an exception-name of a higher level in the same hierarchy, the associated declarative is executed. If execution of the declarative completes normally, execution continues as specified in the statement for normal execution. If a conditional phrase with a NOT phrase is specified in the interrupted statement, the imperative-statement in that phrase is not executed.4) Execution of the statement continues as specified in the rules for that statement.
14.6.13.1.5 Exception objectsWhen an exception object is raised, the following occurs:1) The predefined object reference EXCEPTION-OBJECT is set to the content of the object reference specified in the RAISE statement or the RAISING phrase of the EXIT or GOBACK statement that caused the exception object to be raised.2) The last exception status is set to indicate that an exception object has been raised.If an exception object is raised by a RAISE statement, the associated declarative is executed. If execution of the declarative completes normally, execution continues with the statement following the RAISE statement. If there is no associated declarative, execution continues as specified in the RAISE statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 551

If an exception object is raised by an EXIT or GOBACK statement, one of the following occurs:1) If the exception object is neither of the following:a) an object whose class is specified or whose class is a subclass of a class specified in the RAISING phrase of the procedure division header of the source element containing this EXIT or GOBACK statement and the presence or absence of the FACTORY phrase is the same in the description of the object reference raised by the EXIT or GOBACK statement as in the RAISING phrase of the procedure division header of the source element that contains this EXIT statement, or b) an object that implements an interface specified in the RAISING phrase of the procedure division header of the source element containing this EXIT or GOBACK statement;execution of the EXIT or GOBACK statement is as if EXCEPTION EC-OO-EXCEPTION were specified in the RAISING phrase of the EXIT or GOBACK statement instead of an exception object and processing continues as specified in 14.6.13.1.3, Fatal exception conditions.2) Otherwise, if a USE statement in the activating runtime element specifies an applicable class or interface, the associated declarative is executed. If execution of the declarative completes normally, execution continues as specified in the activating statement for normal execution.3) Otherwise, if a PROPAGATE ON directive is in effect for the activating runtime element, the exception is propagated as if a GOBACK statement with the RAISING LAST EXCEPTION phrase were specified in this activating runtime element. However, if no applicable class or interface is specified in the RAISING phrase of the procedure division header in the activating element, the RAISING phrase is EXCEPTION EC-OO-EXCEPTION, instead of LAST EXCEPTION.4) Otherwise, execution of the EXIT or GOBACK statement in the activated element is as if EXCEPTION EC-OO-EXCEPTION were specified in the RAISING phrase, instead of an exception object.
14.6.13.1.6 Exception-names and exception conditionsTable 13, Exception-names and exception conditions, is a list of the exception-names and their attributes. The meaning of the columns in the table are:Exception-name - The exception-name associated with an exception condition or a hierarchy of exception-names.Cat - The category of the exception condition: nonfatal (NF), fatal (Fatal), or implementor-defined (Imp). The category of a level-1 or level-2 exception condition is that of the level-3 exception condition that was raised.Description - A brief description of what the exception condition means.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

552 ©ISO/IEC 2023

Table 13 — Exception-names and exception conditions

Exception-name Cat DescriptionEC-ALL Any exceptionEC-ARGUMENT Argument errorEC-ARGUMENT-FUNCTION Fatal Function argument errorEC-ARGUMENT-IMP Imp Implementor-defined argument errorEC-BOUND Boundary violationEC-BOUND-FUNC-RET-VALUE NF The information returned from an intrinsic function does not fit in the available temporary returned value itemEC-BOUND-IMP Imp Implementor-defined boundary violationEC-BOUND-ODO Fatal OCCURS ... DEPENDING ON data item out of boundsEC-BOUND-OVERFLOW NF Current capacity of dynamic-capacity table greater than expected valueEC-BOUND-PTR Fatal Data-pointer contains an address that is out of boundsEC-BOUND-REF-MOD Fatal Reference modifier out of boundsEC-BOUND-SET NF Invalid use of SET to set capacity of dynamic-capacity table above specified maximumEC-BOUND-SUBSCRIPT Fatal Subscript out of boundsEC-BOUND-TABLE-LIMIT Fatal Capacity of dynamic-capacity table would exceed implementor's maximumEC-CONTINUE CONTINUE statement exceptionEC-CONTINUE-IMP Imp Implementor-defined timing exceptionEC-CONTINUE-LESS-THAN-ZERO NF The arithmetic expression in the AFTER phrase of the CONTINUE statement is less than zeroEC-DATA Data exceptionEC-DATA-CONVERSION NF Conversion failed because of incomplete character correspondenceEC-DATA-IMP Imp Implementor-defined data exceptionEC-DATA-INCOMPATIBLE Fatal Incompatible data exceptionEC-DATA-NOT-FINITE Fatal Attempt to use a data item described with a standard floating-point usage when its contents are either a NaN or a representation of infinity

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 553

EC-DATA-OVERFLOW Fatal Exponent overflow during MOVE to a receiving data item described with a standard floating-point usageEC-DATA-PTR-NULL Fatal Based item data-pointer is set to NULL when referencedEC-EXTERNAL External item mismatchEC-EXTERNAL-DATA-MISMATCH Fatal File referencing control item conflict because the linage, file status or relative key references are not to the same item in storage for each runtime element for an external fileEC-EXTERNAL-FILE-MISMATCH Fatal File control SELECT statements are not compatibleEC-EXTERNAL-FORMAT-CONFLICT Fatal Data definition conflict because the definitions in the separate runtime elements do not conform with each other to the extent that is required for external data itemsEC-EXTERNAL-IMP Imp Implementor-defined external item mismatchEC-FLOW Execution control flow violationEC-FLOW-APPLY-COMMIT Fatal Invocation of a runtime element with an APPLY COMMIT clause in effect by a runtime element for which commit and rollback is not permitted. An attempt to change the address of a data item subject to an APPLY COMMIT clause.EC-FLOW-COMMIT Fatal Invocation of a COMMIT statement where it is not permitted.EC-FLOW-GLOBAL-EXIT Fatal EXIT PROGRAM in a global DeclarativeEC-FLOW-GLOBAL-GOBACK Fatal GOBACK in a global declarativeEC-FLOW-IMP Imp Implementor-defined control flow violationEC-FLOW-RELEASE Fatal RELEASE not in range of SORTEC-FLOW-REPORT Fatal GENERATE, INITIATE, or TERMINATE during USE BEFORE REPORTING declarativeEC-FLOW-RETURN Fatal RETURN not in range of MERGE or SORTEC-FLOW-ROLLBACK Fatal Invocation of a ROLLBACK statement where it is not permitted.EC-FLOW-SEARCH Fatal Invalid use of SET to change capacity of dynamic-capacity table during SEARCH of same tableEC-FLOW-USE Fatal A USE statement caused another to be executedEC-FUNCTION Function exception

Table 13 — Exception-names and exception conditions (Continued)

Exception-name Cat Description

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

554 ©ISO/IEC 2023

EC-FUNCTION-ARG-OMITTED Fatal Function argument is omittedEC-FUNCTION-IMP Imp Implementor-defined function evaluationEC-FUNCTION-NOT-FOUND Fatal Function not found or function pointer does not point to a functionEC-FUNCTION-PTR-INVALID Fatal Signature mismatchEC-FUNCTION-PTR-NULL Fatal Function pointer used in calling a function is NULLEC-I-O Input-output exceptionEC-I-O-AT-END NF I-O status "1x"EC-I-O-EOP NF An end of page condition occurredEC-I-O-EOP-OVERFLOW NF A page overflow condition occurredEC-I-O-FILE-SHARING NF I-O status "6x"EC-I-O-IMP Imp I-O status "9x"EC-I-O-INVALID-KEY NF I-O status "2x"EC-I-O-LINAGE Fatal The value of a data item referenced in the LINAGE clause is not within the required rangeEC-I-O-LOGIC-ERROR Fatal I-O status "4x"EC-I-O-PERMANENT-ERROR Fatal I-O status "3x"EC-I-O-RECORD-CONTENT Fatal I-O status "7x"EC-I-O-RECORD-OPERATION NF I-O status "5x"EC-I-O-WARNING NF I-O status "0x" where x is nonzeroEC-IMP Implementor-defined exception conditionEC-IMP-suffix (implementor specifies suffix) Imp Level-3 implementor-defined exception condition
EC-LOCALE Any locale related exceptionEC-LOCALE-IMP Imp Implementor-defined locale related exceptionEC-LOCALE-INCOMPATIBLE Fatal The referenced locale does not specify the expected characters in LC_COLLATEEC-LOCALE-INVALID Fatal Locale content is invalid or incompleteEC-LOCALE-INVALID-PTR Fatal Pointer does not reference a saved localeEC-LOCALE-MISSING Fatal The specified locale is not availableEC-LOCALE-SIZE Fatal Digits were truncated in locale editingEC-MCS Message control system exception

Table 13 — Exception-names and exception conditions (Continued)

Exception-name Cat Description

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 555

EC-MCS-ABNORMAL-TERMINATION NF Server failed before replying to message
EC-MCS-IMP Imp Implementor-defined message control exceptionEC-MCS-INVALID-TAG NF RECEIVE or SEND statementEC-MCS-MESSAGE-LENGTH NF RECEIVE or SEND statementEC-MCS-NO-REQUESTER NF RECEIVE statementEC-MCS-NO-SERVER NF SEND statementEC-MCS-NORMAL-TERMINATION NF Server terminated before replying to message
EC-MCS-REQUESTOR-FAILED NF RECEIVE statementEC-OO Any predefined OO related exceptionEC-OO-ARG-OMITTED Fatal Reference to an omitted argumentEC-OO-CONFORMANCE Fatal Failure for an object-viewEC-OO-EXCEPTION Fatal An exception object was not handledEC-OO-IMP Imp Implementor-defined OO exceptionEC-OO-METHOD Fatal Requested method is not availableEC-OO-NULL Fatal Method invocation was attempted with a null object referenceEC-OO-RESOURCE Fatal Insufficient system resources to create the objectEC-OO-UNIVERSAL Fatal A runtime type check failedEC-ORDER Ordering exceptionEC-ORDER-IMP Imp Implementor-defined ordering exceptionEC-ORDER-NOT-SUPPORTED Fatal Cultural ordering table or ordering level specified for STANDARD-COMPARE function not supportedEC-OVERFLOW Overflow conditionEC-OVERFLOW-IMP Imp Implementor-defined overflow conditionEC-OVERFLOW-STRING NF STRING overflow conditionEC-OVERFLOW-UNSTRING NF UNSTRING overflow conditionEC-PROGRAM Inter-program communication exceptionEC-PROGRAM-ARG-MISMATCH Fatal Parameter mismatchEC-PROGRAM-ARG-OMITTED Fatal A reference to an omitted argumentEC-PROGRAM-CANCEL-ACTIVE Fatal Canceled program active

Table 13 — Exception-names and exception conditions (Continued)

Exception-name Cat Description

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

556 ©ISO/IEC 2023

EC-PROGRAM-IMP Imp Implementor-defined inter-program communication exceptionEC-PROGRAM-NOT-FOUND Fatal Called program not foundEC-PROGRAM-PTR-NULL Fatal Program-pointer used in CALL is set to NULLEC-PROGRAM-RECURSIVE-CALL Fatal Called program activeEC-PROGRAM-RESOURCES Fatal Resources not available for called programEC-RAISING EXIT ... RAISING or GOBACK RAISING exceptionEC-RAISING-IMP Imp Implementor-defined EXIT ... RAISING or GOBACK RAISING exceptionEC-RAISING-NOT-SPECIFIED Fatal EXIT ... RAISING or GOBACK RAISING an EC-USER exception condition not specified in RAISING phrase of procedure division headerEC-RANGE Range exceptionEC-RANGE-IMP Imp Implementor-defined range exceptionEC-RANGE-INDEX Fatal Index set outside the range of values allowed by the implementorEC-RANGE-INSPECT-SIZE Fatal Size of replace items in INSPECT differsEC-RANGE-INVALID NF Starting value of THROUGH range greater than ending valueEC-RANGE-PERFORM-VARYING Fatal Setting of varied item in PERFORM is negativeEC-RANGE-PTR Fatal Pointer SET UP or DOWN is outside rangeEC-RANGE-SEARCH-INDEX NF No table element found in SEARCH because initial index out of rangeEC-RANGE-SEARCH-NO-MATCH NF No table element found in SEARCH because no element matched criteriaEC-REPORT Report writer exceptionEC-REPORT-ACTIVE Fatal INITIATE on an active reportEC-REPORT-COLUMN-OVERLAP NF Overlapping report itemsEC-REPORT-FILE-MODE Fatal An INITIATE statement was executed for a file connector that was not open in the extend or output modeEC-REPORT-IMP Imp Implementor-defined report writer exceptionEC-REPORT-INACTIVE Fatal GENERATE or TERMINATE on an inactive reportEC-REPORT-LINE-OVERLAP NF Overlapping report lines

Table 13 — Exception-names and exception conditions (Continued)

Exception-name Cat Description

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 557

EC-REPORT-NOT-TERMINATED NF Report file closed with active reportEC-REPORT-PAGE-LIMIT NF Vertical page limit exceededEC-REPORT-PAGE-WIDTH NF Page width exceededEC-REPORT-SUM-SIZE Fatal Overflow of sum counterEC-REPORT-VARYING Fatal VARYING clause expression nonintegerEC-SCREEN Screen handling exceptionEC-SCREEN-FIELD-OVERLAP NF Screen fields overlapEC-SCREEN-IMP Imp Implementor-defined screen handling exceptionEC-SCREEN-ITEM-TRUNCATED NF Screen field too long for lineEC-SCREEN-LINE-NUMBER NF Screen item line number exceeds terminal sizeEC-SCREEN-STARTING-COLUMN NF Screen item starting column exceeds line size
EC-SIZE Size error exceptionEC-SIZE-ADDRESS Fatal Invalid pointer arithmeticEC-SIZE-EXPONENTIATION Fatal Exponentiation rules violatedEC-SIZE-IMP Imp Implementor-defined size error exceptionEC-SIZE-OVERFLOW Fatal Arithmetic overflow in calculationEC-SIZE-TRUNCATION Fatal Significant digits truncated in storeEC-SIZE-UNDERFLOW Fatal Floating-point underflowEC-SIZE-ZERO-DIVIDE Fatal Division by zeroEC-SORT-MERGE SORT or MERGE exceptionEC-SORT-MERGE-ACTIVE Fatal File SORT or MERGE executed when one is already activeEC-SORT-MERGE-FILE-OPEN Fatal A USING or GIVING file is open upon execution of a SORT or MERGEEC-SORT-MERGE-IMP Imp Implementor-defined SORT or MERGE exceptionEC-SORT-MERGE-RELEASE Fatal RELEASE record too long or too shortEC-SORT-MERGE-RETURN Fatal RETURN executed when at end condition existsEC-SORT-MERGE-SEQUENCE Fatal Sequence error on MERGE USING fileEC-STORAGE Storage allocation exceptionEC-STORAGE-IMP Imp Implementor-defined storage allocation exception

Table 13 — Exception-names and exception conditions (Continued)

Exception-name Cat Description

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

558 ©ISO/IEC 2023

NOTE The level 2 EC-VALIDATE exception and all related level 3 exceptions of the VALIDATE facility are an obsolete feature.
14.6.13.2 Incompatible dataIncompatible data exists when the content of a sending operand is not valid only in the following cases:1) When the content of a boolean sending item is referenced during the execution of a statement and the content of that sending operand would evaluate to false in a boolean class condition, the result of the reference is undefined and an EC-DATA-INCOMPATIBLE exception condition is set to exist, except in the following circumstances:— a sending item is referenced in a class condition, or— a sending item is processed in a VALIDATE statement.The EC-DATA-INCOMPATIBLE exception condition is set to exist for a class condition and a VALIDATE statement when invalid data is detected during item identification.NOTE 1 For example, a subscript reference during a class test could cause the EC-DATA-INCOMPATIBLE exception condition to exist.2) When the content of a numeric sending item that is not described with a standard floating-point usage is referenced during the execution of a statement and the content of that sending operand would evaluate to false in a numeric class condition, the result of the reference is undefined and an EC-DATA-INCOMPATIBLE exception condition is set to exist, except in the following circumstances:— a sending item is referenced in a class condition, or

EC-STORAGE-NOT-ALLOC NF The data-pointer specified in a FREE statement does not identify currently allocated storageEC-STORAGE-NOT-AVAIL NF The amount of storage requested by an ALLOCATE statement or a dynamic-length elementary data item format of a SET statement is not availableEC-USER User-defined exception conditionEC-USER-suffix (user specifies
suffix) NF Level-3 user-defined exception condition
EC-VALIDATE VALIDATE exceptionEC-VALIDATE-CONTENT NF VALIDATE content errorEC-VALIDATE-FORMAT NF VALIDATE format errorEC-VALIDATE-IMP Imp Implementor-defined VALIDATE exceptionEC-VALIDATE-RELATION NF VALIDATE relation errorEC-VALIDATE-VARYING Fatal VARYING clause expression noninteger

Table 13 — Exception-names and exception conditions (Continued)

Exception-name Cat Description

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 559

— a sending item is processed in a VALIDATE statement.3) When a sending operand is described with a standard floating-point usage, and the content of the sending operand would evaluate to true in an infinity class condition or to true in a FLOAT-NOT-A-NUMBER class condition, the EC-DATA-NOT-FINITE exception condition is set to exist, except in the following circumstances:— a sending item is referenced in a class condition, or— a sending item is referenced in a sign condition, or— the sending and receiving items in a MOVE statement are defined with the same standard floating-point usage specification, with the exception of endianness, or— a sending item is processed in a VALIDATE statement.4) When a numeric-edited data item is the sending operand of a de-editing MOVE statement and the content of that data item is not a possible result for any editing operation in that data item, the result of the MOVE operation is undefined and an EC-DATA-INCOMPATIBLE exception condition is set to exist.5) When the internal format of a dynamic-length elementary item is not correctly formed or does not agree with the corresponding DYNAMIC LENGTH clause an EC-DATA-INCOMPATIBLE exception condition is set to exist.6) When the internal format of a dynamic-capacity table, as defined by the implementor, is not correctly formed or does not agree with the corresponding OCCURS clause an EC-DATA-INCOMPATIBLE exception condition is set to exist.If the content of a sending operand is not referenced by a given execution of a statement, any incompatible data in that operand is not detected. If part of a sending operand's content is referenced by a given execution of a statement, it is undefined whether any incompatible data in the unreferenced content is detected.NOTE 2 The content of a data item is not referenced when the data item is a receiving operand, unless that data item is also a sending data item.
14.6.13.3 Runtime entity activation is not successfulIf the call of a program, the activation of a function, or the invocation of a method fails prior to the execution of any statement within the program, function or method, an exception condition is set to exist, and the call, activation or method is unsuccessful. All resources allocated during the call, activation or invocation are released, and then any exception procedure applicable to the exception is executed. Execution then continues according to the rules for that exception.
14.7 Common phrases and features for statements

14.7.1 GeneralThis clause provides a description of the common phrases and features that pertain to or appear in several different statements.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

560 ©ISO/IEC 2023

14.7.2 At end conditionThe at end condition is associated with a sort-merge file or the I-O status for a file connector. For sort-merge files, the at end condition is set to exist when the sort or merge operation has returned all of the records that were sent to it and there are no more records to be sorted or merged. It no longer exists when the execution of the SORT or MERGE operation referencing the sort-merge file terminates. For other files, the at end condition exists when the first character of the I-O status value for the associated file connector is a '1'.
14.7.3 Invalid key conditionThe invalid key condition is associated with the I-O status for file connectors that are not associated with a sort-merge file. It exists when the first character of the I-O status value for the associated file connector is a '2', as described 9.1.14, Invalid key condition.
14.7.4 ROUNDED phrase

14.7.4.1 GeneralIf, after decimal point alignment, the number of places in the fractional part of the result of an arithmetic operation is greater than the number of places provided for the fraction of the resultant identifier, truncation is relative to the size provided for the resultant identifier.When the low-order integer positions in a resultant identifier are represented by the symbol P in the picture character-string for that resultant identifier, rounding or truncation occurs relative to the rightmost integer position for which storage is allocated.
14.7.4.2 General format

14.7.4.3 General rules1) If the MODE phrase is not specified, the form of rounding is as described in 11.9.6, DEFAULT ROUNDED clause.2) If the ROUNDED phrase is not specified, execution is as if ROUNDED MODE IS TRUNCATION had been specified.

ROUNDED MODE IS
AWAY-FROM-ZERONEAREST-AWAY-FROM-ZERONEAREST-EVENNEAREST-TOWARD-ZEROPROHIBITEDTOWARD-GREATERTOWARD-LESSERTRUNCATION

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 561

3) If the AWAY-FROM-ZERO phrase is specified and the arithmetic value cannot be exactly represented in the resultant identifier, the arithmetic value is rounded to the nearest value farther from zero that can be represented in the resultant identifier.4) If the NEAREST-AWAY-FROM-ZERO phrase is specified or implied and the arithmetic value cannot be exactly represented in the resultant identifier, the arithmetic value is rounded to the nearest value that can be represented in the resultant identifier. If two such values are equally near, the value farther from zero is chosen.5) If the NEAREST-EVEN phrase is specified and the arithmetic value cannot be exactly represented in the resultant identifier, the arithmetic value is rounded to the nearest value that can be represented in the resultant identifier. If two such values are equally near, the value whose rightmost digit is even is chosen.NOTE This method is sometimes known as 'banker's rounding'.6) If the NEAREST-TOWARD-ZERO phrase is specified and the arithmetic value cannot be exactly represented in the resultant identifier, the arithmetic value is rounded to the nearest value that can be represented in the resultant identifier. If two such values are equally near, the value nearest to zero is chosen.7) If the PROHIBITED phrase is specified, and the arithmetic value cannot be represented exactly in the resultant identifier, the EC-SIZE-TRUNCATION exception condition is set to exist, the size error condition exists, and the content of the resultant identifier is unchanged.8) If the TOWARD-GREATER phrase is specified, and the arithmetic value cannot be represented exactly in the resultant identifier, the arithmetic value is rounded to the nearest larger value that can be represented in the resultant identifier.9) If the TOWARD-LESS phrase is specified, and the arithmetic value cannot be represented exactly in the resultant identifier, the arithmetic value is rounded to the nearest smaller value that can be represented in the resultant identifier.10) If the TRUNCATION phrase is specified or implied, and the arithmetic value cannot be represented exactly in the resultant identifier, the arithmetic value is rounded to the nearest value nearer to zero that can be represented in the resultant identifier.
14.7.5 SIZE ERROR phrase and size error conditionThe size error condition may occur as a result of the execution of an ADD, COMPUTE, DIVIDE, GENERATE, MULTIPLY, and SUBTRACT statement or of the evaluation of an arithmetic expression. Checking of a size error condition may be enabled by:— specifying the SIZE ERROR phrase of an arithmetic statement, or by— using a TURN directive or a WHEN phrase of a PERFORM statement to turn on checking for the EC-SIZE exception condition.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

562 ©ISO/IEC 2023

When the SIZE ERROR phrase is specified for an arithmetic statement, checking for the size error condition is enabled for the arithmetic operations that take place in developing and storing the result of that arithmetic statement. Any exception condition, including EC-SIZE, that is raised during item identification for the operands used during the execution of the arithmetic statement is processed as defined for that exception condition and execution of the arithmetic statement ceases. Execution resumes as indicated for that exception condition. If an EC-SIZE exception condition exists during the execution of the arithmetic statement other than during item identification and a SIZE ERROR phrase is specified for the statement, processing of the size error condition occurs as described below for the SIZE ERROR phrase, and no statements in an applicable WHEN phrase in a containing PERFORM statement are executed and no EC-SIZE exception declaratives are performed.NOTE Whether or not a SIZE ERROR condition arises is also influenced by the rules for 8.8.1.2, Native, standard-binary, and standard-decimal arithmetic, the 11.9.6, DEFAULT ROUNDED clause, the 11.9.11, INTERMEDIATE ROUNDING clause, and the 14.7.4, ROUNDED phrase.The size error condition exists in the following cases:1) if the rules for evaluation of exponentiation are violated;2) if the divisor in a divide operation or in a DIVIDE statement is zero;3) if, after radix point alignment and any applicable rounding specifications, the result of an arithmetic statement is further from zero than permitted for the associated resultant data item;4) if the nonzero result of an arithmetic statement after radix point alignment and any applicable rounding specifications is nearer to zero than permitted for the associated resultant data item;5) if native arithmetic is in effect and the implementor defines that the range of values allowed for the intermediate data item is to be checked, when an arithmetic operation on the intermediate data item would cause the new value to be outside of the allowed range;6) if standard-binary arithmetic is in effect, when an arithmetic operation on the intermediate data item would cause the new value to be outside of the range allowed for a standard-binary intermediate data item;7) if standard-decimal arithmetic is in effect, when an arithmetic operation on the intermediate data item would cause the new value to be outside of the range allowed for a standard-decimal intermediate data item;8) if the rules for a statement or an expression explicitly specify that an EC-SIZE exception condition is set to exist.If the size error condition exists and the SIZE ERROR phrase is specified, the following occurs:1) If the size error condition occurred during the arithmetic operations specified by the arithmetic statement, the values of all of the resultant data items remain unchanged from the values they had at the start of the execution of the arithmetic statement. Execution proceeds as indicated in rule 3, below;

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 563

2) If the absolute value of the result of the arithmetic operation exceeds the maximum value allowed for any resultant identifier, the content of that resultant identifier is not changed from the content that existed at the start of the execution of the arithmetic statement. The values of resultant identifiers for which the size error condition did not occur are the same as they would have been if the size error condition had not existed for any of the resultant identifiers. Execution proceeds as indicated in rule 3, below;3) After completion of the arithmetic operations, and possibly the storing of values into resultant data items as specified in rule 2, control is transferred to the imperative-statement specified in the SIZE ERROR phrase. If control is returned from the SIZE ERROR phrase, control is then transferred to the end of the arithmetic statement.If the size error condition exists and a SIZE ERROR phrase is not specified:1) if the rules for evaluation of exponentiation are violated, the EC-SIZE-EXPONENTIATION exception condition is set to exist;2) if the divisor in a divide operation or the DIVIDE statement is zero, the EC-SIZE-ZERO-DIVIDE exception condition is set to exist;3) If an arithmetic operation on an intermediate data item of the form corresponding to the mode of arithmetic currently in effect would cause the new nonzero value to be farther from zero or nearer to zero than is allowed for the intermediate data item, the applicable EC-SIZE exception condition, either EC-SIZE-OVERFLOW or EC-SIZE-UNDERFLOW, is set to exist;4) if the result of the arithmetic statement is a value further from zero than permitted for the associated resultant data item, the EC-SIZE-TRUNCATION exception condition is set to exist;5) if the result of the arithmetic statement is a nonzero value nearer to zero than permitted for the associated resultant data item and the DEFAULT ROUNDED MODE IS PROHIBITED clause or the ROUNDED MODE IS PROHIBITED phrase is in effect, the EC-SIZE-TRUNCATION exception condition is set to exist;and processing proceeds as specified in 14.6.13.1.3, Fatal exception conditions. If a NOT SIZE ERROR phrase is specified, it is ignored.If no size error condition occurs during the execution of the arithmetic operations specified by an arithmetic statement or expression or while storing into the resultant identifiers, the SIZE ERROR phrase, if specified, is ignored and control is transferred to the end of the arithmetic statement or expression or to the imperative-statement specified in the NOT SIZE ERROR phrase if it is specified. In the latter case, if control is returned from the NOT SIZE ERROR phrase, control is then transferred to the end of the arithmetic statement.
14.7.6 CORRESPONDING phraseFor the purpose of this discussion, D1 and D2 are identifiers that refer to alphanumeric group items, bit group items, national group items, strongly-typed group items, or variable-length groups.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

564 ©ISO/IEC 2023

NOTE When D1 and D2 refer to national groups or bit groups, D1 and D2 are processed as group items and not as elementary items.A pair of data items correspond if:1) A data item in D1 and a data item in D2 are not implicitly or explicitly described with the keyword FILLER and have the same data-name and the same qualifiers, if any, up to, but not including, D1 and D2.2) In a MOVE statement, at least one of the data items is an elementary data item and the resulting move is valid according to the rules for the MOVE statement.3) In an ADD or SUBTRACT statement, both of the data items are numeric data items.4) Neither data item contains an OCCURS, REDEFINES, or RENAMES clause or is of class index, message-tag, object, or pointer.5) Neither data item is subordinate to a group item that is subordinate to D1 or D2 when the group item contains an OCCURS or REDEFINES clause.6) The name of each data item that satisfies the above conditions is unique after application of the implied qualifiers.Any item identification associated with a corresponding pair of operands is done at the start of the execution of the statement containing the CORRESPONDING phrase, not at the start of the implied statement used for the pair of operands. The implied statements are executed in the order in which the elements in the group data item immediately following CORRESPONDING are specified.For the arithmetic statements with the CORRESPONDING phrase, if the SIZE ERROR phrase is specified and one or more of the implied statements raises a size error condition, the imperative-statement in the SIZE ERROR phrase is executed after all of the implied statements are completed and the NOT SIZE ERROR phrase, if specified, is ignored.For the arithmetic statements with the CORRESPONDING phrase, if the SIZE ERROR phrase is not specified and any of the implied statements raises a size error condition, the level-3 EC-SIZE exception condition for the last of the implied statements that raised a size error condition is set to exist after all of the implied statements are completed.For any statement with the CORRESPONDING phrase, if any of the implied statements would set the EC-DATA-INCOMPATIBLE exception condition to exist, the EC-DATA-INCOMPATIBLE exception condition is set to exist after all of the implied statements are completed.
14.7.7 Arithmetic statementsThe arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements. They have several common features.1) The data descriptions of the operands need not be the same; any necessary conversion and decimal point alignment is supplied throughout the calculation.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 565

2) For ADD, DIVIDE, MULTIPLY, and SUBTRACT statements when native arithmetic is in effect:a) When none of the operands is— an intrinsic function;— a data item described with usage binary-char, binary-short, binary-long, binary-double, float-short, float-long, or float-extended, or of a standard floating-point usage; or— a floating-point literal;the composite of operands shall not contain more than 31 digits.b) When any of the operands is— an intrinsic function;— a data item described with usage binary-char, binary-short, binary-long, binary-double, float-short, float-long, or float-extended, or of a standard floating-point usage; or— a floating-point literal;the composite of all other operands shall not contain more than 31 digits.The composite of operands is a hypothetical data item resulting from the superimposition of specified operands in a statement aligned on their decimal points.3) When standard-decimal or standard-binary arithmetic is in effect, each arithmetic statement is defined in terms of one or more arithmetic expressions. Unless specified otherwise in rules, transfer of data from an intermediate form into a resultant-identifier shall be according to the specifications in 14.6.8, Alignment and transfer of data into data items.NOTE 1 The ROUNDED phrase applies only to this transfer of data. The specifications of the INTERMEDIATE ROUNDING clause apply to the conversion of arithmetic operands into the appropriate standard intermediate form, and to the arithmetic operations themselves.NOTE 2 A size error condition can occur during the conversion of data items to intermediate form, during execution of arithmetic statements; and during the transfer of data into a resultant-identifier.4) The arithmetic statements may have single or multiple resultant identifiers. These statements have common rules for storing in the resultant identifiers. The execution of these statements proceeds in the following order:a) The initial evaluation of the statement is done and the result of this operation is placed in an intermediate data item. If any form of standard arithmetic is in effect, a standard intermediate data item of the form appropriate to that mode of arithmetic is used. Otherwise, an implementor-defined intermediate data item is used. The rules indicating which data items or literals are part of this evaluation are given in the rules for the individual statements. All item identification for the data items involved in the initial evaluation is done at the start of the execution of the statement. If the size error condition is raised during the initial evaluation, none of the resultant data items are changed and execution proceeds as indicated in 14.7.5, SIZE ERROR phrase and size error condition.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

566 ©ISO/IEC 2023

b) If the size error condition was not raised during the initial evaluation, the intermediate data item is stored in or combined with and then stored in each single resulting data item in the left-to-right order in which the receiving data items are specified in the statement. Item identification for the receiving data items is done as each data item is accessed unless it was already done in step a. If the size error condition is raised when attempting to store in a resulting data item, only that data item remains unchanged and processing proceeds to the next resulting data item to the right.NOTE 3 Because rule 4 specifies the use of an intermediate data item to hold the value resulting from the initial arithmetic evaluation, and that arithmetic evaluation is complete before any data is moved from that intermediate data item to any receiving operands, the results contained in the receiving operands for all arithmetic statements are defined regardless of whether any of the sending operands share storage with any of the receiving operands. Those results in the receiving operands are the same as if no receiving operand shared any part of its storage area with any sending operand.
14.7.8 THROUGH phrase This specification applies to THROUGH phrases specified in the VALUE clause and the EVALUATE statement. A THROUGH phrase specifies a range of values, literal-1 through literal-2. The set of values included in the range is determined by the following rules:1) When the range of values is defined by numeric literals, the range of values includes literal-1, literal-2, and all algebraic values between literal-1 and literal-2.2) When the range of values is defined by alphanumeric or national literals, the range of values depends on the collating sequence used for evaluation of the range.When there is no IN alphabet-name phrase specified for the range, the collating sequence is defined by the implementor.NOTE The intent is to allow an implementor to define the collating sequence in a manner compatible with previous COBOL implementations.When the IN alphabet-name phrase is specified, the collating sequence used for range evaluation is the collating sequence defined by that alphabet. When the alphabet-name is associated with a locale, the range of values is determined from locale category LC_COLLATE in the specific locale associated with that alphabet-name or, if none, in the current locale. When the alphabet-name is associated with the native collating sequence, the computer's runtime collating sequence is used at the time the values are used in execution.The range of values includes all values collating at the starting value and all successive ascending values in the applicable collating sequence up to and including all values collating at the ending value.When the value of literal-1 is greater than the value of literal-2 in the collating sequence in effect at runtime, the EC-RANGE-INVALID exception condition is set to exist, and, upon completion of any exception processing, execution proceeds as if the range of values were empty.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 567

14.7.9 RETRY phrase

14.7.9.1 GeneralThe RETRY phrase is specified in an input-output statement to indicate whether the mass storage control system is to continue to attempt to obtain access in the event that a file or record is locked.
14.7.9.2 General format

14.7.9.3 General rules1) Arithmetic-expression-1 specifies the number of times after the initial failure that the mass storage control system shall attempt to gain access to the locked resource and complete the requested input-output operation. The implementor determines the interval between these attempts. If arithmetic-expression-1 does not evaluate to an integer, the value of arithmetic-expression-1 is rounded up to the next whole number.2) Arithmetic-expression-2 specifies the number of seconds in the timeout period. The I-O statement behaves as though the length of the timeout period were stored in a temporary data item whose picture is 9(n)V9(m), in the manner specified by this rule. The implementor shall specify the value of m, which may be zero, and the value of n, which shall be greater than zero. The implementor shall specify the maximum meaningful value of arithmetic-expression-2. If arithmetic-expression-2 is greater than this maximum meaningful value, the maximum meaningful value is placed into the temporary data item; otherwise, arithmetic-expression-2 is used as the sending item and the temporary data item as the receiving item in an implicit COMPUTE statement without the ROUNDED phrase. During the timeout period, the mass storage control system shall attempt to gain access to the locked resource and complete the requested input-output operation. The implementor shall specify the techniques used to determine the frequency of retries during the timeout period.3) If the FOREVER phrase is specified, the mass storage control system shall attempt to gain access to a locked resource until the input-output operation has been completed.4) If the I/O operation is unsuccessful on the first attempt because of a file sharing conflict condition or a record operation conflict condition, the following apply:a) If the RETRY phrase is not specified or the result of the evaluation of arithmetic-expression-1 or arithmetic-expression-2 is negative or zero, the statement is unsuccessful, the appropriate value is placed in the I-O status associated with the file connector according to the rules for 9.1.13, I-O status, and execution proceeds as indicated for unsuccessful execution in the applicable statement; otherwise,b) The mass storage control system attempts to complete the input-output operation as specified in General rules 1, 2, or 3.

RETRY arithmetic-expression-1 TIMESFOR arithmetic-expression-2 SECONDSFOREVER

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

568 ©ISO/IEC 2023

If the mass storage control system permits the requested access on one of these attempts, the statement is successful and the results are as if the file sharing or record operation conflict had never occurred.Otherwise, the statement is unsuccessful, the appropriate value is placed in the I-O status associated with the file connector according to the rules for 9.1.13, I-O status, and execution proceeds as indicated for unsuccessful execution in the applicable statement.
14.8 Conformance for parameters, returning items and external items

14.8.1 GeneralThe conformance rules for parameters and returning items apply at compile time when an explicit reference is made to them from a syntax rule.NOTE 1 Conformance rules for parameters and returning items are checked at compile time for:— an INVOKE statement on an object reference that is not a universal object reference,— a reference to a user-defined function,— the Program format of the CALL statement.The conformance rules for parameters and returning items apply at runtime when an explicit reference is made to them from a General rule.NOTE 2 Conformance rules for parameters and returning items are checked at runtime for:— a universal object reference, if exception condition EC-OO-UNIVERSAL is enabled— the Program format of the CALL statement.NOTE 3 Conformance rules for parameters and returning items are checked for an object-view at compile time. Additional conformance rules for the object referenced by the object view are given in the rules of object-view; these are checked at runtime if exception condition EC-OO-CONFORMANCE is enabled.The conformance rules for external items apply at runtime when it is detected that the external item formats do not match as required or it is detected that a linage, file status or relative key external data item for a specific external file does not refer to the same storage as that used in another runtime element for the same external file.
14.8.2 Parameters

14.8.2.1 GeneralThe number of arguments in the activating element shall be equal to the number of formal parameters in the activated element, with the exception of trailing formal parameters that are specified with an OPTIONAL phrase in the procedure division header of the activated element and omitted from the list of arguments of the activating element.If both an argument and its corresponding formal parameters are elementary items, the conformance rules for elementary items apply; otherwise, the conformance rules for group items apply.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 569

NOTE A bit group or national group is treated as an elementary item.
14.8.2.2 Group itemsIf either the formal parameter or the argument is an alphanumeric group item and neither of them is strongly typed:1) If the argument is passed by reference, that argument or the formal parameter corresponding to that argument shall be an alphanumeric group item or an elementary item of category alphanumeric, and the formal parameter shall be described with the same number or a smaller number of bytes as the corresponding argument.2) If the argument is passed by content, the conformance rules are the same as for a MOVE statement with the argument as the sending operand and the corresponding formal parameter as the receiving operand.NOTE If an argument is a group with a level number other than 1 and its subordinate items are described such that the implementation inserts slack bits or bytes, the alignment of the subordinate elementary items might not correspond between the argument and the formal parameter.If either the formal parameter or the corresponding argument is a strongly-typed group item, both shall be of the same type.If either the formal parameter or the argument is a variable length group, the formal parameter and the argument shall be compatible, as described in 8.5.1.12, Variable-length groups.For an argument or formal parameter that is described as an occurs-depending group item passed by reference, the maximum length is used. For an occurs-depending group item passed by content, the length of the argument is determined by the rules of the OCCURS clause for a sending data item.
14.8.2.3 Elementary items

14.8.2.3.1 GeneralThe conformance rules for elementary items depend on whether the argument is passed by reference, by content, or by value.
14.8.2.3.2 Elementary items passed by referenceIf either the formal parameter or the corresponding argument is an object reference, the corresponding argument or formal parameter shall be an object reference following these rules:1) If either the argument or the formal parameter is a universal object reference, the corresponding formal parameter or argument shall be a universal object reference.2) If either the argument or the formal parameter is described with an interface-name, the corresponding formal parameter or argument shall be described with the same interface-name.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

570 ©ISO/IEC 2023

3) If either the argument or the formal parameter is described with an object-class-name, the corresponding formal parameter or argument shall be described with the same object-class-name, and the FACTORY and ONLY phrases shall be the same.4) If the formal parameter is described with the ACTIVE-CLASS phrase, one of the following conditions shall be true:a) The argument shall be an object reference described with the ACTIVE-CLASS phrase, where the presence or absence of the FACTORY phrase is the same as in the formal parameter, and the method to be activated shall be invoked with the predefined object references SELF or SUPER, or with an object reference described with the ACTIVE-CLASS phrase.b) The argument shall be an object reference described with an object-class-name and the ONLY phrase, where the presence or absence of the FACTORY phrase is the same as in the formal parameter, and the method to be activated shall be invoked with that object-class-name or with an object reference described with that object-class-name and the ONLY phrase.If either the argument or the formal parameter is of class pointer, the corresponding formal parameter or argument shall be of class pointer and the corresponding items shall be of the same category. If either is a restricted pointer, both shall be restricted and of the same type.If the formal parameter or the corresponding argument is of class object-reference, both shall be of class object-reference.If neither the formal parameter nor the argument is of class message-tag, object, or pointer, the conformance rules are the following:1) If the activated element is a program for which there is no program-specifier in the REPOSITORY paragraph of the activating element and there is no NESTED phrase specified on the CALL statement, the formal parameter shall be of the same length as the corresponding argument. 2) If the activated element is one of the following: — a program for which there is a program-specifier in the REPOSITORY paragraph of the activating element— a program and the NESTED phrase is specified on the CALL statement— a method— a functionthen the definition of the formal parameter and the definition of the argument shall have the same ALIGN, BLANK WHEN ZERO, DYNAMIC LENGTH, JUSTIFIED, PICTURE, SIGN, and USAGE clauses, with the following exceptions: a) Currency symbols match if and only if the corresponding currency strings are the same.b) Period picture symbols match if and only if the DECIMAL-POINT IS COMMA clause is in effect for both the activating and the activated runtime elements or for neither of them. Comma picture symbols match if and only if the DECIMAL-POINT IS COMMA clause is in effect for both the activating and the activated runtime elements or for neither of them.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 571

Additionally:a) Locale specifications in the PICTURE clauses match if and only if:— both specify the same SIZE phrase in the LOCALE phrase of the PICTURE clause, and— both specify the LOCALE phrase without a locale-name or both specify the LOCALE phrase with the same external identification, where the external identification is the external-locale-name or literal value associated with a locale-name in the LOCALE clause of the SPECIAL-NAMES paragraph.b) A bit group item matches an elementary bit data item described with the same number of boolean positions.c) A national group item matches an elementary data item of usage national described with the same number of national character positions.d) If the formal parameter is described with the ANY LENGTH clause, its length is considered to match the length of the corresponding argument.e) If the argument is described with the ANY LENGTH clause, the corresponding formal parameter shall be described with the ANY LENGTH clause.
14.8.2.3.3 Elementary items passed by content or by valueIf the formal parameter is an object reference described with the ACTIVE-CLASS phrase, one of the following conditions shall be true:1) The method to be activated shall be invoked with the predefined object references SELF or SUPER, or with an object reference described with the ACTIVE-CLASS phrase, and a SET statement shall be valid in the activating unit with the argument as the sending operand and an object reference described with the ACTIVE-CLASS phrase, where the presence or absence of the FACTORY phrase is the same as in the formal parameter, as the receiving operand.2) The method to be activated shall be invoked with an object-class-name or with an object reference described with an object-class-name and the ONLY phrase, and a SET statement shall be valid in the activating unit with the argument as the sending operand and an object reference described with that object-class-name and the ONLY phrase, where the presence or absence of the FACTORY phrase is the same as in the formal parameter, as the receiving operand.If the formal parameter is of class pointer or an object reference described without the ACTIVE-CLASS phrase, the conformance rules shall be the same as if a SET statement were performed in the activating runtime element with the argument as the sending operand and the corresponding formal parameter as the receiving operand.If the formal parameter is not of class object or pointer, the conformance rules are the following:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

572 ©ISO/IEC 2023

1) If the activated element is a program for which there is no program-specifier in the REPOSITORY paragraph of the activating element and there is no NESTED phrase specified on the CALL statement, the formal parameter shall be of the same length as the corresponding argument.2) If the activated element is one of the following: — a program for which there is a program-specifier in the REPOSITORY paragraph of the activating element— a program and the NESTED phrase is specified on the CALL statement— a method— a functionthen the conformance rules depend on the type of the formal parameter as specified in the following rules:a) If the formal parameter is numeric, the conformance rules are the same as for a COMPUTE statement with the argument as the sending operand and the corresponding formal parameter as the receiving operand.b) If the formal parameter is an index data item, the conformance rules are the same as for a SET statement with the argument as the sending operand and the corresponding formal parameter as the receiving operand.c) If the formal parameter is described with the ANY LENGTH clause, its length is considered to match the length of the corresponding argument.d) Otherwise, the conformance rules are the same as for a MOVE statement with the argument as the sending operand and the corresponding formal parameter as the receiving operand.
14.8.3 Returning items

14.8.3.1 GeneralA returning item shall be specified in the activating statement if and only if a returning item is specified in the procedure division header of the activated element. A returning item is implicitly specified in the activating element when a function or inline method invocation is referenced.The returning item in the activated element is the sending operand, the corresponding returning item in the activating element is the receiving operand.The rules for conformance between the sending operand and the receiving operand depend on whether at least one of the operands is an alphanumeric group item or both operands are elementary items.NOTE A bit group or national group is treated as an elementary item.
14.8.3.2 Group itemsIf either the sending or the receiving operand is an alphanumeric group item, and neither of them is strongly typed or a variable length group, the corresponding returning item shall be an alphanumeric

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 573

group item or an elementary item of category alphanumeric, and the receiving operand shall be of the same length as the sending operand.NOTE If a returning item in an activating element is a group with a level number other than 1 and its subordinate items are described such that the implementation inserts slack bits or bytes, the alignment of the subordinate elementary items might not correspond between the returning item in the activating runtime element and the returning item in the activated runtime element.If either of the operands is a strongly-typed group item, both shall be of the same type.If either the sending or the receiving operand is a variable length group, the sending operand and the receiving operand shall be compatible, as described in 8.5.1.12, Variable-length groups.For an operand that is described as a variable-occurrence data item, the maximum length is used.
14.8.3.3 Elementary itemsIf either of the operands is an object reference, the corresponding item shall be an object reference, and the following rules apply:1) If the returning item in the activated element is not described with an ACTIVE-CLASS phrase, the conformance rules are the same as if a SET statement were performed in the activated runtime element with the returning item in the activated element as the sending operand and the corresponding returning item in the activating element as the receiving operand.2) If the returning item in the activated element is described with an ACTIVE-CLASS phrase, the conformance rules are the same as the conformance rules for a SET statement specified in the activating element with the following operands:a) A receiving operand that is the returning item in the activating element.b) A sending operand that is an object reference described as follows:1. If the activated method is invoked with an object-class-name, the sending object reference is described with that same object-class-name and an ONLY phrase.2. If the activated method is invoked with the predefined object reference SELF or SUPER, the sending object reference is described with an ACTIVE-CLASS phrase.3. If the activated method is invoked with an object reference that is described with an interface-name, the sending object reference is a universal object reference.4. If the activated method is invoked with any other object reference, the sending operand has the same description as that object reference.If the sending operand defined above is described with an object-class-name or an ACTIVE-CLASS phrase, the presence or absence of the FACTORY phrase is the same as in the returning item of the activated element.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

574 ©ISO/IEC 2023

If the sending operand is not an object reference, the receiving operand shall have the same ALIGN, BLANK WHEN ZERO, DYNAMIC LENGTH, JUSTIFIED, PICTURE, SIGN, and USAGE clauses, with the following exceptions:1) Currency symbols match if and only if the corresponding currency strings are the same.2) Period picture symbols match if and only if the DECIMAL-POINT IS COMMA clause is in effect for both the activating and the activated runtime elements or for neither of them.3) Comma picture symbols match if and only if the DECIMAL-POINT IS COMMA clause is in effect for both the activating and the activated runtime elements or for neither of them.Additionally, if the sending operand is not an object reference:1) Locale specifications in the PICTURE clauses match if and only if:— both specify the same SIZE phrase in the LOCALE phrase of the PICTURE clause, and— both specify the LOCALE phrase without a locale-name or both specify the LOCALE phrase with the same external identification, where the external identification is the external-locale-name or literal value associated with a locale-name in the LOCALE clause of the SPECIAL-NAMES paragraph.2) A bit group item matches an elementary boolean data item of usage bit described with the same number of boolean positions.3) A national group item matches an elementary data item of usage national described with the same number of national character positions.4) If the receiving operand is described with the ANY LENGTH clause, the sending operand shall also be described with the ANY LENGTH clause.5) If the sending operand is described with the ANY LENGTH clause, the length of the sending operand is considered to match the length of the receiving operand.
14.8.4 External items

14.8.4.1 GeneralIn order to be able to check the conformance of external items between runtime elements, the EC-EXTERNAL exception conditions to be checked shall be enabled in both the activating and activated runtime elements, which for activated runtime elements shall be before the Environment division.
14.8.4.2 Correspondence of external data items used in external filesFor each external file connector, the file status, linage and relative key data items shall be external data items and shall refer to the same corresponding storage in each runtime element for which the file connector is used.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 575

14.8.4.3 Correspondence of external data item formatsFor external data items, the rules specified in 13.18.22, EXTERNAL clause, General rule 6 apply.For external type declarations and their use, the rules specified in 8.5.3, Types and 13.18.57, TYPE clause apply.For external data items with strongly typed record descriptions, the record descriptions shall have the same corresponding external strong type declarations and the same presence or absence of the CONSTANT RECORD clause.
14.8.4.4 Correspondence of external file control entriesFor each external file connector, the rules specified in 12.4.5, File control entry General rule 1 apply.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

576 ©ISO/IEC 2023

14.9 Statements

14.9.1 ACCEPT statement

14.9.1.1 GeneralThe execution of a device format ACCEPT statement causes information from a device to be transferred to the specified data item, where the device is a hardware or software device in the operating environment.The execution of a temporal format ACCEPT statement causes the information requested from the operating environment to be made available to the specified data item.The execution of a screen format ACCEPT statement causes the following sequence of events: — Specified or default initial values are moved to the input fields of the screen.— The screen is displayed with the specified attributes on the terminal display screen at the specified or default location.— The cursor is positioned to the specified or default input field.— The operator is given the opportunity to modify the elementary input screen items.— If inconsistent data is entered by the operator, the implementation may prompt the operator to correct the data or it may set an exception condition to exist.— The contents of the screen items that are consistent with their descriptions are moved to the specified destination fields.— The line and column of the cursor when input terminates are placed into the data item referenced in the CURSOR clause, if any.— Appropriate statements in the ON EXCEPTION or NOT ON EXCEPTION clauses, if any, are executed.
14.9.1.2 General formatsFormat 1 (device):
Format 2 (temporal):ACCEPT identifier-1 [FROM mnemonic-name-1] [END-ACCEPT]

ACCEPT identifier-2 FROM DATE [YYYYMMDD]DAY [YYYYDDD]DAY-OF-WEEKTIME

 [END-ACCEPT]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 577

Format 3 (screen):

14.9.1.3 Syntax rules1) Identifier-1 shall reference neither a strongly-typed group item nor a data item of class index, message-tag, object, or pointer.2) Mnemonic-name-1 shall be specified in the SPECIAL-NAMES paragraph of the environment division and shall be associated with an implementor-defined device-name that is identified in the operating environment as a hardware or software device capable of providing data to the program.3) Identifier-2 shall not reference a data item of class alphabetic, boolean, index, message-tag, object, or pointer.4) Screen-name-1 may reference a group item containing screen items with FROM or VALUE clauses only if the group also contains screen items with TO or USING clauses.5) Identifier-3 and identifier-4 shall be unsigned integer data items.6) Neither identifier-1 nor identifier-2 shall reference a variable-length group.
14.9.1.4 General rulesFORMAT 11) The ACCEPT statement causes the transfer of data from the device. This data replaces the content of the data item referenced by identifier-1. Any conversion of data required between the device and the data item referenced by identifier-1 is defined by the implementor. 2) The implementor shall define, for each device, the size of a data transfer.

ACCEPT screen-name-1
 AT LINE NUMBER identifier-3integer-1

COLUMNCOL

 NUMBER identifier-4integer-2

ON EXCEPTION imperative-statement-1NOT ON EXCEPTION imperative-statement-2[END-ACCEPT]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

578 ©ISO/IEC 2023

3) If a device is capable of transferring data of the same size as the receiving data item, the transferred data is stored in the receiving data item.4) If a device is not capable of transferring data of the same size as the receiving data item, then:a) If the size of the receiving data item (or of the portion of the receiving data item not yet currently occupied by transferred data) exceeds the size of the transferred data, the transferred data is stored aligned to the left in the receiving data item (or the portion of the receiving data item not yet occupied), and additional data is requested.b) If the size of the transferred data exceeds the size of the receiving data item (or the portion of the receiving data item not yet occupied by transferred data), only the leftmost characters of the transferred data are stored in the receiving data item (or in the portion remaining). The remaining characters of the transferred data that do not fit into the receiving data item are ignored. If identifier-1 references a zero-length item, all the characters of the transferred data are ignored.5) The implementor shall specify the device that is used if the FROM phrase is not specified.FORMAT 26) The ACCEPT statement causes the information requested to be transferred to the data item specified by identifier-2 according to the rules for the MOVE statement. DATE, DAY, DAY-OF-WEEK, and TIME reference the current date and time provided by the system on which the ACCEPT statement is executed. DATE, DAY, DAY-OF-WEEK, and TIME are conceptual data items and, therefore, are not described in the COBOL source unit. 7) DATE without the phrase YYYYMMDD behaves as if it had been described as an unsigned elementary integer data item of usage display six digits in length, the character positions of which, numbered from left to right, are: Character Positions Contents 1-2 The two low-order digits of the year in the Gregorian calendar.3-4 Two numeric characters of the month of the year in the range 01 through 12.5-6 Two numeric characters of the day of the month in the range 01 through 31.8) DATE with the phrase YYYYMMDD behaves as if it had been described as an unsigned elementary integer data item of usage display eight digits in length, the character positions of which, numbered from left to right, are:Character Positions Contents 1-4 Four numeric characters of the year in the Gregorian calendar.5-6 Two numeric characters of the month of the year in the range 01 through 12.7-8 Two numeric characters of the day of the month in the range 01 through 31.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 579

9) DAY without the phrase YYYYDDD behaves as if it had been described as an unsigned elementary integer data item of usage display five digits in length, the character positions of which, numbered from left to right, are:Character Positions Contents 1-2 The two low-order digits of the year in the Gregorian calendar.3-5 Three numeric characters of the day of the year in the range 001 through 366.10) DAY with the phrase YYYYDDD behaves as if it had been described as an unsigned elementary integer data item of usage display seven digits in length, the character positions of which, numbered from left to right, are:Character Positions Contents 1-4 Four numeric characters of the year in the Gregorian calendar.5-7 Three numeric characters of the day of the year in the range 001 through 366.11) TIME is based on the elapsed time since midnight on a 24-hour clock. If the system does not have the facility to provide fractional parts of a second the value zero is returned for those parts that are not available. TIME behaves as if it had been described as an unsigned elementary integer data item of usage display eight digits in length, the characters positions of which, numbered from left to right, are:Character Positions Contents 1-2 Two numeric characters of the hours past midnight in the range 00 through 23.3-4 Two numeric characters of the minutes past the hour in the range 00 through 59.5-6 Two numeric characters of the seconds past the minute in the range:a) 00 through 59 when a LEAP-SECOND directive with the OFF phrase is in effectb) 00 through nn, where nn is defined by the implementor, when a LEAP-SECOND directive with the ON phrase is in effect.7-8 Two numeric characters of the hundredths of a second past the second in the range 00 through 99. 00 is returned if the system on which the ACCEPT statement is executed does not have the facility to provide the fractional part of a second.12) DAY-OF-WEEK behaves as if it had been described as an unsigned elementary numeric integer data item one digit in length and of usage display. In DAY-OF-WEEK, the value 1 represents Monday, 2 represents Tuesday, 3 represents Wednesday, ... , 7 represents Sunday.FORMAT 313) Identifiers specified in FROM or USING clauses or literals specified in FROM or VALUE clauses provide the initial values displayed for the associated screen item during execution of an ACCEPT screen statement. For elementary screen items that have no FROM, USING, or VALUE clause, the

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

580 ©ISO/IEC 2023

initial value is as if a MOVE statement were executed with the screen item as the receiving field. The sending item of the MOVE statement is a figurative constant that depends on the category of the screen item as follows.Screen item constantAlphabetic Alphanumeric SPACESAlphanumeric Alphanumeric SPACESAlphanumeric-edited Alphanumeric SPACESBoolean ZEROSNational National SPACESNational-edited National SPACESNumeric ZEROSNumeric-edited ZEROS14) Any conversion of data required between the hardware device and the data items referenced in screen-name-1 is defined by the implementor.15) The LINE and COLUMN phrases give the position on the terminal display screen at which the screen record associated with screen-name-1 is to start. Column and line number positions are specified in terms of alphanumeric character positions. The position is relative to the leftmost character column in the topmost line of the display that is identified as column 1 of line 1. Each subordinate elementary screen item is located relative to the start of the containing screen record. Identifier-3 and identifier-4 are evaluated once at the start of execution of the statement.16) If the LINE phrase is not specified, the screen record starts on line 1.17) If the COLUMN phrase is not specified, the screen record starts in column 1.18) The initial position of the cursor is determined by the CURSOR clause in the SPECIAL-NAMES paragraph.a) If the CURSOR clause is not specified, the initial cursor position during the execution of an ACCEPT screen statement is the start of the first input field described within screen-name-1.b) If the CURSOR clause is specified, the initial cursor position is that represented by the value of the cursor locator at the beginning of the execution of the ACCEPT screen statement. If the cursor locator does not indicate a position within an input field, the cursor shall be positioned as if the CURSOR clause had not been specified.19) During the period while the operator is able to modify each elementary screen item, each screen item is displayed on the terminal screen in accordance with any attributes specified in its screen description entry. The display may be modified as the operator selects or deselects each screen item as being the current screen item. The display of the current screen item may be modified as the operator keys data.20) Data entered by the terminal operator in the current screen item shall be consistent with the PICTURE clause of that item. If the screen item is numeric, the entered data shall be acceptable as an argument to the NUMVAL function. If the screen item is numeric-edited, the entered data shall be

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 581

acceptable as an argument to the NUMVAL-C function. It is implementor-defined when the entered data is verified. It is implementor-defined whether inconsistent data causes the EC-DATA-INCOMPATIBLE exception condition to exist or whether the system indicates an error until consistent data is entered or until execution of the ACCEPT statement is terminated.21) If inconsistent data is entered into a screen item and allowed by the implementor to remain there, the EC-DATA-INCOMPATIBLE exception condition is set to exist. If consistent data was entered into one or more screen fields, these fields are transferred as specified in General rule 22, but the fields with inconsistent data are not transferred. The ACCEPT statement results in an unsuccessful completion, and execution proceeds as specified in General rule 25.22) The ACCEPT screen statement causes the transfer of data from each elementary screen item that is subordinate to screen-name-1 and is specified with the TO or USING clause to the data item referenced in the TO or USING clause. For the purpose of these specifications, all such screen items are considered to be referenced by the ACCEPT screen statement. If two or more of these elementary screen items overlap, the EC-SCREEN-FIELD-OVERLAP exception condition is set to exist and the result of the transfer of data from the elementary screen items is defined by the implementor.The transfer occurs after the terminal operator has been given the opportunity to modify the elementary screen items and the operator has pressed a terminator key or a user-defined or context-dependent function key. This transfer occurs in the following manner:a) If the screen item is numeric, the data is transferred as though the following statement were executed:
COMPUTE receiving-field = FUNCTION NUMVAL (screen-item)b) If the screen item is numeric-edited, the data is transferred as though the following statement were executed:
COMPUTE receiving-field = FUNCTION NUMVAL-C (screen-item)c) Otherwise, the data is transferred as if the following statement were executed:
MOVE screen-item TO receiving-fieldwhere:receiving-field is the data item referenced in the TO or USING clause, and screen-item is the screen item.23) If the CURSOR clause is specified in the special-names paragraph, the data item referenced in the CURSOR clause shall be updated during the execution of an ACCEPT screen statement and prior to the execution of any imperative statement associated with any ON EXCEPTION or NOT ON EXCEPTION clauses for that ACCEPT statement. It shall be updated to give the line and column position of the cursor when the ACCEPT terminates.24) If the execution of the ACCEPT statement results in a successful completion with normal termination, the ON EXCEPTION phrase, if specified, is ignored and control is transferred to the end of the ACCEPT

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

582 ©ISO/IEC 2023

statement or, if the NOT ON EXCEPTION phrase is specified, to imperative-statement-2. If control is returned from imperative-statement-2, control is then transferred to the end of the ACCEPT statement.25) If the execution of the ACCEPT statement results in an unsuccessful completion, is terminated by a function key stroke, or causes an EC-SCREEN exception condition to exist, then:a) If the ON EXCEPTION phrase is specified in the ACCEPT statement, control is transferred to imperative-statement-1. If control is returned from imperative-statement-1, control is then transferred to the end of the ACCEPT statement.b) If the ON EXCEPTION phrase is not specified in the ACCEPT statement, the following occurs.1. If the ACCEPT statement is specified in a statement that is in imperative-statement-1 in an exception-checking PERFORM statement and a WHEN phrase in that statement specifies the exception condition that occurred, control is transferred to the imperative-statement in that WHEN phrase and the flow of control is specified in the rules for the WHEN phrase. If control is returned from the WHEN phrase, control is then transferred to the end of the ACCEPT statement.2. Otherwise, if there is no applicable WHEN phrase and there is an applicable declarative, control is transferred to that declarative. If control is returned from the declarative, control is transferred to the end of the ACCEPT statement.c) If the ON EXCEPTION phrase is not specified in the ACCEPT statement and there are no other applicable exception processing procedures,1. If the EC-DATA-INCOMPATIBLE exception condition exists, execution continues as specified in 14.6.13.1.3, Fatal exception conditions.2. If the EC-DATA-INCOMPATIBLE exception condition does not exist, control is transferred to the end of the ACCEPT statement and the NOT ON EXCEPTION phrase, if specified, is ignored.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 583

14.9.2 ADD statement

14.9.2.1 GeneralThe ADD statement causes two or more numeric operands to be summed and the result to be stored.
14.9.2.2 General formatsFormat 1 (simple):

Format 2 (giving):

Format 3 (corresponding):

where rounded-phrase is described in 14.7.4, ROUNDED phrase.

ADD identifier-1literal-1

 ... TO { identifier-2 [rounded-phrase] } ...

ON SIZE ERROR imperative-statement-1NOT ON SIZE ERROR imperative-statement-2[END-ADD]

ADD identifier-1literal-1

 ... TO identifier-2literal-2

GIVING { identifier-3 [rounded-phrase] } ...ON SIZE ERROR imperative-statement-1NOT ON SIZE ERROR imperative-statement-2[END-ADD]

ADD CORRESPONDINGCORR

 identifier-4 TO identifier-5 [rounded-phrase]

ON SIZE ERROR imperative-statement-1NOT ON SIZE ERROR imperative-statement-2[END-ADD]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

584 ©ISO/IEC 2023

14.9.2.3 Syntax rules1) When native arithmetic is in effect, the composite of operands described in 14.7.7, Arithmetic statements, is determined as follows:a) In format 1, by using all of the operands in the statement.b) In format 2, by using all of the operands in the statement excluding the data items that follow the word GIVING.c) In format 3, by using the two corresponding operands for each separate pair of corresponding data items.2) Identifier-1 and identifier-2 shall reference numeric data items.3) Literal-1 and literal-2 shall be numeric literals.4) Identifier-3 shall reference a numeric data item or a numeric-edited data item.5) The words CORR and CORRESPONDING are equivalent.6) Identifier-4 and identifier-5 shall be alphanumeric group items, national group items, variable-length groups, or strongly-typed group items and shall not be described with level-number 66.
14.9.2.4 General rules1) When format 1 is used, the initial evaluation consists of determining the value to be added, that is literal-1 or the value of the data item referenced by identifier-1, or if more than one operand is specified, the sum of such operands. The sum of the initial evaluation and the value of the data item referenced by identifier-2 is stored as the new value of the data item referenced by identifier-2.When standard-decimal arithmetic or standard-binary arithmetic is in effect, the result of the initial evaluation is equivalent to the result of the arithmetic expression(operand-11 + operand-12 + ... + operand-1n)where the values of operand-1 are the values of literal-1 and the data items referenced by identifier-1 in the order in which they are specified in the ADD statement. The result of the sum of the initial evaluation and the value of the data item referenced by identifier-2 is equivalent to the result of the arithmetic expression(initial-evaluation + identifier-2)where initial-evaluation represents the result of the initial evaluation.2) When format 2 is used, the initial evaluation consists of determining the sum of the operands preceding the word GIVING, that is literal-1 or the value of the data item referenced by identifier-1, and literal-2 or the value of the data item referenced by identifier-2. This value is stored as the new value of each data item referenced by identifier-3.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 585

When standard-decimal arithmetic or standard-binary arithmetic is in effect, the result of the initial evaluation is equivalent to the result of the arithmetic expression(operand-11 + operand-12 + ... + operand-1n + operand-2)where the values of operand-1 are the values of literal-1 and the data items referenced by identifier-1 in the order in which they are specified in the ADD statement and the value of operand-2 is the value of either literal-2 or the data item referenced by identifier-2 in the ADD statement.3) When format 3 is used, data items in identifier-4 are added to and stored in corresponding items in identifier-5.When standard-decimal arithmetic or standard-binary arithmetic is in effect, the result of the addition is equivalent to(operand-1 + operand-2)where the value of operand-1 is the value of the data item in identifier-4 and the value of operand-2 is the value of the corresponding data item in identifier-5.4) When native arithmetic is in effect and none of the operands is described with usage binary-char, binary-short, binary-long, binary-double, float-short, float-long, or float-extended, enough places shall be carried so as not to lose any significant digits during execution.5) Data items within identifier-4 are selected to be added to selected data items within identifier-5 according to the rules specified in 14.7.6, CORRESPONDING phrase. The results are the same as if the user had referred to each pair of corresponding identifiers in separate ADD statements.6) Additional rules and explanations relative to this statement are given in 14.6.13.2, Incompatible data; 14.7.4, ROUNDED phrase; 14.7.5, SIZE ERROR phrase and size error condition; 14.7.6, CORRESPONDING phrase; and 14.7.7, Arithmetic statements.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

586 ©ISO/IEC 2023

14.9.3 ALLOCATE statement

14.9.3.1 GeneralThe ALLOCATE statement obtains dynamic storage.If storage is being requested for a based item, the based item is assigned the address of the obtained storage and a data-pointer, if specified, is returned containing that address.If a specified number of characters of memory is being requested, a data-pointer addressing the obtained storage is returned.
14.9.3.2 General format

14.9.3.3 Syntax rules1) The data item referenced by data-name-1 shall be described with the BASED clause.2) If data-name-1 is specified, the RETURNING phrase may be omitted; otherwise, the RETURNING phrase shall be specified.3) Data-name-2 shall reference a data item of category data-pointer.4) If data-name-2 references a restricted data-pointer, data-name-1 shall be specified and shall reference a typed data item, and the data item referenced by data-name-2 shall be restricted to the type of data-name-1.5) If both data-name-1 and data-name-2 are specified and data-name-1 references a strongly-typed group item, the data item referenced by data-name-2 shall be restricted to the type of data-name-1.
14.9.3.4 General rules1) Arithmetic-expression-1 specifies a number of bytes of storage to be allocated. If arithmetic-expression-1 does not evaluate to an integer, the result is rounded up to the next whole number.2) If arithmetic-expression-1 evaluates to 0 or a negative value, the data item referenced by data-name-2 is set to the predefined address NULL.3) If data-name-1 is specified, the amount of storage to be allocated is the number of bytes required to hold an item as described by data-name-1. If a data description entry subordinate to data-name-1 contains an OCCURS DEPENDING ON clause, the maximum length of the record is allocated.4) If the specified amount of storage is available for allocation, it shall be obtained and:

ALLOCATE arithmetic-expression-1 CHARACTERSdata-name-1

 [INITIALIZED] [RETURNING data-name-2]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 587

a) if the RETURNING phrase is specified, the data item referenced by data-name-2 is set to the address of that storage,b) if data-name-1 is specified, the address of the based data item referenced by data-name-1 is set to the address of that storage.5) If the specified amount of storage is not available for allocation:a) if the RETURNING phrase is specified, the data item referenced by data-name-2 is set to the predefined address NULL,b) if data-name-1 is specified, the address of the based data item referenced by data-name-1 is set to the predefined address NULL,c) the EC-STORAGE-NOT-AVAIL exception condition is set to exist.6) If both the INITIALIZED phrase and arithmetic-expression-1 are specified, all bytes of the allocated storage are initialized to binary zeros.7) If both the INITIALIZED phrase and data-name-1 are specified, the allocated storage is initialized as if an INITIALIZE data-name-1 WITH FILLER ALL TO VALUE THEN TO DEFAULT statement were executed.8) If the INITIALIZED phrase is not specified and arithmetic-expression-1 is specified, the content of the allocated storage depends on the INITIALIZE clause of the OPTIONS paragraph. If it is specified, the content is that of the specified-fill-character. Otherwise, the content is undefined.9) If the INITIALIZED phrase is not specified and data-name-1 is specified, data items of class object or class pointer in the allocated storage are initialized to null and the content of the other data items in the allocated storage depends on the INITIALIZE clause of the OPTIONS paragraph. If it is specified, the content is that of the specified-fill-character. Otherwise, the content is undefined.10) The allocated storage persists until explicitly released with a FREE statement or the run unit is terminated, whichever occurs first.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

588 ©ISO/IEC 2023

14.9.4 CALL statement

14.9.4.1 GeneralThe CALL statement causes control to be transferred to a specific program within the run unit.
14.9.4.2 General formatsFormat 1 (Program):

CALL identifier-1literal-1

 USING [BY REFERENCE] { identifier-2 } ...BY CONTENT { identifier-2 } ...

 ...

[RETURNING identifier-3]ON EXCEPTION imperative-statement-1NOT ON EXCEPTION imperative-statement-2[END-CALL]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 589

Format 2 (program-prototype):

14.9.4.3 Syntax rulesFORMATS 1 AND 21) Identifier-1 shall be defined as an alphanumeric, national, or program-pointer data item.2) Literal-1 shall be an alphanumeric or national literal and shall not be a zero-length literal.3) Identifier-2 shall reference an address-identifier or a data item defined in the file, working-storage, local-storage, or linkage section. If the BY REFERENCE phrase is specified or implied, identifier-2 shall not be defined in the working-storage or file section of a factory or an instance object.4) If the BY REFERENCE phrase is not specified or implied for an identifier-2 or if identifier-2 is an address-identifier, identifier-2 is a sending operand.5) If the BY REFERENCE phrase is specified or implied for an identifier-2 and identifier-2 is not an address-identifier, it is a receiving operand.6) If the BY REFERENCE phrase is specified or implied for an identifier-2 that is a bit data item, identifier-2 shall be described such that it is aligned on a byte boundary and that subscripting and

CALL identifier-1literal-1

 AS NESTEDprogram-prototype-name-1

 USING
[BY REFERENCE] identifier-2OMITTED

[BY CONTENT] arithmetic-expression-1boolean-expression-1identifier-4literal-2

[BY VALUE] arithmetic-expression-1identifier-4literal-2

[RETURNING identifier-3]ON EXCEPTION imperative-statement-1NOT ON EXCEPTION imperative-statement-2[END-CALL]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

590 ©ISO/IEC 2023

the leftmost position in a reference modification of identifier-2 consist of only fixed-point numeric literals or arithmetic expressions whose result is a positive integer, in which all operands are numeric literals and in which the exponentiation operator is not specified.7) Identifier-3 shall reference a data item defined in the file, working-storage, local-storage, or linkage section.8) If identifier-3 references a bit data item, it shall be described such that it is aligned on a byte boundary and that subscripting and the leftmost position in a reference modification of identifier-3 consist of only fixed-point numeric literals or arithmetic expressions whose result is a positive integer in which all operands are numeric literals and in which the exponentiation operator is not specified.9) Identifier-3 is a receiving operand.FORMAT 1 10) If the BY REFERENCE phrase is specified or implied for an identifier-2, that identifier shall be neither a strongly-typed group item nor a data item of class object or pointer.11) Identifier-2 and identifier-3 shall not be described with the ANY LENGTH clause.12) Identifier-2 shall not reference a variable-length group.FORMAT 213) The NESTED phrase may be specified only in a program definition.14) If identifier-1 references a restricted program-pointer, the signature of the program-prototype specified in the definition of that pointer shall be the same as the signature of program-prototype-name-1.15) If the NESTED phrase is specified, literal-1 shall be specified. Literal-1 shall be the same as the program-name specified in a PROGRAM-ID paragraph of a common program as specified in 8.4.6.3, Scope of program-names, or of a program that is directly contained in the calling program.16) Program-prototype-name-1 shall be specified in a program-specifier in the REPOSITORY paragraph.17) Identifier-4 and any identifier specified in arithmetic-expression-1 or boolean-expression-1 is a sending operand.18) Identifier-4 shall not be described with the ANY LENGTH clause.19) If the BY CONTENT or BY REFERENCE phrase is specified or implied for an argument, the BY REFERENCE phrase shall be specified or implied for the corresponding formal parameter in the procedure division header.20) BY CONTENT shall not be omitted when identifier-4 is an identifier that is permitted as a receiving operand, except that BY CONTENT may be omitted when identifier-4 is an object property.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 591

21) If the BY VALUE phrase is specified for an argument, the BY VALUE phrase shall be specified for the corresponding formal parameter in the procedure division header.22) If identifier-4 or its corresponding formal parameter is specified with a BY VALUE phrase, identifier-4 shall be of class numeric, object, or pointer.23) If literal-2 or its corresponding formal parameter is specified with the BY VALUE phrase, literal-2 shall be a numeric literal.24) If the OMITTED phrase is specified, the OPTIONAL phrase shall be specified for the corresponding formal parameter in the procedure division header.25) The rules for conformance specified in 14.8.2, Parameters and 14.8.3, Returning items apply.
14.9.4.4 General rulesFORMATS 1 AND 21) The instance of the program, function, or method that executes the CALL statement is the activating runtime element. 2) The sequence of arguments in the USING phrase of the CALL statement and the sequence of formal parameters in the USING phrase of the called program's procedure division header determine the correspondence between arguments and formal parameters. This correspondence is positional and not by name equivalence. NOTE The first argument corresponds to the first formal parameter, the second to the second, and the nth to the nth.The effect of the USING phrase on the activated runtime element is described in 14.2, Procedure division structure, general rules.3) Execution of the CALL statement proceeds as follows: a) Arithmetic-expression-1, boolean-expression-1, identifier-1, identifier-2, and identifier-4 are evaluated and item identification is done for identifier-3 at the beginning of the execution of the CALL statement. If an exception condition exists, no program is called and execution proceeds as specified in General rule 3h. If an exception condition does not exist, the values of identifier-2, identifier-4, arithmetic-expression-1, boolean-expression-1, or literal-2 are made available to the called program at the time control is transferred to that program. b) The program being called is identified by its program-name or its location, which are determined as follows:— If identifier-1 references an alphanumeric or national data item or literal-1 is specified, the value of literal-1 or the content of the data item referenced by identifier-1 is the program-name of the program being called, as described in 8.3.2.2, User-defined words.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

592 ©ISO/IEC 2023

— If identifier-1 references a program-pointer data item, the data item referenced by identifier-1 contains the location of the program being called. — If neither identifier-1 nor literal-1 is specified, program-prototype-name-1 determines the externalized program-name of the program being called, according to the rules specified in 12.3.8, REPOSITORY paragraph. If the program being called is a COBOL program, the runtime system attempts to locate the program being called. When the program-name is used for locating the program, the rules specified in 8.4.6, Scope of names and 8.4.6.3, Scope of program-names, apply. If the program being called is not a COBOL program, the rules for program-name formation and for locating the program are defined by the implementor.If the data item referenced by identifier-1 contains the predefined address NULL, the EC-PROGRAM-PTR-NULL exception condition is set to exist. If the program cannot be located or identifier-1 references a zero-length item, the EC-PROGRAM-NOT-FOUND exception condition is set to exist. If either the EC-PROGRAM-NOT-FOUND or the EC-PROGRAM-PTR-NULL exception condition exists, the program call is not successful, and execution continues as specified in General rule 3h.c) If the program is located but the resources necessary to execute the program are not available, the EC-PROGRAM-RESOURCES exception condition is set to exist, the program call is not successful, and execution continues as specified in General rule 3h. The runtime resources that are checked in order to determine the availability of the called program for execution are defined by the implementor. d) If the resources are available and the program being called is a COBOL program, the rules for conformance specified in 14.8.2, Parameters and 14.8.3, Returning items apply. If a violation of these rules is detected, the EC-PROGRAM-ARG-MISMATCH exception condition is set to exist if checking for it is enabled in both the activated program and activating runtime element, the program call is not successful, and execution continues as specified in General rule 3h.e) External items are checked to ensure that they comply with the following rules as specified in 14.8.4, External items:

If one of the rules listed above is violated and checking for it is enabled for the associated exception in both the activated program and activating runtime element, that exception is set to exist, the program call is not successful, and execution continues as specified in General rule 3h.

Rule Exception condition14.8.4.2, Correspondence of external data items used in external files EC-EXTERNAL-DATA-MISMATCH
14.8.4.3, Correspondence of external data item formats EC-EXTERNAL-FORMAT-CONFLICT14.8.4.4, Correspondence of external file control entries EC-EXTERNAL-FILE-MISMATCH

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 593

f) If the program being called is in the active state and that program does not have the recursive attribute, the EC-PROGRAM-RECURSIVE-CALL exception condition is set to exist, the program call is not successful, and execution continues as specified in General rule 3h.g) If a fatal exception condition has not been raised, the program specified by the CALL statement is made available for execution and control is transferred to the called program. If identifier-1 is defined as a program-pointer data item and contains an invalid program address, execution of the CALL statement is undefined. If the called program is a COBOL program, its execution is described in 14.2, Procedure division structure; otherwise the execution is defined by the implementor.h) If the program was not successfully called and an exception condition was set to exist, one of the following actions occurs:1. If the exception condition is any of the EC-PROGRAM or EC-EXTERNAL exception conditions and an ON EXCEPTION phrase is specified in the CALL statement, control is transferred to imperative-statement-1. If control is returned from imperative-statement-1, control is then transferred to the end of the CALL statement.2. If checking for the exception condition is enabled, and if the exception condition is one of the EC-PROGRAM or EC-EXTERNAL exception conditions and an ON EXCEPTION phrase is not specified or if the exception condition is not one of the EC-PROGRAM exception conditions, any applicable exception processing statements are executed. If control is returned from these statements, control is then transferred to the end of the CALL statement. All other effects of the CALL statement are defined by the implementor.3. If checking for the exception condition is not enabled, subsequent behavior is as specified in 14.6.13.1, Exception conditions.i) If the program was successfully called, after control is returned from the called program the ON EXCEPTION phrase, if specified, is ignored. If an exception condition is propagated from the called program, execution continues as specified in 14.6.13.1, Exception conditions; otherwise, control is transferred to the end of the CALL statement or, if the NOT ON EXCEPTION phrase is specified, to imperative-statement-2. If control is returned from imperative-statement-2, control is then transferred to the end of the CALL statement.4) If a RETURNING phrase is specified, the result of the activated program is placed into identifier-3. FORMAT 15) Both the BY CONTENT and BY REFERENCE phrases are transitive across the parameters that follow them until another BY CONTENT or BY REFERENCE phrase is encountered. If neither the BY CONTENT nor the BY REFERENCE phrase is specified prior to the first parameter, the BY REFERENCE phrase is assumed. FORMAT 2 6) If the NESTED phrase is specified, the common or contained program that has literal-1 specified in the PROGRAM-ID paragraph is used to determine the characteristics of the called program.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

594 ©ISO/IEC 2023

7) If the NESTED phrase is not specified, program-prototype-name-1 is used to determine the characteristics of the called program.8) An argument that consists merely of a single identifier or literal is regarded as an identifier or literal rather than an arithmetic or boolean expression.9) If an argument is specified without any of the keywords BY REFERENCE, BY CONTENT, or BY VALUE, the manner used for passing this argument is determined as follows: a) When the BY REFERENCE phrase is specified or implied for the corresponding formal parameter:1. if the argument meets the requirements of Syntax rule 3, BY REFERENCE is assumed;2. if the argument does not meet the requirements of Syntax rule 3, BY CONTENT is assumed.b) When the BY VALUE phrase is specified or implied for the corresponding formal parameter, BY VALUE is assumed.10) Control is transferred to the called program in a manner consistent with the entry convention specified for the program. 11) If an OMITTED phrase is specified or a trailing argument is omitted, the omitted-argument condition for that parameter evaluates to true in the called program. (8.8.4.8, Simple omitted argument condition.) 12) If a parameter for which the omitted-argument condition is true is referenced in a called program, except as an argument or in the omitted-argument condition, the EC-PROGRAM-ARG-OMITTED exception condition is set to exist.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 595

14.9.5 CANCEL statement

14.9.5.1 GeneralThe CANCEL statement ensures that the next time the referenced program is called it will be in its initial state.
14.9.5.2 General format

14.9.5.3 Syntax rules1) Identifier-1 shall be defined as an alphanumeric or national data item.2) Literal-1 shall be an alphanumeric or national literal and shall not be a zero-length literal.3) Program-prototype-name-1 shall be a program prototype specified in the REPOSITORY paragraph.
14.9.5.4 General rules1) The program to be canceled is identified by one of the following:a) the content of the data item referenced by identifier-1, b) the value of literal-1, c) program-prototype-name-1.If identifier-1 or literal-1 is specified, 8.3.2.2, User-defined words, describes how this value is used to identify the program to be canceled.2) The program-name is used by the runtime system to locate the program according to the rules specified in 8.4.6, Scope of names, and 8.4.6.3, Scope of program-names.3) Subsequent to the execution of a CANCEL statement, the program referred to therein ceases to have any logical relationship to the run unit in which the CANCEL statement appears. If the program referenced by a successfully executed CANCEL statement in a run unit is subsequently called in that run unit, that program is in its initial state. (See 14.6.2, State of a function, method, object, or program.)NOTE It is neither prohibited nor required that the storage of the specified program be freed by the execution of a CANCEL statement.4) When a CANCEL statement is executed, all programs contained within the program referenced by the CANCEL statement are also canceled. The result is the same as if an explicit CANCEL statement

CANCEL identifier-1literal-1program-prototype-name-1

 ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

596 ©ISO/IEC 2023

were executed for each contained program in the reverse order in which the programs appear in the outermost program.5) The program to be canceled shall not be in the active state or contain a program in the active state. If a program in the active state is explicitly or implicitly referenced in a CANCEL statement and checking for EC-PROGRAM-CANCEL-ACTIVE is enabled in both the program to be canceled and the runtime element containing the CANCEL statement, the EC-PROGRAM-CANCEL-ACTIVE exception condition is raised in the runtime element containing the CANCEL statement and the referenced program is not canceled. If checking for EC-PROGRAM-CANCEL-ACTIVE is not enabled, the results of such a reference are defined by the implementor.6) A logical relationship to a canceled program is established only by execution of a subsequent CALL statement referencing that program.7) No action is taken when a CANCEL statement is executed referencing a program that has not been called in this run unit or has been called and is at present canceled. Control is transferred to the next executable statement following the explicit CANCEL statement.8) The contents of data items in external data records described by a program are not changed when that program is canceled.9) During execution of a CANCEL statement, an implicit CLOSE statement without any optional phrases is executed for each file-name associated with an internal file connector that is open in the program referenced in the CANCEL statement. These implicit CLOSE statements are executed for all such files, even when an error occurs during the execution of such CLOSE statements. Any USE EXCEPTION procedures associated with any of these files or associated with any EC-I-O exception conditions raised for any of these files are not executed. If the CANCEL statement is executed in the flow of control in imperative-statement-1 of a PERFORM statement that contains a WHEN phrase and an EC-I-O exception condition specified for that exception exists, the statements in that WHEN phrase are not executed.10) If the program to be canceled is other than a COBOL program, the effects of the CANCEL statement are implementor-defined.11) If a program-pointer has been set to point to the program to be canceled, the result of referencing the program-pointer in a subsequent CALL statement is undefined.12) If identifier-1 references a zero-length item, the CANCEL statement has no effect.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 597

14.9.6 CLOSE statement

14.9.6.1 GeneralThe CLOSE statement terminates the processing of reels/units and files with rewind or removal where applicable.
14.9.6.2 General format

14.9.6.3 Syntax rules1) The NO REWIND, REEL, and UNIT phrases may be used only with files that are of sequential organization.2) The words REEL and UNIT are equivalent.3) A CLOSE statement that specifies more than one file-name shall not be specified in imperative-statement-1 in an exception-checking PERFORM statement.
14.9.6.4 General rules1) The file connector referenced by file-name-1 shall be open. If the file connector is not open, the CLOSE statement is unsuccessful and the I-O status indicator for the file connector is set to '42'.2) For the purpose of showing the effect of various types of CLOSE statements as applied to various storage media, all files are divided into the following categories, where the term 'file' means the physical file:a) Non-unit. A file whose input or output medium is such that the concepts of rewind and units have no meaning.b) Sequential single-unit. A sequential file that is entirely contained on one unit.c) Sequential multi-unit. A sequential file that is contained on more than one unit.d) Non-sequential single/multi-unit. A file with organization other than sequential, that resides on a mass storage device.3) The results of executing each type of CLOSE for each category of physical file are summarized in Table 14, Relationship of categories of physical files and the format of the CLOSE statement.

CLOSE file-name-1 REELUNIT

 [FOR REMOVAL]
WITH NO REWIND

 ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

598 ©ISO/IEC 2023

Table 14 — Relationship of categories of physical files and the format of the CLOSE statement

The definitions of the symbols in Table 14, Relationship of categories of physical files and the format of the CLOSE statement, are given below. The notation 'N/A' means that the combination is not applicable. The other symbols apply to the rules below. Where the definition depends on whether the file is an input, output, or input-output file, alternate definitions are given; otherwise, a definition applies to input, output, and input-output files.a) Effect on previous unitsInput files and input-output files:All units in the physical file prior to the current unit are closed except those units controlled by a prior CLOSE UNIT statement. If the current unit is not the last in the physical file, the units in the physical file following the current one are not processed.Output files:All units in the physical file prior to the current unit are closed except those units controlled by a prior CLOSE UNIT statement.b) No rewind of current reelThe current unit is left in its current position. c) Close fileClosing operations specified by the implementor are executed.d) Unit removalThe current unit is rewound, when applicable, and the unit is logically removed from the run unit; however, the unit may be accessed again, in its proper order of units within the physical file, if a CLOSE statement without the UNIT phrase is subsequently executed for this file followed by the execution of an OPEN statement for the file.

CLOSE
statement

format

File category
Non-unit Sequential

single-unit
Sequential
multi-unit

Non-sequential
single/multi-

unitCLOSE c c,f a,c,f cCLOSE WITH NO REWIND c,g b,c a,b,c N/ACLOSE UNIT e e,f e,f N/ACLOSE UNIT FOR REMOVAL e d,e,f d,e,f N/A

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 599

NOTE This Working Draft International Standard does not address when the unit is unloaded or left loaded.e) Close unitInput files and input-output files (unit media):1. If the current unit is the last or only unit for the physical file, there is no unit swap, the current volume pointer remains unchanged, and the file position indicator is set to indicate that no next or previous logical record exists.2. If another unit exists for the physical file, a unit swap occurs, the current volume pointer is updated to point to the next unit existing in the physical file, and the file position indicator is set to one less than the number of the first record existing on the new current volume. If no records exist for the current volume, another unit swap occurs.Output files (unit media):A unit swap occurs and the current volume pointer is updated to point to the new unit.Input files, input-output files, and output files (non-unit media):Execution of this statement is considered successful. The file remains in the open mode, the file position indicator is unchanged, the I-O status indicator for the file connector is set to '07', and no other action takes place.f) RewindThe current reel or analogous device is positioned at its physical beginning.g) Optional phrases ignoredThe CLOSE statement is executed as if none of the optional phrases were present. The I-O status indicator for the file connector is set to '07'.4) The execution of the CLOSE statement causes the value of the I-O status associated with file-name-1 to be updated as specified in 9.1.13, I-O status.5) No report associated with a report file that is referenced in the CLOSE statement shall be in the active state. If any report is in the active state, the CLOSE statement for that file is completed and the EC-REPORT-NOT-TERMINATED exception condition is set to exist.6) If the file position indicator of the file connector referenced by file-name-1 is set to indicate that an optional input file is not present, no end-of-file or unit processing is performed for the file and the file position indicator and the current volume pointer are unchanged.7) The availability of the record area associated with file-name-1 to the runtime element depends on the successful or unsuccessful execution of the CLOSE statement without the UNIT phrase and whether file-name-1 is referenced in a SAME RECORD AREA clause. If file-name-1 is specified in a

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

600 ©ISO/IEC 2023

SAME RECORD AREA clause, the record area is available to the runtime element if any of the file connectors referenced by the other file-names in that SAME RECORD AREA clause are open. If none of these file connectors is open or if file-name-1 is not specified in a SAME RECORD AREA clause, the successful execution of a CLOSE statement makes the record area unavailable to the runtime element and the unsuccessful execution of the CLOSE statement makes the availability of the record area undefined.8) Following the successful execution of a CLOSE statement without the UNIT phrase, the physical file is no longer associated with the file connector referenced by file-name-1 and the open mode of that file connector is set such that it is no longer in an open mode.9) Except when the file is specified in an APPLY COMMIT clause, the file lock and any record locks associated with the file connector referenced by file-name-1 are released by the execution of the CLOSE statement.10) If more than one file-name-1 is specified in a CLOSE statement, the result of executing this CLOSE statement is the same as if a separate CLOSE statement had been written for each file-name-1 in the same order as specified in the CLOSE statement. If an implicit CLOSE statement results in the execution of a declarative procedure that executes a RESUME statement with the NEXT STATEMENT phrase, processing resumes at the next implicit CLOSE statement, if any.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 601

14.9.7 COMMIT statement

14.9.7.1 GeneralThe COMMIT statement makes permanent all changes to all files subject to active APPLY COMMIT clauses in the run unit and releases all record locks on those files. It also saves the contents of any data-items explicitly or implicitly referenced in active APPLY COMMIT clauses for potential use in a subsequent rollback.
14.9.7.2 General forms
14.9.7.3 Syntax rules1) This statement shall not be specified in a recursive source element.2) This statement shall not be specified in the input or output procedure of a MERGE or file SORT statement.
14.9.7.4 General rules1) If this statement is executed when there is no active APPLY COMMIT clause, then it has the same effect as a CONTINUE statement with no additional phrases.NOTE 1 When there is no active APPLY COMMIT clause then no files or data items will have been specified for commit and rollback.2) If this statement is attempted to be executed under the control of a recursive runtime element or a file SORT or MERGE statement, then the exception condition EC-FLOW-COMMIT is set to exist.NOTE 2 This will result in abnormal termination when the implicit ROLLBACK statement is executed as specified in 14.6.13.1.3, Fatal exception conditions.3) The execution of the COMMIT statement permanently applies any changes made to the files specified in all the active APPLY COMMIT clauses and releases all record locks associated with those files. The COMMIT statement also deactivates any APPLY COMMIT clauses in exited initial programs and canceled runtime elements.4) For files specified in active APPLY COMMIT clauses that have been closed and not reopened prior to the COMMIT statement, the file locks are released.5) The contents of all data-items referenced in the remaining active APPLY COMMIT clauses are saved for potential use in a subsequent rollback. This includes the file status data items and data-items specified in the linage or record clauses of the file descriptions.

COMMIT

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

602 ©ISO/IEC 2023

14.9.8 COMPUTE statement

14.9.8.1 GeneralThe COMPUTE statement assigns to one or more data items the value of an arithmetic or boolean expression.
14.9.8.2 General formatsFormat 1 (arithmetic-compute):

Format 2 (boolean-compute):
where rounded-phrase is described in 14.7.4, ROUNDED phrase.
14.9.8.3 Syntax rulesFORMAT 11) Identifier-1 shall reference either an elementary numeric item or an elementary numeric-edited item.FORMAT 22) Identifier-2 shall reference an elementary boolean data item.3) Boolean-expression-1 shall not consist solely of the figurative constant ALL literal.
14.9.8.4 General rulesFORMAT 11) The execution of an arithmetic-compute statement consists of the determination of a numeric value and the subsequent storing of that numeric value.a) When native arithmetic, or standard-decimal arithmetic is in effect, and arithmetic-expression-1 consists of a single fixed-point numeric literal or a single fixed-point numeric data item, arithmetic-expression-1 evaluates to the exact algebraic value of that literal or item, within the

COMPUTE { identifier-1 [rounded-phrase] } ... = arithmetic-expression-1ON SIZE ERROR imperative-statement-1NOT ON SIZE ERROR imperative-statement-2[END-COMPUTE]
COMPUTE { identifier-2 } ... = boolean-expression-1 [END-COMPUTE]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 603

constraints specified in 14.6.13.2, Incompatible data. Rounding, truncation, and decimal point alignment specifications do not apply to the production of that exact algebraic value.NOTE Noninteger decimal values are frequently inexact when expressed in binary floating-point formats, including that of an SBIDI. For that reason, arithmetic-expression-1 is unconditionally evaluated according to the rules for arithmetic expressions for standard-binary arithmetic, regardless of the specific contents of arithmetic-expression-1. b) Otherwise, arithmetic-expression-1 is evaluated to produce an algebraic value according to the specifications in 8.8.1, Arithmetic expressions.2) The value obtained according to rule 1 is then stored, in conformance with the specifications in 14.6.8, Alignment and transfer of data into data items, 14.7.4, ROUNDED phrase, and 14.7.5, SIZE ERROR phrase and size error condition, into each data item referenced by identifier-1.FORMAT 23) The execution of a boolean-compute statement consists of the determination of a boolean value and the subsequent storing of that boolean value.Boolean-expression-1 evaluates to the value of that boolean expression, subject to the specifications in 8.8.2, Boolean expressions, and 14.6.13.2, Incompatible data. The number of boolean positions in the value resulting from the evaluation of boolean-expression-1 is the number of boolean positions in the largest boolean item referenced in the expression. The resulting value is then stored in each data item referenced by identifier-2.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

604 ©ISO/IEC 2023

14.9.9 CONTINUE statement

14.9.9.1 GeneralThe CONTINUE statement is a no-operation statement. It indicates that no executable statement is present and that execution will continue with the next executable statement. The CONTINUE statement may also specify a time period in seconds that execution will be suspended.
14.9.9.2 General format

14.9.9.3 Syntax rules1) The CONTINUE statement may be used anywhere a conditional statement or an imperative-statement may be used.2) If the AFTER phrase is not specified, then the statement is processed as if an AFTER phrase were specified with arithmetic-expression-1 specified as zero.
14.9.9.4 General rules1) If the AFTER phrase is specified, arithmetic-expression-1 specifies the number of seconds that execution is suspended. The CONTINUE statement behaves as though the length of time that execution shall be suspended was stored in a temporary data item whose picture is 9(n)V9(m), in the manner specified by this rule. The implementor shall specify the value of m, which may be zero, and the value of n, which shall be greater than zero. Any value of m that is greater than 2 is processor-dependent. The implementor shall specify the maximum meaningful value of arithmetic-expression-1. If the value arithmetic-expression-1 is greater than this maximum meaningful value, the maximum meaningful value is placed into the temporary data item; otherwise, the value of arithmetic-expression-1 is used as the sending item and the temporary data item as the receiving item in an implicit COMPUTE statement without the ROUNDED phrase. If arithmetic-expression-1 evaluates to a value that is less than zero, the following takes place:a) The value of arithmetic-expression-1 is set to 0.b) If checking for FC-CONTINUE-LESS-THAN-ZERO is enabled, the EC-CONTINUE-LESS-THAN-ZERO exception condition is set to exist and processing continues as specified in 14.6.13.1.4, Nonfatal exception conditions.c) If checking for FC-CONTINUE-LESS-THAN-ZERO is not enabled, processing continues with the next executable statement.Otherwise, execution is suspended for the period of time determined by arithmetic-expression-1. When the time is passed, execution continues with the next executable statement.2) Implicit CONTINUE statements shall be processed as if AFTER ZERO SECONDS were specified.

CONTINUE AFTER arithmetic-expression-1 SECONDS

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 605

14.9.10 DELETE statement

14.9.10.1 GeneralThe DELETE RECORD statement logically removes a record from a mass storage file. The DELETE FILE statement causes the removal of the referenced files from the mass storage device.
14.9.10.2 General formatsFormat 1 (record):

Format 2 (file}:

where retry-phrase is described in 14.7.9, RETRY phrase
14.9.10.3 Syntax rulesFORMAT 11) The DELETE RECORD statement shall not be specified for a file with sequential organization.2) The INVALID KEY and the NOT INVALID KEY phrases shall not be specified for a DELETE RECORD statement that references a file that is in sequential access mode.FORMAT 23) The file description entry associated with the DELETE FILE statement shall not be a sort-merge file description entry.4) A DELETE FILE statement that specifies more than one file-name shall not be specified in imperative-statement-1 in an exception-checking PERFORM statement.

DELETE file-name-1 RECORD [retry-phrase]INVALID KEY imperative-statement-1NOT INVALID KEY imperative-statement-2[END-DELETE]
DELETE FILE OVERRIDE file-name-1 ...[retry-phrase]ON EXCEPTION imperative-statement-3NOT ON EXCEPTION imperative-statement-4[END-DELETE]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

606 ©ISO/IEC 2023

14.9.10.4 General rulesFORMAT 11) The open mode of the file connector referenced by file-name-1 shall be I-O and the physical file associated with that file connector shall be a mass storage file.2) For a file that is in the sequential access mode, the last input-output statement executed for file-name-1 prior to the execution of the DELETE RECORD statement shall have been a successfully executed READ statement. The mass storage control system logically removes from the physical file the record that was accessed by that READ statement.3) If the file is indexed and the access mode is random or dynamic, the mass storage control system logically removes from the physical file the record identified by the content of the prime record key data item associated with file-name-1. If the physical file does not contain the record specified by the key, the invalid key condition exists. (See 9.1.14, Invalid key condition.)4) If the file is relative and the access mode is random or dynamic, the mass storage control system logically removes from the physical file that record identified by the content of the relative key data item associated with file-name-1. If the physical file does not contain the record specified by the key, the invalid key condition exists. (See 9.1.14, Invalid key condition.)5) After the successful execution of a DELETE RECORD statement, the identified record has been logically removed from the physical file and can no longer be accessed.6) If record locking is enabled for the file connector referenced by file-name-1 and the record identified for deletion is locked by another file connector, the result of the operation depends on the presence or absence of the RETRY phrase. If the RETRY phrase is specified, additional attempts may be made to delete the record as specified in the rules in 14.7.9, RETRY phrase. If the RETRY phrase is not specified or the record is not successfully removed as specified by the RETRY phrase, the record operation conflict condition exists. The I-O status is set in accordance with the rules for the RETRY phrase.When the record operation conflict condition exists as a result of the DELETE RECORD statement:a) The record is not logically removed, and may be accessed.b) A value is placed into the I-O status associated with file-name-1 to indicate the record operation conflict condition.c) The DELETE RECORD statement is unsuccessful.7) If record locks are in effect and the file is not subject to an active APPLY COMMIT clause, the following actions take place: a) If single record locking is specified for the file connector associated with filename-1:1. A lock held by that file connector on the deleted record is released at the completion of the successful execution of the DELETE RECORD statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 607

2. A lock held by that file connector on another record is released at the beginning of the execution of the DELETE RECORD statement.b) If multiple record locking is specified for the file connector associated with file-name-1, all locks held on the deleted record are released at the completion of the successful execution of the DELETE RECORD statement.8) The execution of a DELETE RECORD statement does not affect the content of the record area or the content of the data item referenced by the data-name specified in the DEPENDING ON phrase of the RECORD clause associated with file-name-1.9) The file position indicator is not affected by the execution of a DELETE RECORD statement.10) The execution of the DELETE RECORD statement causes the value of the I-O status associated with file-name-1 to be updated as specified in 9.1.13, I-O status.11) Transfer of control following the successful or unsuccessful execution of the DELETE RECORD operation depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the DELETE RECORD statement as specified in 9.1.14, Invalid key condition.FORMAT 212) If more than one file-name-1 is specified in a DELETE FILE statement, the result of executing this statement is the same as if a separate DELETE FILE statement had been written for each file-name-1 in the same order as specified in the DELETE FILE statement.13) The file connector referenced by file-name-1 shall not be open. If the file is open the I-O status value in the file connector referenced by file-name-1 is set to '41'.14) If the file associated with file-name-1 is not present, the execution of the DELETE FILE statement is successful and the I-O status value in the file connector referenced by file-name-1 is set to ‘05’.15) If file locking is in effect for file-name-1 and the file is locked by another file connector, the result of the operation depends on the presence or absence of the RETRY phrase. If the RETRY phrase is specified, additional attempts may be made to delete the file as specified in the rules in 14.7.9, RETRY phrase. If the RETRY phrase is not specified or the file is not successfully deleted as specified by the RETRY phrase, the file sharing conflict condition exists. The I-O status is set in accordance with the rules for the RETRY phrase.When the file sharing conflict condition exists as a result of the DELETE FILE statement:a) The file is not deleted, and may be accessed.b) The valu62’ is placed into the I-O status associated with file-name-1 to indicate the file operation conflict condition.c) The DELETE FILE statement is unsuccessful.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

608 ©ISO/IEC 2023

NOTE For file connectors subject to APPLY COMMIT clauses, while those APPLY COMMIT clauses remain active, then file and record locking persists. Such files can still be deleted, however if they are, then in the event of a rollback they will be restored to the state they were in at the last commit or, if none, the start of the run unit.16) If the file associated with file-name-1 is present and insufficient authority exists to delete the file, the execution of the DELETE FILE statement is unsuccessful, and the I-O status value in the file connector referenced by file-name1 is set t37’.17) If the storage medium for the file does not allow file deletion, the execution of the DELETE FILE statement is unsuccessful, and the I-O status value in the file connector referenced by file-name-1 is set to ‘37’.18) If the OVERRIDE phrase is not specified, the attributes of the file connector referenced by file-name-1 and the fixed file attributes of the physical file shall match. If the attributes do not match the DELETE FILE statement is unsuccessful, and the I-O status value in the file connector referenced by file-name-1 is set to ‘39’. If the OVERRIDE phrase is specified, the file attributes are not checked.19) The implementor shall define which of the fixed-file attributes are validated during the execution of the DELETE FILE statement. The validation of fixed-file attributes may vary depending on the organization or storage medium of the file. (9.1.6, Fixed file attributes)20) If the execution of the DELETE FILE statement is successful, the file is deleted if it exists or no action takes place if the mass storage file does not exist and the following actions take place in the following order:a) Either I-O status value ‘00’ o05’ is placed in the I-O status associated with file-name-1.b) If it is enabled, the level-3 EC-I-O exception condition associated with the I-O status value is set to exist.c) If the ON EXCEPTION phrase is specified in the DELETE FILE statement, any applicable exception processing statements are not executed and control is transferred to the imperative-statement-3 specified in the ON EXCEPTION phrase. If control is returned from these statements, control is then transferred to the end of the DELETE statement.d) If the ON EXCEPTION phrase is not specified in the DELETE FILE statement, any applicable input-output exception processing statements are executed as specified by the rules for 9.1.12, Input-output exception processing. If control is returned from these statements, control is then transferred to the end of the DELETE statement.21) If the execution of the DELETE FILE statement is successful, the file is deleted or has already been deleted, and the following actions take place in the following order:a) A successful value is placed in the I-O status associated with file-name-1.b) If the NOT ON EXCEPTION phrase is specified in the DELETE FILE statement, control is transferred to the imperative-statement-4 specified in the NOT ON EXCEPTION phrase. The ON

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 609

EXCEPTION phrase is ignored, if it is specified. If control is returned from imperative-statement-4, control is then transferred to the end of the DELETE statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

610 ©ISO/IEC 2023

14.9.11 DISPLAY statement

14.9.11.1 GeneralThe device format of the DISPLAY statement causes data to be transferred to a hardware or software device in the operating environment.The screen format of the DISPLAY statement causes data associated with a literal or data item that is referenced in a screen item to be made available to the specified screen item and to be displayed on the terminal screen with specified attributes and at the specified position.
14.9.11.2 General formatsFormat 1 (device):

Format 2 (screen):

14.9.11.3 Syntax rulesFORMAT 11) Identifier-1 shall not reference a data item of class message-tag, object, or pointer.2) Mnemonic-name-1 shall be specified in the SPECIAL-NAMES paragraph of the environment division and shall be associated with an implementor-defined device-name that is identified in the operating environment as a hardware or software device capable of receiving data from the program.

DISPLAY identifier-1literal-1

 ... [UPON mnemonic-name-1] [WITH NO ADVANCING] [END-DISPLAY]

DISPLAY screen-name-1
 AT LINE NUMBER identifier-2integer-1

COLUMNCOL

 NUMBER identifier-3integer-2

ON EXCEPTION imperative-statement-1NOT ON EXCEPTION imperative-statement-2[END-DISPLAY]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 611

FORMAT 23) Identifier-2 and identifier-3 shall be unsigned integer data items.
14.9.11.4 General rulesFORMAT 11) The DISPLAY statement causes the content of each operand to be transferred to the device in the order listed. If an operand is a zero-length data item or a zero-length literal, no data is transferred for that operand. Any conversion of data required between literal-1 or the data item referenced by identifier-1 and the device is defined by the implementor.2) The implementor shall define, for each device, the size of a data transfer.3) If a figurative constant is specified as one of the operands, only a single occurrence of the figurative constant is displayed. A figurative constant other than ALL national literal shall be the alphanumeric representation of that figurative constant.4) If the device is capable of receiving data of the same size as the data item being transferred, then the data item is transferred.5) If a device is not capable of receiving data of the same size as the data item being transferred, then one of the following applies:a) If the size of the data item being transferred exceeds the size of the data that the device is capable of receiving in a single transfer, the data beginning with the leftmost character is stored aligned to the left in the receiving device, and the remaining data is then transferred according to General rules 4 and 5 until all the data has been transferred.b) If the size of the data item that the device is capable of receiving exceeds the size of the data being transferred, the transferred data is stored aligned to the left in the receiving device.6) When a DISPLAY statement contains more than one operand, the size of the sending item is the sum of the sizes associated with the operands, and the values of the operands are transferred in the sequence in which the operands are encountered without modifying the positioning of the device between the successive operands.7) If identifier-1 references a variable-length group, the format in which its contents are displayed is defined by the implementor.8) If the UPON phrase is not specified, the implementor's standard display device is used.9) If the WITH NO ADVANCING phrase is specified, then the positioning of the device shall not be reset to the next line or changed in any other way following the display of the last operand. If the device is capable of positioning to a specific character position, it will remain positioned at the character position immediately following the last character of the last operand displayed. If the device is not capable of positioning to a specific character position, only the vertical position, if applicable, is affected. This may cause overprinting if the device supports overprinting.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

612 ©ISO/IEC 2023

10) If the WITH NO ADVANCING phrase is not specified, then after the last operand has been transferred to the device, the positioning of the device shall be reset to the leftmost position of the next line of the device.11) If vertical positioning is not applicable on the device, the vertical positioning shall be ignored.FORMAT 212) Column and line number positions are specified in terms of alphanumeric character positions.13) The DISPLAY statement causes the transfer of data in accordance with the MOVE statement rules to each elementary screen item that is subordinate to screen-name-1 and is specified with the FROM, USING, or VALUE clause, from the data item or literal referenced in the FROM, USING, or VALUE clause. For the purpose of these specifications, all such screen items are considered to be referenced by the DISPLAY screen statement. If two or more of these elementary screen items overlap, the EC-SCREEN-FIELD-OVERLAP exception condition is set to exist. The transfer of data to the elementary screen items is done in the order that the screen items are specified within screen-name-1.NOTE When two screen items overlap, the display on the screen for the common character positions is determined by the second screen item specified within screen-name-1.The transfer takes place and each elementary screen item is displayed on the terminal display subject to any editing implied in the character-string specified in the PICTURE clause of each elementary screen description entry.14) The LINE and COLUMN phrases give the position on the terminal display screen at which the screen record associated with screen-name-1 is to start. The position is relative to the leftmost character column in the topmost line of the display that is identified as column 1 of line 1. Each subordinate elementary screen item is located relative to the start of the containing screen record. Identifier-2 and identifier-3 are evaluated once at the start of execution of the statement.15) If the LINE phrase is not specified, the screen record starts on line 1.16) If the COLUMN phrase is not specified, the screen record starts in column 1.17) If the execution of the DISPLAY statement is successful, the ON EXCEPTION phrase, if specified, is ignored and control is transferred to the end of the DISPLAY statement or, if the NOT ON EXCEPTION phrase is specified, to imperative-statement-2. If control is transferred to imperative-statement-2, execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure branching or conditional statement that causes explicit transfer of control is executed, control is transferred in accordance with the rules for that statement; otherwise, upon completion of the execution of imperative-statement-2, control is transferred to the end of the DISPLAY statement.18) If the execution of the DISPLAY statement is unsuccessful, then:a) If the ON EXCEPTION phrase is specified in the DISPLAY statement, control is transferred to imperative-statement-1. Execution then continues according to the rules for each statement specified in imperative-statement-1. If a procedure branching or conditional statement that

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 613

causes explicit transfer of control is executed, control is transferred in accordance with the rules for that statement; otherwise, upon completion of the execution of imperative-statement-1, control is transferred to the end of the DISPLAY statement and the NOT ON EXCEPTION phrase, if specified, is ignored.b) If the ON EXCEPTION phrase is not specified in the DISPLAY statement, the following occurs.1. If the DISPLAY statement is specified in a statement that is in imperative-statement-1 in an exception-checking PERFORM statement and a WHEN phrase. If control is returned from the PERFORM statement, control is then transferred to the end of the DISPLAY statement and the NOT ON EXCEPTION phrase, if specified, is ignored.2. If there is no applicable WHEN phrase and there is an applicable USE declarative, control is transferred to the declarative. If control is returned from the declarative, control is then transferred to the end of the DISPLAY statement and the NOT ON EXCEPTION phrase, if specified, is ignored.c) If the ON EXCEPTION phrase is not specified in the DISPLAY statement and there is no applicable exception processing procedure, control is transferred to the end of the DISPLAY statement and the NOT ON EXCEPTION phrase, if specified, is ignored.19) If one or more of the exception conditions EC-SCREEN-FIELD-OVERLAP, EC-SCREEN-ITEM-TRUNCATED, EC-SCREEN-LINE-NUMBER, or EC-SCREEN-STARTING-COLUMN exists during the execution of the DISPLAY statement, the execution of the DISPLAY statement continues as described for that exception condition and upon completion, the execution of the DISPLAY statement is considered unsuccessful.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

614 ©ISO/IEC 2023

14.9.12 DIVIDE statement

14.9.12.1 GeneralThe DIVIDE statement divides one numeric data item into others and sets the values of data items equal to the quotient and remainder.
14.9.12.2 General formatsFormat 1 (into):

Format 2 (into-giving):

Format 3 (by-giving):

DIVIDE identifier-1literal-1

 INTO { identifier-2 [rounded-phrase] } ...

ON SIZE ERROR imperative-statement-1NOT ON SIZE ERROR imperative-statement-2[END-DIVIDE]

DIVIDE identifier-1literal-1

 INTO identifier-2literal-2

GIVING { identifier-3 [rounded-phrase] } ...ON SIZE ERROR imperative-statement-1NOT ON SIZE ERROR imperative-statement-2[END-DIVIDE]

DIVIDE identifier-2literal-2

 BY identifier-1literal-1

GIVING { identifier-3 [rounded-phrase] } ...ON SIZE ERROR imperative-statement-1NOT ON SIZE ERROR imperative-statement-2[END-DIVIDE]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 615

Format 4 (into-remainder):

Format 5 (by-remainder):

where rounded-phrase is described in 14.7.4, ROUNDED phrase.
14.9.12.3 Syntax rules1) Identifier-1 and identifier-2 shall reference an elementary data item of category numeric.2) Identifier-3 and identifier-4 shall reference an elementary data item of category numeric or numeric-edited.3) Literal-1 and literal-2 shall be numeric literals.4) When native arithmetic is in effect, the composite of operands described in 14.7.7, Arithmetic statements, is determined by using all of the operands in the statement excluding the data item that follows the word REMAINDER.

DIVIDE identifier-1literal-1

 INTO identifier-2literal-2

GIVING identifier-3 [rounded-phrase]REMAINDER identifier-4ON SIZE ERROR imperative-statement-1NOT ON SIZE ERROR imperative-statement-2[END-DIVIDE]

DIVIDE identifier-2literal-2

 BY identifier-1literal-1

GIVING identifier-3 [rounded-phrase]REMAINDER identifier-4ON SIZE ERROR imperative-statement-1NOT ON SIZE ERROR imperative-statement-2[END-DIVIDE]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

616 ©ISO/IEC 2023

14.9.12.4 General rulesALL FORMATS1) When native arithmetic is in effect, the quotient is the result of dividing the dividend by the divisor. When standard-decimal arithmetic, or standard-binary arithmetic is in effect, the quotient, the quotient is the result of the arithmetic expression(dividend / divisor)where the values of dividend and divisor are defined in the following general rules.2) The process of determining the dividend and determining the divisor consists of the following:a) The dividend is identifier-2 or literal-2. The divisor is identifier-1 or literal-1.b) If an identifier is specified, item identification is done and the content of the resulting data item is the dividend or divisor.c) If a literal is specified, the value of the literal is the dividend or divisor.3) Additional rules and explanations relative to this statement are given in 14.6.13.2, Incompatible data; 14.7.4, ROUNDED phrase; 14.7.5, SIZE ERROR phrase and size error condition; and 14.7.7, Arithmetic statements.FORMAT 14) The evaluation proceeds in the following order:a) The initial evaluation consists of determining the divisor.b) This divisor is used with each dividend, which is each identifier-2 proceeding from left to right. Item identification for identifier-2 is done as each dividend is determined. The quotient is then formed as specified in General rule 1 and stored in the corresponding identifier-2 as indicated in 14.7.7, Arithmetic statements.FORMATS 2 AND 35) The evaluation proceeds in the following order:a) The initial evaluation is determining the divisor and determining the dividend.b) The quotient is then formed as specified in General rule 1 and stored in each identifier-3 as specified in 14.7.7, Arithmetic statements.FORMATS 4 AND 56) The evaluation proceeds in the following order:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 617

a) The initial evaluation is determining the divisor and determining the dividend.b) The quotient is then formed as specified in General rule 1 and stored in identifier-3 as specified in 14.7.7, Arithmetic statements.c) If the size error condition is not raised, a subsidiary quotient is developed that is signed and derived from the quotient by truncation of digits at the least significant end and that has the same number of digits and the same decimal point location as the data item referenced by identifier-3. The remainder is calculated as indicated in General rule 7 and is stored in the data item referenced by identifier-4 unless storing the value would cause a size error condition, in which case the content of identifier-4 is unchanged and execution proceeds as indicated in 14.7.5, SIZE ERROR phrase and size error condition. Item identification of the data item referenced by identifier-4 is done after the quotient is stored in the data item referenced by identifier-3.7) When native arithmetic is in effect, the remainder is the result of multiplying the subsidiary quotient and the divisor and subtracting the product from the dividend. When standard-decimal arithmetic, or standard-binary arithmetic is in effect, the remainder is the result of the arithmetic expression(dividend - (subsidiary-quotient * divisor))where the values of dividend and divisor are defined in General rule 2 and where subsidiary-quotient represents the subsidiary quotient as defined in General rule 6.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

618 ©ISO/IEC 2023

14.9.13 EVALUATE statement

14.9.13.1 GeneralThe EVALUATE statement describes a multi-branch, multi-join structure. It may cause multiple conditions to be evaluated. The subsequent action of the runtime element depends on the results of these evaluations.
14.9.13.2 General format

where selection-subject is:

where selection-object is:

EVALUATE selection-subject [ALSO selection-subject] ...{ { WHEN selection-object [ALSO selection-object] ... } ... imperative-statement-1 } . ..[WHEN OTHER imperative-statement-2][END-EVALUATE]
identifier-1literal-1arithmetic-expression-1boolean-expression-1condition-1TRUEFALSE

[NOT] identifier-2[NOT] literal-2[NOT] arithmetic-expression-2[NOT] boolean-expression-2[NOT] range-expressioncondition-2partial-expression-1TRUEFALSEANY

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 619

where range-expression is:

14.9.13.3 Syntax rules1) The words THROUGH and THRU are equivalent.2) The number of selection objects within each set of selection objects shall be equal to the number of selection subjects.3) Alphabet-name-1 may be specified only when the literals or identifiers specified in the THROUGH phrase are of class alphabetic, alphanumeric, or national. If literal-3 or identifier-3 is of class national, alphabet-name-1 shall reference an alphabet that defines a national collating sequence; otherwise, alphabet-name-1 shall reference an alphabet that defines an alphanumeric collating sequence.4) The two operands in a range-expression shall be of the same class and shall not be of class boolean, message-tag, object, or pointer.5) A selection object is a partial-expression if the leftmost portion of the selection object is a relational operator, a class condition without the identifier, a sign condition without the identifier, or a sign condition without the arithmetic expression.6) The classification of some selection subjects or selection objects is changed for a particular WHEN phrase as follows:a) If the selection subject is TRUE or FALSE and the selection object is a boolean expression that results in one boolean character, the selection object is treated as a boolean condition and therefore condition-2.b) If the selection object is TRUE or FALSE and the selection subject is a boolean expression that results in one boolean character, the selection subject is treated as a boolean condition and therefore condition-1.c) If the selection subject is other than TRUE or FALSE and the selection object is a boolean expression that results in one boolean character, the selection object is treated as a boolean expression and therefore boolean-expression-2.d) If the selection object is other than TRUE or FALSE and the selection subject is a boolean expression that results in one boolean character, the selection subject is treated as a boolean expression and therefore boolean-expression-1.e) If the selection object is a partial expression and the selection subject is a data item of the class boolean or numeric, the selection subject is treated as an identifier.

identifier-3literal-3arithmetic-expression-3

 THROUGHTHRU

 identifier-4literal-4arithmetic-expression-4

 [IN alphabet-name-1]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

620 ©ISO/IEC 2023

7) Each selection object within a set of selection objects shall correspond to the selection subject having the same ordinal position within the set of selection subjects according to the following rules:a) Identifiers, literals, or expressions appearing within a selection object shall be valid operands for comparison to the corresponding operand in the set of selection subjects in accordance with 8.8.4.2, Simple relation conditions.b) Condition-2 or the words TRUE or FALSE appearing as a selection object shall correspond to condition-1 or the words TRUE or FALSE in the set of selection subjects.c) The word ANY may correspond to a selection subject of any type.d) Partial-expression-1 shall correspond to a selection subject that is an identifier, a literal, an arithmetic expression, or a boolean expression. Partial-expression-1 shall be a sequence of COBOL words such that, were it preceded by the corresponding selection subject, a conditional expression would result.8) If a selection object is specified by partial-expression-1, that selection object is treated as though it were specified as condition-2, where condition-2 is the conditional expression that results from preceding partial-expression-1 by the selection subject. The corresponding selection subject is treated as though it were specified by the word TRUE.9) Neither identifier-3 nor identifier-4 shall reference a variable-length group.10) The permissible combinations of selection subject and selection object operands are indicated in Table 15, Combination of operands in the EVALUATE statement.
Table 15 — Combination of operands in the EVALUATE statement

Selection object

Selection subject
Identifier Literal Arithmetic

expression
Boolean

expression
Condition TRUE or

FALSE[NOT] identifier Y Y Y Y[NOT] literal Y Y Y[NOT] arithmetic-expression Y Y Y
[NOT] boolean-expression Y Y Y[NOT] range-expression Y Y YCondition Y YPartial-expression Y Y Y YTRUE or FALSE Y YANY Y Y Y Y Y YThe letter 'Y' indicates a permissible combination.A space indicates an invalid combination.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 621

14.9.13.4 General rules1) If an operand of the EVALUATE statement consists of a single literal, that operand is treated as a literal, not as an expression.2) The manner of determining the range of values specified by the THROUGH phrase is described in 14.7.8, THROUGH phrase.3) At the beginning of the execution of the EVALUATE statement, each selection subject is evaluated and assigned a value, a range of values, or a truth value as follows:a) Any selection subject specified by identifier-1 is assigned the value and class of the data item referenced by the identifier. If the selection subject is a numeric data item or a boolean data item whose length is one boolean position, the selection subject for this evaluation is treated as identifier-1 and not an arithmetic or boolean expression.b) Any selection subject specified by literal-1 is assigned the value and class of the specified literal.c) Any selection subject specified by arithmetic-expression-1 is assigned a numeric value according to the rules for evaluating an arithmetic expression.d) Any selection subject in which boolean-expression-1 is specified is assigned a boolean value according to the rules for evaluating boolean expressions.e) Any selection subject specified by condition-1 is assigned a truth value according to the rules for evaluating conditional expressions.f) Any selection subject specified by the words TRUE or FALSE is assigned a truth value. The truth value 'true' is assigned to those items specified with the word TRUE, and the truth value 'false' is assigned to those items specified with the word FALSE.4) The execution of the EVALUATE statement proceeds by processing each WHEN phrase from left to right in the following manner:a) Each selection object within the set of selection objects for each WHEN phrase is paired with the selection subject having the same ordinal position within the set of selection subjects. The result of the analysis of this set of selection subjects and objects is either true or false as follows:1. If the selection object is the word ANY, the result is true.2. If the selection object is partial-expression-1, the selection subject is placed to the left of the leading relational operator and the resulting conditional expression is evaluated. The result of the evaluation is the truth value of the expression.3. If the selection object is condition-2, the selection subject is either TRUE or FALSE. If the truth value of the selection subject and selection object match, the result of the analysis is true. If they do not match, the result is false.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

622 ©ISO/IEC 2023

4. If the selection object is either TRUE or FALSE, the selection subject is condition-1. If the truth value of the selection subject and selection object match, the result of the analysis is true. If they do not match, the result is false.5. If the selection object is a range-expression, the pair is considered to be a conditional expression of one of the following forms:
 when 'NOT' is not specified in the selection object;
 selection-subject >= left-part AND selection-subject <= right-part
 when 'NOT' is specified in the selection object
 selection-subject < left-part OR selection-subject > right-part
 where left-part is identifier-3, literal-3, or arithmetic-expression-3 and right-part is identifier-4, literal-4, or arithmetic-expression-4. The result of the analysis is the truth value of the resulting conditional expression.6. If the selection object is identifier-2, literal-2, arithmetic-expression-2, or boolean-expression-2, the pair is considered to be a conditional expression of the following form:
 selection-subject [NOT] = selection-object
 where 'NOT' is present if it is present in the selection object. The result of the analysis is the truth value of the resulting conditional expression.b) If the result of the analysis is true for every pair in a WHEN phrase, that WHEN phrase satisfies the set of selection subjects and no more WHEN phrases are analyzed.c) If the result of the analysis is false for any pair in a WHEN phrase, no more pairs in that WHEN phrase are evaluated and the WHEN phrase does not match the set of selection subjects.d) This procedure is repeated for subsequent WHEN phrases, in the order of their appearance in the source element, until either a WHEN phrase satisfying the set of selection subjects is selected or until all sets of selection objects are exhausted.5) The execution of the EVALUATE statement then proceeds as follows:a) If a WHEN phrase is selected, execution continues with the first imperative-statement-1 following the selected WHEN phrase.b) If no WHEN phrase is selected and a WHEN OTHER phrase is specified, execution continues with imperative-statement-2.c) The execution of the EVALUATE statement is terminated when execution reaches the end of imperative-statement-1 of the selected WHEN phrase or the end of imperative-statement-2, or when no WHEN phrase is selected and no WHEN OTHER phrase is specified.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 623

14.9.14 EXIT statement

14.9.14.1 GeneralThe EXIT statement provides a common end point for a series of procedures.The EXIT PROGRAM statement marks the logical end of a called program.The EXIT PERFORM statement provides a means of exiting an inline PERFORM (with or without returning to any specified test).The EXIT PERFORM statement also provides a means of exiting an exception-checking PERFORM statement.The EXIT PARAGRAPH and EXIT SECTION statements provide a means of exiting a structured procedure without executing any of the following statements within the procedure.
14.9.14.2 General formatsFormat 1 (simple):
Format 2 (program):

NOTE The Program format of the EXIT statement is an archaic feature. For details see F.1, Archaic language elements.Format 3 (inline-perform):
Format 4 (procedure):

EXIT

EXIT PROGRAM RAISING EXCEPTION exception-name-1identifier-1LAST EXCEPTION

EXIT PERFORM [CYCLE]
EXIT PARAGRAPHSECTION

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

624 ©ISO/IEC 2023

14.9.14.3 Syntax rulesFORMAT 11) The EXIT statement shall appear in a sentence by itself that shall be the only sentence in the paragraph or in a section without paragraphs.FORMAT 22) The EXIT statement shall not be specified in a declarative procedure for which the GLOBAL phrase is specified in the associated USE statement.3) Exception-name-1 shall be a level-3 exception-name as specified in the rules for exception conditions specified in 14.6.13.1, Exception conditions.If exception-name-1 is a level-3 exception-name for EC-USER, exception-name-1 shall be specified in the RAISING phrase of the procedure division header of the source element in which this EXIT statement is contained.4) Identifier-1 is a sending operand.5) Identifier-1 shall be an object reference, subject to the following constraints: a) If the data description entry of identifier-1 specifies an object-class-name, the class identified by that object-class-name or one of the superclasses of that class is specified in the RAISING phrase of the procedure division header of the source element containing this EXIT statement and the presence or absence of the FACTORY phrase shall be the same in the data description entry of identifier-1 as in the RAISING phrase of the procedure division header of the containing source element.b) If the data description entry of identifier-1 specifies an interface-name, the interface referenced by that interface-name shall conform to an interface specified in the RAISING phrase of the procedure division header of the source element that contains this EXIT statement, and the presence or absence of the FACTORY phrase is the same in the data description entry of identifier-1 as in the RAISING phrase of the procedure division header of the containing source element.c) If the data description entry of identifier-1 specifies an ACTIVE-CLASS phrase, the class of the object containing the EXIT statement, or one of the super classes of that object, and the presence or absence of the FACTORY phrase shall be the same as that specified in the RAISING phrase of the procedure division header of the source element containing this EXIT statement.d) Identifier-1 shall not be a universal object reference.6) The LAST phrase may be specified only in a declarative procedure or a WHEN phrase in a PERFORM statement.7) An EXIT PROGRAM statement may be specified only in a program procedure division.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 625

FORMAT 38) The EXIT PERFORM statement may be specified only in an inline or exception-checking PERFORM statement. The CYCLE phrase shall not be specified within an exception-checking PERFORM statement.FORMAT 49) The EXIT statement with the SECTION phrase may be specified only in a section.10) The EXIT statement with the PARAGRAPH phrase may be specified only in a paragraph.
14.9.14.4 General rulesFORMAT 11) An EXIT statement serves only to enable the user to assign a procedure-name to a given point in a procedure division. Such an EXIT statement has no other effect on the compilation or execution.FORMAT 22) If the EXIT PROGRAM statement is executed in a program that is not under the control of a calling runtime element, the EXIT PROGRAM statement is treated as if it were a CONTINUE statement. No exception condition is raised even if the RAISING phrase is specified.3) If an EXIT PROGRAM statement is executed in a program that is under the control of a calling runtime element, execution proceeds as specified in 14.9.18, GOBACK statement, General rules 3 and 4.FORMAT 34) If an EXIT PERFORM statement is specified in an exception-checking PERFORM statement, control passes to an implicit CONTINUE statement immediately preceding the END-PERFORM phrase specified for that PERFORM statement or, if the FINALLY phrase is specified, immediately preceding the FINALLY phrase.5) If an EXIT PERFORM statement is not specified in an exception-checking PERFORM statement, control passes as indicated in the following rules:a) The execution of an EXIT PERFORM statement without the CYCLE phrase causes control to be passed to an implicit CONTINUE statement immediately following the END-PERFORM phrase that matches the most closely preceding, and as yet unterminated, inline PERFORM statement.b) The execution of an EXIT PERFORM statement with the CYCLE phrase causes control to be passed to an implicit CONTINUE statement immediately preceding the END-PERFORM phrase that matches the most closely preceding, and as yet unterminated, inline PERFORM statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

626 ©ISO/IEC 2023

FORMAT 46) The execution of an EXIT PARAGRAPH statement causes control to be passed to an implicit CONTINUE statement immediately following the last explicit statement of the current paragraph, preceding any return mechanisms for that paragraph.NOTE The return mechanisms mentioned in the rules for EXIT PARAGRAPH and EXIT SECTION are those associated with language elements such as PERFORM, SORT, and USE.7) The execution of an EXIT SECTION statement causes control to be passed to an unnamed empty paragraph immediately following the last paragraph of the current section, preceding any return mechanisms for that section.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 627

14.9.15 FREE statement

14.9.15.1 GeneralThe FREE statement releases dynamic storage previously obtained with an ALLOCATE statement.
14.9.15.2 General format

14.9.15.3 Syntax rule1) The data item referenced by data-name-1 shall be of category data-pointer.
14.9.15.4 General rules1) The FREE statement is processed as follows:a) If the data-pointer referenced by data-name-1 identifies the start of storage that is currently allocated by an ALLOCATE statement, that storage is released and the data-pointer referenced by data-name-1 is set to NULL, the length of the released storage is the length of the storage obtained by the ALLOCATE statement, and the contents of any data items located within the released storage area become undefined;b) otherwise, if the data-pointer referenced by data-name-1 contains the predefined address NULL, no action is taken for that operand;c) otherwise, the EC-STORAGE-NOT-ALLOC exception condition is set to exist.2) If more than one data-name-1 is specified in a FREE statement, the result of executing this FREE statement is the same as if a separate FREE statement had been written for each data-name-1 in the same order as specified in the FREE statement. If an implicit FREE statement results in an exception condition being raised and the exception condition is nonfatal, after any applicable exception processing statements are executed, processing resumes at the next implicit FREE statement, if any. If the exception condition is fatal and the applicable exception processing statements do not result in abnormal run unit termination, processing resumes at the next implicit FREE statement, if applicable. If there is no next implicit FREE statement, processing resumes at the next executable statement as if no exception condition was raised during the execution of the FREE statement.

FREE { data-name-1 } ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

628 ©ISO/IEC 2023

14.9.16 GENERATE statement

14.9.16.1 GeneralThe GENERATE statement performs control break processing and, unless a report-name is specified, prints one instance of the specified detail.
14.9.16.2 General format

14.9.16.3 Syntax rules1) Data-name-1 shall name a detail report group. It may be qualified by a report-name.2) Report-name-1 may be used only if the referenced report description entry contains a CONTROL clause.3) If data-name-1 is defined in a containing program, the report description entry in which data-name-1 is specified and the file description entry associated with that report description entry shall contain a GLOBAL clause.4) If report-name-1 is defined in a containing program, the file description entry associated with report-name-1 shall contain a GLOBAL clause.
14.9.16.4 General rules1) Execution of a GENERATE data-name statement causes one instance of the specified detail to be printed, following any necessary control break and page fit processing, as detailed below.2) Execution of a GENERATE report-name-1 statement results in the same processing as for a GENERATE data-name statement for the same report, except that no detail is printed. This process is called summary reporting. If all the GENERATE statements executed for a report between the execution of the INITIATE and TERMINATE statements are of this form, the report that is produced is called a summary report.3) If a CONTROL clause is specified in the report description entry, each execution of the GENERATE statement causes the specified control data items to be saved and subsequently compared so as to sense for control breaks. This processing is described by the CONTROL clause.4) Execution of the chronologically first GENERATE statement following an INITIATE causes the following actions to take place in order:a) The report heading is printed if defined. If the report heading appears on a page by itself, an advance is made to the next physical page, and PAGE-COUNTER is either incremented by 1 or, if the report heading's NEXT GROUP clause has the WITH RESET phrase, set to 1. (See 13.18.57, TYPE clause; and 13.18.37, NEXT GROUP clause.)

GENERATE data-name-1report-name-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 629

b) A page heading is printed if defined. (See 13.18.57, TYPE clause.)c) If a CONTROL clause is defined for the report, each control heading is printed, wherever defined, in order from major to minor. (See 13.18.16, CONTROL clause; and 13.18.57, TYPE clause.)d) The specified detail is printed, unless summary reporting is specified.5) Execution of any chronologically second and subsequent GENERATE statements following an INITIATE causes the following actions to take place in order:a) If a CONTROL clause is defined for the report, and a control break has been detected, each control footing and control heading is printed, if defined, up to the level of the control break. (See 13.18.16, CONTROL clause; and 13.18.57, TYPE clause.)b) The specified detail is printed, unless summary reporting is specified.6) If the associated report is divided into pages, the chronologically first body group since the INITIATE is preceded by a page heading, if defined, and the printing of any subsequent body groups is preceded by a page fit test that, if unsuccessful, results in a page advance, consisting of the following actions in this order:a) If a page footing is defined it is printed.b) An advance is made to the next physical page.c) If the associated report description entry contains a CODE clause with an identifier operand, the identifier is evaluated.d) If the page advance was preceded by the printing of a group whose description has a NEXT GROUP clause with the NEXT PAGE and WITH RESET phrases, PAGE-COUNTER is set to 1; otherwise PAGE-COUNTER is incremented by 1.e) LINE-COUNTER is set to zero.f) If a page heading is defined it is printed.7) The report associated with data-name-1 or report-name-1 shall be in the active state. If it is not, the EC-REPORT-INACTIVE exception condition is set to exist, if it is enabled.8) If a nonfatal exception condition is raised during the execution of a GENERATE statement, execution resumes at the next report item, line, or report group, whichever follows in logical order.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

630 ©ISO/IEC 2023

14.9.17 GO TO statement

14.9.17.1 GeneralThe GO TO statement causes control to be transferred from one part of the procedure division to another.NOTE The use of a GO TO statement to exit a PERFORM statement range can leave a perform exit unsatisfied and cause unexpected results. If possible, its use should be avoided because it leads to difficulties in following program flow and unexpected results in many cases.
14.9.17.2 General formatsFormat 1 (unconditional):
Format 2 (depending):
14.9.17.3 Syntax rules1) Identifier-1 shall reference a numeric elementary data item that is an integer.2) If a GO TO statement represented by format 1 appears in a consecutive sequence of imperative statements within a sentence, it shall appear as the last statement in that sequence.3) A GO TO statement shall not be specified in a WHEN phrase of an exception-checking PERFORM statement.
14.9.17.4 General rules1) When a GO TO statement represented by format 1 is executed, control is transferred to procedure-name-1.2) When a GO TO statement represented by format 2 is executed, control is transferred to procedure-name-1, etc., depending on the value of identifier-1 being 1, 2, ... , n. If the content of identifier-1 is not numeric, the EC-DATA-INCOMPATIBLE exception condition is set to exist. If checking for EC-DATA-INCOMPATIBLE is enabled, processing occurs as specified for that exception condition. If checking for EC-DATA-INCOMPATIBLE is not enabled or the value of identifier-1 is anything other than the positive or unsigned integers 1, 2, ... , n, then no transfer occurs and control passes to the next statement in the normal sequence for execution.

GO TO procedure-name-1
GO TO { procedure-name-1 } ... DEPENDING ON identifier-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 631

14.9.18 GOBACK statement

14.9.18.1 GeneralThe GOBACK statement marks the logical end of a function, a method, or a program.
14.9.18.2 General format

Where raising-phrase is:

Where status-phrase is:

14.9.18.3 Syntax rules1) The GOBACK statement shall not be specified in a declarative procedure for which the GLOBAL phrase is specified in the associated USE statement.2) Exception-name-1 shall be a level-3 exception-name as specified in 14.6.13.1, Exception conditions.If exception-name-1 is a level-3 exception-name for EC-USER, exception-name-1 shall be specified in the RAISING phrase of the procedure division header of the source element in which this GOBACK statement is contained.3) Identifier-1 is a sending operand.4) Identifier-1 shall be an object reference, subject to the following constraints:a) If the data description entry of identifier-1 specifies an object-class-name, the class identified by that object-class-name or one of the superclasses of that class shall be specified in the RAISING phrase of the procedure division header of the source element containing this GOBACK statement and the presence or absence of the FACTORY phrase is the same in the data description entry of identifier-1 as in the RAISING phrase of the procedure division header of the containing source element.

GOBACK raising-phrasestatus-phrase

RAISING EXCEPTION exception-name-1identifier-1LAST EXCEPTION

WITH ERRORNORMAL

 STATUS identifier-2literal-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

632 ©ISO/IEC 2023

b) If the data description entry of identifier-1 specifies an interface-name, the interface referenced by that interface-name shall conform to an interface specified in the RAISING phrase of the procedure division header of the source element containing this GOBACK statement, and the presence or absence of the FACTORY phrase shall be the same in the data description entry of identifier-1 as in the RAISING phrase of the procedure division header of the containing source element.c) If the data description entry of identifier-1 specifies an ACTIVE-CLASS phrase, the class of the object containing the GOBACK statement, or one of the super classes of that object, and the presence or absence of the FACTORY phrase shall be the same as that specified in the RAISING phrase of the procedure division header of the source element containing this GOBACK statement.d) Identifier-1 shall not be a universal object reference.5) The LAST phrase may be specified only in a declarative procedure or WHEN phrase of a PERFORM statement.6) Identifier-2 shall reference an integer data item or a data item with usage display or usage national.7) If literal-1 is numeric, it shall be an integer.8) Literal-1 shall not be a zero-length literal.
14.9.18.4 General rules1) If a GOBACK statement is executed in a program that is under the control of a calling runtime element, execution proceeds as follows:a) If the activating runtime element is a non-COBOL element, execution continues in the activating element in an implementor-defined fashion.b) If the RAISING phrase is specified, an exception condition is raised in the activating runtime element if checking for that exception condition is enabled in the activating runtime element, and execution continues in that runtime element as specified in the rules for the activating statement after the result, if any, of the activated element is returned to the activating element. The exception condition that exists is determined as follows:1. If exception-name-1 is specified, it is that exception condition.2. If identifier-1 is specified, the object referenced by identifier-1 becomes the current exception object in the activating runtime element. Additional rules are specified in 14.6.13.1.5, Exception objects.3. If the LAST phrase is specified one of the following occurs:a. If an exception condition is currently raised, that exception condition is set to exist in the activating runtime element. If the exception condition is an exception object, additional rules are specified in 14.6.13.1.5, Exception objects. If the exception condition is a level-

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 633

3 exception for EC-USER and that exception condition is not specified in the RAISING phrase of the procedure division header of the source element in which this EXIT statement is contained, the EC-RAISING-NOT-SPECIFIED exception condition is set to exist in the activating runtime element instead of the EC-USER exception condition.b. If no exception condition is raised, the RAISING phrase is ignored and no exception condition is set to exist in the activating runtime element.2) The execution of an GOBACK statement causes the executing program to terminate, and control to return to the calling statement. If a RETURNING phrase is specified in the procedure division header of the program containing the GOBACK statement, the value in the data item referenced by that RETURNING phrase becomes the result of the program activation.Execution continues in the calling element as specified in the rules for the CALL statement. The state of the calling runtime element is not altered and is identical to that which existed at the time it executed the CALL statement except that the contents of data items and the contents of files shared between the calling runtime element and the called program may have been changed. If the program in which the GOBACK statement is specified is an initial program, an implicit CANCEL statement referencing that program is executed upon return to the calling runtime element. That implicit CANCEL statement will not raise any exception conditions in the calling runtime element. If the RAISING phrase is specified in the GOBACK statement, the exception condition that is specified in the RAISING phrase exists after the execution of that implicit CANCEL statement3) If a GOBACK statement is executed in a program that is not under the control of a calling runtime element, the program operates as if executing a STOP statement, with a status phrase, if any. A RAISING phrase, if specified, is ignored.4) The execution of a GOBACK statement within a method causes the executing method to terminate, and control to return to the invoking statement. If a RETURNING phrase is present in the method definition containing the GOBACK statement, the value in the data item referenced by the RETURNING phrase becomes the result of the method invocation.5) The execution of a GOBACK statement within a function causes the executing function to terminate, and control to return to the activating statement. The value in the data item referenced by the RETURNING phrase in the function definition containing the GOBACK statement becomes the result of the function activation.6) If a GOBACK statement is executed within the range of a declarative procedure whose USE statement contains the GLOBAL phrase and that USE statement is specified in the same program as the GOBACK statement, the EC-FLOW-GLOBAL-GOBACK exception condition is set to exist.7) If the GOBACK is executing in a main program and the ERROR phrase is specified, the operating system will indicate an error termination of the run unit if such a capability exists within the operating system.8) If the GOBACK statement is executing in a main program and the NORMAL phrase is specified, the operating system will indicate a normal termination of the run unit if such a capability exists within the operating system.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

634 ©ISO/IEC 2023

9) If the GOBACK statement is executing in a main program and neither the ERROR phrase nor the NORMAL phrase is specified, the operating system will indicate a normal termination of the run unit if such a capability exists within the operating system unless error termination has been indicated by an implementor-defined mechanism.10) During execution of the GOBACK statement in a main program with literal-1 or identifier-2 specified, literal-1 or the contents of the data item referenced by identifier-2 are passed to the operating system. Any constraints on the value of literal-1 or the contents of the data item referenced by identifier-2 are defined by the implementor.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 635

14.9.19 IF statement

14.9.19.1 GeneralThe IF statement causes a condition to be evaluated. The subsequent action of the runtime element depends on whether the value of the condition is true or false.
14.9.19.2 General formatsFormat 1 (delimited):
Format 2 (historic):

NOTE NEXT SENTENCE is an archaic feature. For details see F.1, Archaic language elements.
14.9.19.3 Syntax rulesALL FORMATS1) Statement-1 and statement-2 represent either one or more imperative statements or a conditional statement optionally preceded by one or more imperative statements. A further description of the rules governing statement-1 and statement-2 is given in 14.5.3, Scope of statements.2) Statement-1 and statement-2 may each contain an IF statement. In this case, the IF statement is said to be nested. More detailed rules on nesting are given in 14.5.3, Scope of statements.Nested IF statements may contain an ELSE phrase, and may also be terminated using an END-IF terminator. Proceeding from left to right, whether an ELSE or END-IF matches a preceding IF statement is determined as follows: a) any ELSE encountered is matched with the nearest preceding IF that either has not been already matched with an ELSE or has not been implicitly or explicitly terminated,b) any END-IF encountered is matched with the nearest preceding IF that has not been implicitly or explicitly terminated.NOTE A nested IF statement is terminated by terminal separator period of the containing IF statement.

 IF condition-1 THEN statement-1 [ELSE statement-2] END-IF

IF condition-1 THEN statement-1NEXT SENTENCE

 ELSE statement-2NEXT SENTENCE

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

636 ©ISO/IEC 2023

FORMAT 23) The ELSE NEXT SENTENCE phrase may be omitted if it immediately precedes the terminal separator period of the sentence.
14.9.19.4 General rulesFORMAT 11) If condition-1 is true, control is transferred to the first statement of statement-1 and execution continues according to the rules for each statement specified in statement-1. The ELSE phrase, if specified, is ignored.2) If condition-1 is false, the THEN phrase is ignored. If the ELSE phrase is specified, control is transferred to the first statement of statement-2 and execution continues according to the rules for each statement specified in statement-2.FORMAT 23) If condition-1 is true and statement-1 is specified, control is transferred to the first statement of statement-1 and execution continues according to the rules for each statement specified in statement-1. The ELSE phrase, if specified, is ignored.4) If condition-1 is true and NEXT SENTENCE is specified in the THEN phrase, the ELSE phrase, if specified, is ignored and control is transferred to an implicit CONTINUE statement immediately preceding the next separator period.5) If condition-1 is false and statement-2 is specified, the THEN phrase is ignored, control is transferred to the first statement of statement-2, and execution continues according to the rules for each statement specified in statement-2.6) If condition-1 is false and NEXT SENTENCE is specified in the ELSE phrase, the THEN phrase is ignored and control is transferred to an implicit CONTINUE statement immediately preceding the next separator period.7) If condition-1 is false and the ELSE phrase is not specified, the THEN phrase is ignored.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 637

14.9.20 INITIALIZE statement

14.9.20.1 GeneralThe INITIALIZE statement provides the ability to set selected data items to specified values.
14.9.20.2 General format

where category-name is:

14.9.20.3 Syntax rules1) Identifier-1 shall be strongly typed or of class alphabetic, alphanumeric, boolean, message-tag, national, numeric, object, or pointer.

INITIALIZE { identifier-1 } ... [WITH FILLER]ALLcategory-name

 TO VALUE
THEN REPLACING category-name DATA BY identifier-2literal-1

 ...

[THEN TO DEFAULT]
ALPHABETICALPHANUMERICALPHANUMERIC-EDITEDBOOLEANDATA-POINTERFUNCTION-POINTERMESSAGE-TAGNATIONALNATIONAL-EDITEDNUMERICNUMERIC-EDITEDOBJECT-REFERENCEPROGRAM-POINTER

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

638 ©ISO/IEC 2023

2) Identifier-1 shall be specified only once if the INITIALIZE statement is specified in imperative-statement-1 of an exception-checking PERFORM statement.3) For each DATA-POINTER, FUNCTION-POINTER, MESSAGE-TAG, OBJECT-REFERENCE, or PROGRAM-POINTER phrase specified as the category-name in the REPLACING phrase, identifier-2 shall be specified.4) For each of the categories data-pointer, function-pointer, message-tag, object-reference, and program-pointer specified in the REPLACING phrase, a SET statement with identifier-2 as the sending operand and an item of the specified category as the receiving operand shall be valid.For each of the other categories specified in the REPLACING phrase, a MOVE statement with identifier-2 or literal-1 as the sending item and an item of the specified category as the receiving operand shall be valid.5) The data description entry for the data item referenced by identifier-1 shall not contain a RENAMES clause.6) The same category shall not be repeated in a REPLACING phrase.7) The data item referenced by identifier-1 is the receiving operand.8) If the REPLACING phrase is specified, literal-1 or the data item referenced by identifier-2 is the sending operand. If the REPLACING phrase is not specified, the sending operand is determined according to the following general rules.
14.9.20.4 General rules1) When identifier-1 references a bit group item or a national group item, identifier-1 is processed as a group item. When identifier-2 references a bit group item or a national group item, identifier-2 is processed as an elementary data item.2) The keywords in category-name correspond to a category of data as specified in 8.5.2, Class and category of data items and literals. If ALL is specified in the VALUE phrase it is as if all of the categories listed in category-name were specified.3) If more than one identifier-1 is specified in an INITIALIZE statement, the result of executing this INITIALIZE statement is the same as if a separate INITIALIZE statement had been written for each identifier-1 in the same order as specified in the INITIALIZE statement. If an implicit INITIALIZE statement results in the execution of a declarative procedure that executes a RESUME statement with the NEXT STATEMENT phrase, processing resumes at the next implicit INITIALIZE statement, if any.4) Whether identifier-1 references an elementary item or a group item, the effect of the execution of the INITIALIZE statement is as though a series of implicit MOVE or SET statements, each of which has an elementary data item as its receiving operand, were executed. The sending-operands of these implicit statements are defined in General rule 6 and the receiving-operands are defined in General rule 5.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 639

If the category of a receiving-operand is data-pointer, function-pointer, message-tag, object-reference, or program-pointer, the implicit statement is:SET receiving-operand TO sending-operandOtherwise, the implicit statement is:MOVE sending-operand TO receiving-operand.5) The receiving-operand in each implicit MOVE or SET statement is determined by applying the following steps in order:a) First, the following data items are excluded as receiving-operands:1. Any identifiers that are not valid receiving operands of a MOVE statement, except data items of category data-message-tag, pointer, object-reference, or program-pointer.2. If the FILLER phrase is not specified, elementary data items with an explicit or implicit FILLER clause.3. Any elementary data item subordinate to identifier-1 whose data description entry contains a REDEFINES or RENAMES clause or is subordinate to a data item whose data description entry contains a REDEFINES clause. However, identifier-1 may itself have a REDEFINES clause or be subordinate to a data item with a REDEFINES clause.b) Second, an elementary data item is a possible receiving item if:1. It is explicitly referenced by identifier-1; or2. It is contained within the group data item referenced by identifier-1. If the elementary data item is a table element, each occurrence of the elementary data item is a possible receiving-operand.c) Finally, each possible receiving-operand is a receiving-operand if at least one of the following is true:1. The VALUE phrase is specified, the category of the elementary data item is one of the categories specified or implied in the VALUE phrase, and one of the following is true:a. Either the category of the elementary data item is data-pointer, message-tag, object-reference, or program-pointer, orb. A data-item format VALUE clause is specified in the data description entry of the elementary data item.c. A table format VALUE clause is specified in the data description entry of the elementary item and that VALUE clause specifies a value for the particular occurrence of the elementary data item.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

640 ©ISO/IEC 2023

2. The REPLACING phrase is specified and the category of the elementary data item is one of the categories specified in the REPLACING phrase; or3. The DEFAULT phrase is specified; or4. Neither the REPLACING phrase nor the VALUE phrase is specified.6) The sending-operand in each implicit MOVE and SET statement is determined as follows:a) If the data item qualifies as a receiving-operand because of the VALUE phrase:1. If the category of the receiving-operand is data-pointer, function-pointer, message-tag, or program-pointer, the sending-operand is the predefined address NULL;2. If the category of the receiving-operand is object-reference, the sending-operand is the predefined object reference NULL;3. Otherwise, the sending-operand is determined by the literal in the VALUE clause specified in the data description entry of the data item. If the data item is a table element, the literal in the VALUE clause that corresponds to the occurrence being initialized determines the sending-operand. The actual sending-operand is a literal that, when moved to the receiving-operand with a MOVE statement, produces the same result as the initial value of the data item as produced by the application of the VALUE clause.b) If the data item does not qualify as a receiving-operand because of the VALUE phrase, but does qualify because of the REPLACING phrase, the sending-operand is the literal-1 or identifier-2 associated with the category specified in the REPLACING phrase.c) If the data item does not qualify in accordance with General rules 6a and 6b, the sending-operand used depends on the category of the receiving-operand as follows:Receiving operand Figurative constantAlphabetic Figurative constant alphanumeric SPACESAlphanumeric Figurative constant alphanumeric SPACESAlphanumeric-edited Figurative constant alphanumeric SPACESBoolean Figurative constant ZEROESData-pointer Predefined address NULLFunction-pointer Predefined address NULLMessage-tag Predefined content NULLNational Figurative constant national SPACESNational-edited Figurative constant national SPACESNumeric Figurative constant ZEROESNumeric-edited Figurative constant ZEROESObject-reference Predefined object reference NULLProgram-pointer Predefined address NULL7) When a dynamic-length elementary item is initialized, its length is set to zero.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 641

8) If identifier-1 references a group data item, affected elementary data items are initialized in the sequence of their definition within the group data item. For a variable-occurrence data item, the number of occurrences initialized is determined by the rules of the OCCURS clause for a receiving data item.9) If identifier-1 occupies the same storage area as identifier-2, the result of the execution of this statement is undefined, even if they are defined by the same data description entry. (See 14.6.10, Overlapping operands.)10) When a group containing a dynamic-capacity table is initialized, all the elements of the table up to current capacity, if any, are initialized, whether or not the INITIALIZED phrase is present in the OCCURS clause, and the current capacity of the table is left unchanged.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

642 ©ISO/IEC 2023

14.9.21 INITIATE statement

14.9.21.1 GeneralThe INITIATE statement initializes any internal storage locations used by the specified reports before any printing begins for these reports.
14.9.21.2 General format

14.9.21.3 Syntax rules1) Report-name-1 shall be defined by a report description entry in the report section.2) If report-name-1 is defined in a containing program, the file description entry associated with report-name-1 shall contain a GLOBAL clause.3) An INITIATE statement that specifies more than one report-name-1 shall not be specified in an exception checking PERFORM statement.
14.9.21.4 General rules1) The INITIATE statement performs the following initialization functions for each specified report:a) All sum counters and all size error indicators are set to zero.b) LINE-COUNTER is set to zero.c) PAGE-COUNTER is set to 1.2) An INITIATE statement shall not be executed if report-name-1 is in the active state. If it is in the active state, the EC-REPORT-ACTIVE exception condition is set to exist and the execution of the INITIATE statement has no other effect.3) The INITIATE statement does not open any file connector with which report-name-1 is associated. Therefore, the INITIATE statement may be executed only if the corresponding file connector is open in the extend mode or the output mode. If the file connector is not open in the output or extend mode, the EC-REPORT-FILE-MODE exception condition is set to exist and no action is taken on the report.4) A successful INITIATE statement places the report in the active state.5) The results of executing an INITIATE statement in which more than one report-name-1 is specified is the same as if a separate INITIATE statement had been executed for each report-name-1 in the same order as specified in the statement. If an implicit INITIATE statement results in the execution of a declarative procedure that executes a RESUME statement with the NEXT STATEMENT phrase, processing resumes at the next implicit INITIATE statement, if any.

INITIATE { report-name-1 } ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 643

14.9.22 INSPECT statement

14.9.22.1 GeneralThe INSPECT statement provides the ability to tally or replace occurrences of single characters or sequences of characters in a data item.
14.9.22.2 General formatsFormat 1 (tallying):
Format 2 (replacing):
Format 3 (tallying-and-replacing):
Format 4 (converting):

where tallying-phrase is:

INSPECT [BACKWARD] identifier-1 TALLYING tallying-phrase
INSPECT [BACKWARD] identifier-1 REPLACING replacing-phrase
INSPECT [BACKWARD] identifier-1 TALLYING tallying-phrase REPLACING replacing-phrase
INSPECT [BACKWARD] identifier-1 CONVERTING identifier-6literal-4

 TO identifier-7literal-5

 [after-before-phrase]

identifier-2 FOR
CHARACTERS [after-before-phrase]
ALL identifier-3literal-1

 [after-before-phrase]

LEADING identifier-3literal-1

 [after-before-phrase]

 ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

644 ©ISO/IEC 2023

where after-before-phrase is:

where replacing-phrase is:

where replacement-item is:

14.9.22.3 Syntax rulesALL FORMATS1) Identifier-1 shall reference either an alphanumeric or national group item or an elementary item described implicitly or explicitly as usage display or national.2) Identifier-3, ... , identifier-n shall reference an elementary item described implicitly or explicitly as usage display or national.

AFTER INITIAL identifier-4literal-2

BEFORE INITIAL identifier-4literal-2

CHARACTERS BY replacement-item [after-before-phrase]
ALL identifier-3literal-1

 BY replacement-item [after-before-phrase]

LEADING identifier-3literal-1

 BY replacement-item [after-before-phrase]

FIRST identifier-3literal-1

 BY replacement-item [after-before-phrase]

 ...

 ...

identifier-5literal-3

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 645

3) Each literal shall be an alphanumeric, boolean, or national literal. Literal-1, literal-2, literal-3, and literal-4 shall not be a figurative constant that begins with the word ALL. If literal-1, literal-2, or literal-4 is a figurative constant, it refers to an implicit one character data item. When identifier-1 is of class national, the class of the figurative constant is national; when identifier-1 is of class boolean, the figurative constant is of class boolean and only the figurative constant ZERO may be specified; otherwise, the class of the figurative constant is alphanumeric. Literal-1, literal-2, literal-3, literal-4, or literal-5 shall not be a zero-length literal.4) If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6, identifier-7, literal-1, literal-2, literal-3, literal-4, or literal-5 references an elementary data item or literal of class boolean or national, then all shall reference a data item or literal of class boolean or national, respectively.FORMATS 1 AND 35) Identifier-2 shall reference an elementary numeric data item.FORMATS 2 AND 36) When both literal-1 and literal-3 are specified, they shall be the same size except when literal-3 is a figurative constant, in which case it is expanded or contracted to be the size of literal-1.7) When the CHARACTERS phrase is specified, literal-3 shall be one character in length.FORMAT 18) Identifier-1 is a sending operand.FORMAT 49) When both literal-4 and literal-5 are specified they shall be the same size except when literal-5 is a figurative constant.
14.9.22.4 General rulesALL FORMATS1) For purposes of determining its length, identifier-1 is treated as a sending data item.2) If the data item referenced by identifier-1 is a zero-length item:a) the contents of the data items referenced by identifier-1 and identifier-2 are unchangedb) the execution of the INSPECT statement is successful c) control is immediately transferred to the end of the INSPECT statement.3) Inspection (which includes the comparison cycle, the establishment of boundaries for the BEFORE or AFTER phrase, and the mechanism for tallying and/or replacing) begins at the leftmost character position of the data item referenced by identifier-1, regardless of its class, and proceeds from left to

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

646 ©ISO/IEC 2023

right to the rightmost character position as described in General rules 6 through 8, unlessBACKWARD is specified, in which case, inspection (which includes the comparison cycle, the establishment of boundaries for the BEFORE or AFTER phrase, and the mechanism for tallying and/or replacing) begins at the rightmost character position of the data item referenced by identifier-1, regardless of its class, and proceeds from right to left to the leftmost character position as described in General rules 6 through 8.NOTE 1 When BACKWARD is specified the BEFORE and AFTER phrases are evaluated in the direction of the scan. INSPECT BACKWARD "A12C21D12EF" TALLYING data-name-1 CHARACTERS BEFORE “12” would return 2 in data-name-1, not 5.4) For use in the INSPECT statement, the content of the data item referenced by identifier-1, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7 shall be treated as follows:a) If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7 references an alphabetic, alphanumeric, boolean, or national data item, the INSPECT statement shall treat the content of each such identifier as a character-string of the category associated with that identifier.b) If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7 references an alphanumeric-edited data item, or a numeric-edited or unsigned numeric data item described explicitly or implicitly with usage display, the data item is inspected as though it had been redefined as alphanumeric (see General rule 4a) and the INSPECT statement had been written to reference the redefined data item.c) If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7 references a national-edited data item, or a numeric-edited or unsigned numeric data item described explicitly or implicitly with usage national, the data item is inspected as though it had been redefined as category national and the INSPECT statement has been written to reference the redefined data item.d) If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7 references a signed numeric data item, the data item is inspected as though it had been moved to an unsigned numeric data item with length equal to the length of the signed item excluding any separate sign position, and then the rules in General rule 4b or 4c had been applied. If identifier-1 is a signed numeric item, the original value of the sign is retained upon completion of the INSPECT statement.5) In General rules 6 through 21, all references to literal-1, literal-2, literal-3, literal-4, or literal-5 apply equally to the content of the data item referenced by identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7 respectively.6) Item identification for any identifier is done only once as the first operation in the execution of the INSPECT statement.FORMATS 1 AND 27) During inspection of the content of the data item referenced by identifier-1, each properly matched occurrence of literal-1 is tallied (format 1) or replaced by literal-3 (format 2).

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 647

8) The comparison operation to determine the occurrence of literal-1 to be tallied or to be replaced, occurs as follows:a) The operands of the TALLYING or REPLACING phrase are considered in the order they are specified in the INSPECT statement from left to right. The first literal-1 is compared to an equal number of contiguous characters, starting with the leftmost character position, or, if BACKWARD is specified, the rightmost character position in the data item referenced by identifier-1. Literal-1 matches that portion of the content of the data item referenced by identifier-1 if they are equal, character for character and:1. If neither LEADING nor FIRST is specified; or2. If the LEADING adjective applies to literal-1 and literal-1 is a leading occurrence as defined in General rules 12 and 17; or3. If the FIRST adjective applies to literal-1 and literal-1 is the first occurrence as defined in General rule 17.b) If no match occurs in the comparison of the first literal-1, the comparison is repeated with each successive literal-1, if any, until either a match is found or there is no next successive literal-1. When there is no next successive literal-1, the character position in the data item referenced by identifier-1 immediately to the right, or if BACKWARD is specified to the left, of the leftmost character position considered in the last comparison cycle is considered as the leftmost character position, and the comparison cycle begins again with the first literal-1.NOTE 2 The keyword BACKWARD specifies only the direction of the scan, not the direction of the matching. Matching always takes place starting at the leftmost character at the current character position as specified in General rule 8 with the leftmost position of the characters being tallied or replaced.c) Whenever a match occurs, tallying or replacing takes place as described in General rules 12 and 15. The character position in the data item referenced by identifier-1 immediately to the right of the rightmost character position that participated in the match or, if BACKWARD is specified, the character position in the data item referenced by identifier-1 immediately to the left of the leftmost character position that participated in the match is now considered to be the leftmost character position of the data item referenced by identifier-1, and the comparison cycle starts again with the first literal-1.d) If BACKWARD was not specified the comparison operation continues until the rightmost character position of the data item referenced by identifier-1 has participated in a match or has been considered as the leftmost character position otherwise if BACKWARD has been specified, the comparison operation continues until the leftmost character position of the data item referenced by identifier-1 has participated in a match or has been considered as the rightmost character position. When this occurs, inspection is terminated.e) If the CHARACTERS phrase is specified, an implied one character operand participates in the cycle described in General rules 8a through 8d above as if it had been specified by literal-1, except that no comparison to the content of the data item referenced by identifier-1 takes place. This implied character is considered always to match the leftmost character of the content of the data item referenced by identifier-1 participating in the current comparison cycle.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

648 ©ISO/IEC 2023

9) The comparison operation defined in General rule 8 is restricted by the BEFORE and AFTER phrase as follows:a) If neither the BEFORE nor AFTER phrase is specified or identifier-4 references a zero-length item, literal-1 or the implied operand of the CHARACTERS phrase participates in the comparison operation as described in General rule 8. Literal-1 or the implied operand of the CHARACTERS phrase is first eligible to participate in matching at the leftmost character position, or, if BACKWARD is specified, at the rightmost character position of identifier-1.b) If the BEFORE phrase is specified, the associated literal-1 or the implied operand of the CHARACTERS phrase participates only in those comparison cycles that involve that portion of the content of the data item referenced by identifier-1 the first character position that is eligible to participate up to, but not including, the first occurrence encountered of literal-2 within the content of the data item referenced by identifier-1. The position of this first occurrence is determined before the first cycle of the comparison operation described in General rule 8 is begun. If, on any comparison cycle, literal-1 or the implied operand of the CHARACTERS phrase is not eligible to participate, it is considered not to match the content of the data item referenced by identifier-1. If there is no occurrence of literal-2 within the content of the data item referenced by identifier-1, its associated literal-1 or the implied operand of the CHARACTERS phrase participates in the comparison operation as though the BEFORE phrase had not been specified.c) If the AFTER phrase is specified:1. If BACKWARD is specified, the associated literal-1 or the implied operand of the CHARACTERS phrase participates only in those comparison cycles that involve that portion of the content of the data item referenced by identifier-1 from the character position immediately to the left of the leftmost character position of the first occurrence of literal-2 within the content of the data item referenced by identifier-1 to the leftmost character position of the data item referenced by identifier-1, else2. the associated literal-1 or the implied operand of the CHARACTERS phrase participates only in those comparison cycles that involve that portion of the content of the data item referenced by identifier-1 from the character position immediately to the right of the rightmost character position of the first occurrence of literal-2 within the content of the data item referenced by identifier-1 to the rightmost character position of the data item referenced by identifier-1.This is the character position at which literal-1 or the implied operand of the CHARACTERS phrase is first eligible to participate in matching. The position of this first occurrence is determined before the first cycle of the comparison operation described in General rule 8 is begun. If, on any comparison cycle, literal-1 or the implied operand of the CHARACTERS phrase is not eligible to participate, it is considered not to match the content of the data item referenced by identifier-1. If there is no occurrence of literal-2 within the content of the data item referenced by identifier-1, its associated literal-1 or the implied operand of the CHARACTERS phrase is never eligible to participate in the comparison operation.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 649

FORMAT 110) Both the ALL and LEADING phrases are transitive across the operands that follow them until another ALL or LEADING phrase is encountered.11) The content of the data item referenced by identifier-2 is not initialized by the execution of the INSPECT statement.12) The rules for tallying are as follows:a) If the ALL phrase is specified, the content of the data item referenced by identifier-2 is incremented by one for each occurrence of literal-1 matched within the content of the data item referenced by identifier-1.b) If the LEADING phrase is specified, the content of the data item referenced by identifier-2 is incremented by one for the first and each subsequent contiguous occurrence of literal-1 matched within the content of the data item referenced by identifier-1, provided that the first such occurrence encountered is at the point where comparison began in the first comparison cycle in which literal-1 was eligible to participate.c) If the CHARACTERS phrase is specified, the content of the data item referenced by identifier-2 is incremented by one for each character matched, in the sense of General rule 8e, within the content of the data item referenced by identifier-1.13) If identifier-1, identifier-3, or identifier-4 occupies the same storage area as identifier-2, the result of the execution of this statement is undefined, even if they are defined by the same data description entry. (See 14.6.10, Overlapping operands.)FORMATS 2 AND 314) The size of literal-3 or the data item referenced by identifier-5 shall be equal to the size of literal-1 or the data item referenced by identifier-3. If these sizes are not equal, the EC-RANGE-INSPECT-SIZE exception condition is set to exist and the results of the execution of the INSPECT statement are undefined. When a figurative constant is used as literal-3, the size of the figurative constant is equal to the size of literal-1 or the size of the data item referenced by identifier-3.15) When the CHARACTERS phrase is used, the data item referenced by identifier-5 shall be one character in length. If it is not, the EC-RANGE-INSPECT-SIZE exception condition is set to exist and the results of the execution of the INSPECT statement are undefined.FORMAT 216) The ALL, FIRST, and LEADING phrases are transitive across the operands that follow them until another ALL, FIRST, or LEADING phrase is encountered.17) The rules for replacement are as follows:a) When the CHARACTERS phrase is specified, each character matched, in the sense of General rule 8e, in the content of the data item referenced by identifier-1 is replaced by literal-3.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

650 ©ISO/IEC 2023

b) When the adjective ALL is specified, each occurrence of literal-1 matched in the content of the data item referenced by identifier-1 is replaced by literal-3.c) When the adjective LEADING is specified, the first and each successive contiguous occurrence of literal-1 matched in the content of the data item referenced by identifier-1 is replaced by literal-3, provided that the first such occurrence encountered is at the point where comparison began in the first comparison cycle in which literal-1, was eligible to participate.d) When the adjective FIRST is specified, the leftmost occurrence of literal-1, or, if BACKWARD is specified, the rightmost occurrence of literal-1 matched within the content of the data item referenced by identifier-1 is replaced by literal-3. This rule applies to each successive specification of the FIRST phrase regardless of the value of literal-1.18) If identifier-3, identifier-4, or identifier-5 occupies the same storage area as identifier-1, the result of the execution of this statement is undefined, even if they are defined by the same data description entry. (See 14.6.10, Overlapping operands.)FORMAT 319) A format 3 INSPECT statement is interpreted and executed as though two successive INSPECT statements specifying the same identifier-1 had been written with one statement being a format 1 statement with TALLYING phrases identical to those specified in the format 3 statement, and the other statement being a format 2 statement with REPLACING phrases identical to those specified in the format 3 statement. The general rules given for matching and counting apply to the format 1 statement and the general rules given for matching and replacing apply to the format 2 statement. Item identification of any identifier in the format 2 statement is done only once before executing the format 1 statement.FORMAT 420) A format 4 INSPECT statement is interpreted and executed as though a format 2 INSPECT statement specifying the same identifier-1 had been written with a series of ALL phrases, one for each character of literal-4. The effect is as if each of these ALL phrases referenced, as literal-1, a single character of literal-4 and referenced, as literal-3, the corresponding single character of literal-5. Correspondence between the characters of literal-4 and the characters of literal-5 is by ordinal position within the data item.21) If identifier-4, identifier-6, or identifier-7 occupies the same storage area as identifier-1, the result of the execution of this statement is undefined, even if they are defined by the same data description entry. (See 14.6.10, Overlapping operands.)22) The size of literal-5 or the data item referenced by identifier-7 shall be equal to the size of literal-4 or the data item referenced by identifier-6. If these sizes are not equal, the EC-RANGE-INSPECT-SIZE exception condition is set to exist and the results of the execution of the INSPECT statement are undefined. When a figurative constant is used as literal-5, the size of the figurative constant is equal to the size of literal-4 or the size of the data item referenced by identifier-6.23) If the same character appears more than once in the data item referenced by identifier-6 or in literal-4, the first occurrence of the character is used for replacement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 651

14.9.23 INVOKE statement

14.9.23.1 GeneralThe INVOKE statement causes a method to be invoked.
14.9.23.2 General format

14.9.23.3 Syntax rules1) Identifier-1 shall be an object reference.2) Literal-1 shall be of class alphanumeric or national and shall not be a zero-length literal.3) If object-class-name-1 is specified, literal-1 shall be specified. The value of literal-1 shall be the name of a method defined in the factory interface of object-class-name-1.4) If identifier-1 is specified and it does not reference a universal object reference, literal-1 shall be specified. The value of literal-1 shall be the name of a method, subject to the following conditions:a) If identifier-1 references an object reference described with an object-class-name and the FACTORY phrase, literal-1 shall be the name of a method contained in the factory interface of that object-class-name.b) If identifier-1 references an object reference described with an object-class-name without the FACTORY phrase, literal-1 shall be the name of a method contained in the instance interface of that object-class-name.c) If identifier-1 references an object reference described with the ACTIVE-CLASS and the FACTORY phrases, literal-1 shall be the name of a method contained in the factory interface of the class containing the INVOKE statement.

INVOKE object-class-name-1identifier-1

 identifier-2literal-1

 USING

[BY REFERENCE] identifier-3OMITTED

[BY CONTENT] arithmetic-expression-1boolean-expression-1identifier-5literal-2

[BY VALUE] arithmetic-expression-1identifier-5literal-2

[RETURNING identifier-4]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

652 ©ISO/IEC 2023

d) If identifier-1 references an object reference described with the ACTIVE-CLASS phrase and without the FACTORY phrase, literal-1 shall be the name of a method contained in the instance interface of the class containing the INVOKE statement.e) If identifier-1 references an object reference described with an interface-name, literal-1 shall be the name of a method contained in the interface referenced by that interface-name.f) If identifier-1 references the predefined object reference SELF and the method containing the INVOKE statement is a factory method, literal-1 shall be the name of a method contained in the factory interface of the class containing the INVOKE statement.g) If identifier-1 references the predefined object reference SELF and the method containing the INVOKE statement is an instance method, literal-1 shall be the name of a method contained in the instance interface of the class containing the INVOKE statement.h) If identifier-1 references the predefined object reference SUPER and the method containing the INVOKE statement is a factory method, literal-1 shall be the name of a method contained in the factory interface of a class inherited by the class containing the INVOKE statement.i) If identifier-1 references the predefined object reference SUPER and the method containing the INVOKE statement is an instance method, literal-1 shall be the name of a method contained in the instance interface of a class inherited by the class containing the INVOKE statement.5) If object-class-name-1 is specified or the data item referenced by identifier-1 is not a universal object reference, the following applies:a) If a BY CONTENT or BY REFERENCE phrase is specified for an argument, a BY REFERENCE phrase shall be specified or implied for the corresponding formal parameter in the procedure division header.b) If a BY VALUE phrase is specified for an argument, a BY VALUE phrase shall be specified or implied for the corresponding formal parameter in the procedure division header.c) The rules for conformance as specified in 14.8.2, Parameters and 14.8.3, Returning items apply.6) If identifier-1 references a universal object reference, neither the BY CONTENT nor the BY VALUE phrase shall be specified and the BY REFERENCE phrase, if not specified explicitly, is assumed implicitly.7) Identifier-2 may be specified only when identifier-1 is a universal object reference.8) Identifier-2 shall reference an alphanumeric or national data item.9) Identifier-3 shall be an address-identifier or shall reference a data item defined in the file, working-storage, local-storage, or linkage section.10) Identifier-3 shall not reference a data item defined in the file or working-storage section of a factory or instance object.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 653

11) Identifier-4 shall reference a data item defined in the file, working-storage, local-storage, or linkage section.12) If identifier-3 or identifier-4 references a bit data item, it shall be described such that it is aligned on a byte boundary and that subscripting and the leftmost position in a reference modification of that identifier consist of only fixed-point numeric literals or arithmetic expressions whose result is a positive integer, in which all operands are numeric literals and in which the exponentiation operator is not specified.13) If Identifier-3, identifier-4, or identifier-5 references a group item, there shall not be an item subordinate to that group item that is an object reference described with the ACTIVE-CLASS phrase.14) If an argument is specified without any BY phrase, BY REFERENCE is implied for that argument when:a) that argument is valid for being passed by reference, andb) the corresponding formal parameter is not specified with the BY VALUE phrase.15) If identifier-5 or its corresponding formal parameter is specified with the BY VALUE phrase, identifier-5 shall be of class message-tag, numeric, object or pointer.16) If literal-2 or its corresponding formal parameter is specified with the BY VALUE phrase, literal-2 shall be a numeric literal.17) Literal-2 shall not be a zero-length literal.18) If an OMITTED phrase is specified, an OPTIONAL phrase shall be specified for the corresponding formal parameter in the procedure division header.19) If identifier-3 references an address-identifier, identifier-3 is a sending operand.20) If identifier-3 does not reference an address-identifier, identifier-3 is a receiving operand.21) Identifier-5 and any identifier specified in arithmetic-expression-1 or boolean-expression-1 is a sending operand.22) Identifier-4 is a receiving operand.
14.9.23.4 General rules1) The instance of the program, function, or method that executes the INVOKE statement is the activating runtime element. 2) Identifier-1 identifies an instance object. If object-class-name-1 is specified, it identifies the factory object of the object-class referenced by that object-class-name. Literal-1 or the content of the data item referenced by identifier-2 identifies a method of that object that will act upon that instance object:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

654 ©ISO/IEC 2023

a) If the method to be invoked is a COBOL method, literal-1 or the content of the data item referenced by identifier-2 is the name of the method to be invoked as described in 8.3.2.2, User-defined words.b) If the method to be invoked is a non-COBOL method, the behavior of the INVOKE statement is implementor-defined.3) The sequence of arguments in the USING phrase of the INVOKE statement and the corresponding formal parameters in the USING phrase of the invoked method's procedure division header determines the correspondence between arguments and formal parameters. This correspondence is positional and not by name equivalence. NOTE The first argument corresponds to the first formal parameter, the second to the second, and the nth to the nth. The effect of the USING phrase on the activated runtime element is described in 14.3, Procedure division, general rules.4) An argument that consists merely of a single identifier or literal is regarded as an identifier or literal rather than an arithmetic or boolean expression.5) If identifier-1 is null, the EC-OO-NULL exception condition is set to exist and execution of the INVOKE statement is terminated.6) If object-class-name-1 is specified or the data item referenced by identifier-1 is not a universal object reference, the following applies: If an argument is specified without any of the keywords BY REFERENCE, BY CONTENT, or BY VALUE, the manner used for passing that argument is determined as follows:a) When the BY REFERENCE phrase is specified or implied for the corresponding formal parameter:1. if the argument meets the requirements of Syntax rules 9 and 10, BY REFERENCE is assumed;2. if the argument does not meet the requirements of Syntax rules 9 and 10, BY CONTENT is assumed.b) When the BY VALUE phrase is specified or implied for the corresponding formal parameter, BY VALUE is assumed.7) Execution of the INVOKE statement proceeds as follows:a) Arithmetic-expression-1, boolean-expression-1, identifier-1, identifier-2, identifier-3, and identifier-5 are evaluated and item identification is done for identifier-4 at the beginning of the execution of the INVOKE statement. If an exception condition exists, no method is invoked and execution proceeds as specified in General rule 7g. If an exception condition does not exist, the values of identifier-3, identifier-5, arithmetic-expression-1, boolean-expression-1, or literal-2 are made available to the invoked method at the time control is transferred to that method.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 655

b) The runtime system attempts to locate the method being invoked using the rules specified in 8.4.6, Scope of names; 8.4.6.5, Scope of method-names; 9.3.6, Method invocation; and 12.3.8, REPOSITORY paragraph. If the method is not found or the resources necessary to execute the method are not available, the EC-OO-METHOD exception condition is set to exist, the method invocation is not successful, and execution continues as specified in General rule 7g.c) If identifier-1 is a universal object reference and the method being invoked is a COBOL method, neither a formal parameter nor the returning item in the invoked method shall be described with the ANY LENGTH clause, and the rules for conformance specified in 14.8.2, Parameters and 14.8.3, Returning items apply. If a violation of these rules is detected, the EC-OO-UNIVERSAL exception condition is set to exist if checking for it is enabled in both the activated method and the activating runtime element, the method invocation is not successful, and execution continues as specified in General rule 7g.d) External items are checked to ensure that they comply with the following rules as specified in 14.8.4, External items:

If one of the rules listed above is violated and checking for it is enabled for the associated exception in both the activated method and the activating runtime element, the method invocation is not successful, and execution continues as specified in General rule 7g.e) The method specified by the INVOKE statement is made available for execution and control is transferred to the invoked method. Control is transferred to the invoked method in a manner consistent with the entry convention specified for the method. If the invoked method is a COBOL method, its execution is described in 14.2.3, General rules of the procedure division; otherwise, the execution is defined by the implementor.f) After control is returned from the invoked method, if an exception condition is propagated from the invoked method, execution continues as specified in General rule 7g; otherwise, control is transferred to the end of the INVOKE statement.g) If an exception condition has been raised, any exception processing statements that are associated with that exception condition are executed. Execution then proceeds as defined in 14.6.13, Exception condition handling.8) If a RETURNING phrase is specified, the result of the activated method is placed into identifier-4.9) If an OMITTED phrase is specified or a trailing argument is omitted, the omitted-argument condition for that parameter shall be true in the invoked method.

Rule Exception condition14.8.4.2, Correspondence of external data items used in external files EC-EXTERNAL-DATA-MISMATCH
14.8.4.3, Correspondence of external data item formats EC-EXTERNAL-FORMAT-CONFLICT14.8.4.4, Correspondence of external file control entries EC-EXTERNAL-FILE-MISMATCH

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

656 ©ISO/IEC 2023

10) If a parameter for which the omitted-argument condition is true is referenced in an invoked method, except as an argument or in the omitted-argument condition, the EC-OO-ARG-OMITTED exception condition is set to exist.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 657

14.9.24 MERGE statement

14.9.24.1 GeneralThe MERGE statement combines two or more identically sequenced files on a set of specified keys, and during the process makes records available, in merged order, to an output procedure or to an output file.
14.9.24.2 General format

14.9.24.3 Syntax rules1) A MERGE statement may appear anywhere in the procedure division except in imperative-statement-1 of an exception-checking PERFORM statement, or in an output procedure of another MERGE statement, or an input or output procedure of a file format SORT statement, or in a declarative procedure.2) File-name-1 shall be described in a sort-merge file description entry in the data division.3) If the file description entry for file-name-1 describes variable-length records, the file description entry for file-name-2 or file-name-3 shall describe neither records smaller than the smallest record nor larger than the largest record described for file-name-1. If the file description entry for file-name-1 describes fixed-length records, the file description entry for file-name-2 or file-name-3 shall not describe a record that is larger than the record described for file-name-1.4) Data-name-1 is a key data-name. Key data-names are subject to the following rules:a) The data items identified by key data-names shall be described in records associated with file-name-1.

MERGE file-name-1 ON ASCENDINGDESCENDING

 KEY { data-name-1 } ...

 ...

COLLATING SEQUENCE IS alphabet-name-1 [alphabet-name-2]FOR ALPHANUMERIC IS alphabet-name-1FOR NATIONAL IS alphabet-name-2

USING file-name-2 { file-name-3 } ...
OUTPUT PROCEDURE IS procedure-name-1 THROUGHTHRU

 procedure-name-2GIVING { file-name-4 } ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

658 ©ISO/IEC 2023

b) Key data names shall not be subject to any OCCURS clauses.c) Key data items shall not be of the class boolean, message-tag, object, or pointer.d) A key data item shall not be a variable-length group, an occurs-depending-on data item, a dynamic-length elementary item, or an item subordinate to a dynamic-capacity table.e) If file-name-1 has more than one record description, the data items identified by key data-names need be described in only one of the record descriptions. The same byte positions referenced by a key data-name in one record description entry are taken as the key in all records of the file.f) None of the data items identified by key data-names may be described by an entry that either contains an OCCURS clause or is subordinate to an entry that contains an OCCURS clause.g) If the file referenced by file-name-1 contains variable-length records, all the data items identified by key data-names shall be contained within the first x bytes of the record, where x equals the minimum record size specified for the file referenced by file-name-1.5) Alphabet-name-1 shall reference an alphabet that defines an alphanumeric collating sequence.6) Alphabet-name-2 shall reference an alphabet that defines a national collating sequence.7) File-names shall not be repeated within the MERGE statement.8) The words THROUGH and THRU are equivalent.9) File-name-2, file-name-3, and file-name-4 shall be described in a file description entry that is not for a report file and is not a sort-merge file description entry.10) If file-name-4 references an indexed file, the first specification of data-name-1 shall be associated with an ASCENDING phrase and the data item referenced by that data-name-1 shall occupy the same byte positions in its record as the data item associated with the prime record key for that file.11) No pair of file-names in a MERGE statement may be specified in the same SAME AREA, SAME SORT AREA, or SAME SORT-MERGE AREA clause. The only file-names in a MERGE statement that may be specified in the same SAME RECORD AREA clause are those associated with the GIVING phrase. 12) If the GIVING phrase is specified and the file description entry for file-name-4 describes variable-length records, the file description entry for file-name-1 shall describe neither records smaller than the smallest record nor larger than the largest record described for file-name-4. If the file description entry for file-name-4 describes fixed-length records, the file description entry for file-name-1 shall not describe a record that is larger than the record described for file-name-4.13) If file-name-2 or file-name-3 references a relative or an indexed file, its access mode shall be sequential or dynamic.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 659

14.9.24.4 General rules1) The MERGE statement merges all records contained on the files referenced by file-name-2 and file-name-3.2) If the file referenced by file-name-1 contains only fixed-length records, any record in the file referenced by file-name-2 or file-name-3 containing fewer character positions than that fixed length is space filled on the right to that fixed length, beginning with the first character position after the last character in the record, when that record is released to the file referenced by file-name-1, as follows:a) If there is only one record description entry associated with the file referenced by file-name-2 or file-name-3 and that record is described as a national data item or as an elementary data item of usage national and of category numeric, numeric-edited, or boolean, the record is filled with national space characters.b) If there are multiple record description entries associated with the file referenced by file-name-2 or file-name-3 and the descriptions include a SELECT WHEN clause, the rules of the SELECT WHEN clause are applied to the record to select its description. When the record is described as a national data item or as an elementary data item of usage national and of category numeric, numeric-edited, or boolean, the record is filled with national space characters.c) Otherwise, the record is filled with alphanumeric space characters.3) The data-names following the word KEY are listed from left to right in the MERGE statement in order of decreasing significance without regard to how they are divided into KEY phrases. The leftmost data-name is the major key, the next data-name is the next most significant key, etc.a) When the ASCENDING phrase is specified, the merged sequence is from the lowest value of the contents of the data items identified by the key data-names to the highest value, according to the rules for comparison of operands in a relation condition.b) When the DESCENDING phrase is specified, the merged sequence is from the highest value of the contents of the data items identified by the key data-names to the lowest value, according to the rules for comparison of operands in a relation condition.The words ASCENDING and DESCENDING are transitive across all occurrences of data-name-1 until another occurrence of the word ASCENDING or DESCENDING is encountered.4) When, according to the rules for the comparison of operands in a relation condition, the contents of all the key data items of one record are equal to the contents of the corresponding key data items of one or more other records, the order of return of these records:a) Follows the order of the associated input files as specified in the MERGE statement.b) Is such that all records associated with one input file are returned prior to the return of records from another input file.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

660 ©ISO/IEC 2023

5) The alphanumeric collating sequence that applies to the comparison of key data items of class alphabetic and class alphanumeric, and the national collating sequence that applies to the comparison of key data items of class national, are separately determined at the beginning of the execution of the MERGE statement in the following order of precedence:a) First, the collating sequence established by the COLLATING SEQUENCE phrase, if specified, in this MERGE statement. The collating sequence associated with alphabet-name-1 applies to key data items of class alphabetic and alphanumeric; the collating sequence associated with alphabet-name-2 applies to key data items of class national.b) Second, the collating sequences established as the program collating sequences.6) If the records in the file referenced by file-name-2 and file-name-3 are not ordered as described in the ASCENDING or DESCENDING KEY clauses and the collating sequence associated with the MERGE statement, the EC-SORT-MERGE-SEQUENCE exception condition is set to exist, all files associated with the MERGE statement are closed, and the results of the merge operation are undefined.7) All the records in the files referenced by file-name-2 and file-name-3 are transferred to the file referenced by file-name-1. At the start of execution of the MERGE statement, the file connectors referenced by file-name-2 and file-name-3 shall not be in the open mode, otherwise the EC-SORT-MERGE-FILE-OPEN exception condition is set to exist and the execution of the MERGE statement terminates. For each of the files referenced by file-name-2 and file-name-3 the execution of the MERGE statement causes the following actions to be taken:a) The processing of the file is initiated. If the file-control entry for the file has a SHARING clause with the ALL phrase, the initiation is performed as if an OPEN statement with the INPUT phrase and the SHARING WITH READ ONLY phrase had been executed; otherwise, the initiation is performed as if an OPEN statement with the INPUT phrase and without a SHARING phrase is executed. If an output procedure is specified, this initiation is performed before control passes to the output procedure. If a nonfatal exception condition exists as a result of the execution of the implicit OPEN statement, the MERGE statement is terminated unless there is an applicable USE procedure that completes normally, after which the MERGE statement continues processing as if the exception condition did not exist.b) The logical records are obtained and released to the merge operation. Each record is obtained as if a READ statement with the NEXT phrase, the IGNORING LOCK phrase, and the AT END phrase had been executed. When the at end condition exists for file-name-2 or file-name-3, the processing for that file connector is terminated. If the file referenced by file-name-1 is described with variable-length records, the size of any record written to file-name-1 is the size of that record when it was read from file-name-2 or file-name-3, regardless of the content of the data item referenced by the DEPENDING ON phrase of either a RECORD IS VARYING clause or an OCCURS clause specified in the sort-merge file description entry for file-name-1. If the size of the record read from the file referenced by file-name-2 or file-name-3 is larger than the largest record allowed in the file description entry for file-name-1, the EC-SORT-MERGE-RELEASE exception condition is set to exist and the execution of the MERGE statement is terminated. If file-name-1 is specified with variable-length records and the size of the record read from the file referenced by file-name-2 or file-name-3 is smaller than the smallest record allowed in the file description entry for file-name-1, the EC-SORT-MERGE-RELEASE exception condition is set to exist and the execution of the MERGE statement is terminated.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 661

c) The processing of the file is terminated. The termination is performed as if a CLOSE statement without optional phrases had been executed. If an output procedure is specified, this termination is not performed until after control passes the last statement in the output procedure. For a relative file, the content of the relative key data item is undefined after the execution of the MERGE statement.These implicit functions are performed such that any applicable USE procedures are executed. If a nonfatal exception condition exists from an attempt to CLOSE file-name-2 or file-name-3:1. If there is an applicable USE procedure that completes normally, the MERGE statement continues.2. If there is no applicable USE procedure, the exception condition is ignored and the MERGE statement continues execution.The value of the data item referenced by the DEPENDING ON phrase of a RECORD IS VARYING clause specified in the file description entry for file-name-2 or file-name-3 is undefined upon completion of the MERGE statement.8) The output procedure may consist of any procedure needed to select, modify, or copy the records that are made available one at a time by the RETURN statement in merged order from the file referenced by file-name-1. The range includes all statements that are executed as the result of a transfer of control in the range of the output procedure, as well as all statements in declarative procedures that are executed as a result of the execution of statements in the range of the output procedure. The range of the output procedure shall not cause the execution of any MERGE, RELEASE, or the file format of the SORT statement. (See 14.6.3, Explicit and implicit transfers of control.) If this rule is violated, the EC-SORT-MERGE-ACTIVE exception condition is set to exist and the results of the merge operation are undefined.9) If an output procedure is specified, control passes to it during execution of the MERGE statement. The compiler inserts a return mechanism after the last statement in the output procedure. When control passes to that return mechanism, the mechanism provides for termination of the merge, and then passes control to the next executable statement after the MERGE statement. Before entering the output procedure, the merge procedure reaches a point at which it selects the next record in merged order when requested. The RETURN statements in the output procedure are the requests for the next record.NOTE This return mechanism transfers control from the end of the output procedure and is not associated with the RETURN statement.10) During the execution of the output procedure, no statement may be executed manipulating the file referenced by or accessing the record area associated with file-name-2 or file-name-3.11) During the execution of any USE procedure implicitly invoked while executing the MERGE statement, no statement may be executed manipulating the file referenced by or accessing the record area associated with file-name-2, file-name-3, or file-name-4.12) If the GIVING phrase is specified, all the merged records are written on each file referenced by file-name-4 as the implied output procedure for the MERGE statement. At the start of execution of

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

662 ©ISO/IEC 2023

the MERGE statement, the file referenced by file-name-4 shall not be in the open mode. If the file is in an open mode, the EC-SORT-MERGE-FILE-OPEN exception condition is set to exist and the execution of the MERGE statement terminates. For each of the files referenced by file-name-4, the execution of the MERGE statement causes the following actions to be taken:a) The processing of the file is initiated. The initiation is performed as if an OPEN statement with the OUTPUT and SHARING WITH NO OTHER phrases had been executed. If a fatal exception condition exists as a result of this implicit OPEN statement and there is an applicable USE procedure that completes normally, processing for the file connector that caused the exception condition is bypassed. If a nonfatal exception condition exists as a result of this implicit OPEN statement and there is an applicable USE procedure that completes normally, the file connector that caused the exception condition is processed as if the exception did not exist.b) The merged logical records are returned and written onto the file. Each record is written as if a WRITE statement without any optional phrases had been executed. If the file referenced by file-name-4 is described with variable-length records, the size of any record written to file-name-4 is the size of that record when it was read from file-name-1, regardless of the content of the data item referenced by the DEPENDING ON phrase of either a RECORD IS VARYING clause or an OCCURS clause specified in the file description entry for file-name-4. If an exception condition exists as a result of this implicit WRITE statement and there is an applicable USE procedure that completes normally, the MERGE continues execution, otherwise the MERGE statement is terminated.For a relative file, the relative key data item for the first record returned has the value 1; for the second record returned, the value 2; etc. After execution of the MERGE statement, the content of the relative key data item indicates the last record returned to the file.c) The processing of the file is terminated. The termination is performed as if a CLOSE statement without optional phrases had been executed.These implicit functions are performed such that any associated USE procedures are executed; however, the execution of such a USE procedure shall not cause the execution of any statement manipulating the file referenced by, or accessing the record area associated with, file-name-4. On the first attempt to write outside the externally defined boundaries of the file, any USE procedure associated with the file connector referenced by file-name-4 is executed; if control is returned from that USE procedure or if no such USE procedure is specified, the processing of the file is terminated as in General rule 12c above.The value of the data item referenced by the DEPENDING ON phrase of a RECORD IS VARYING clause specified in the sort-merge file description entry for file-name-1 is undefined upon completion of the MERGE statement for which the GIVING phrase is specified.13) If the file referenced by file-name-4 contains only fixed-length records, any record in the file referenced by file-name-1 containing fewer character positions than that fixed-length is space filled on the right to that fixed length, beginning with the first character position after the last character in the record, when that record is returned to the file referenced by file-name-4, as follows:a) If there is only one record description entry associated with the file referenced by file-name-4 and that record is described as a national data item or as an elementary data item of usage

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 663

national and of category numeric, numeric-edited, or boolean, the record is filled with national space characters.b) If there are multiple record description entries associated with the file referenced by file-name-4 and the descriptions include a SELECT WHEN clause, the rules of the SELECT WHEN clause are applied to the record to select its description. When the record is described as a national data item or as an elementary data item of usage national and of category numeric, numeric-edited, or boolean, the record is filled with national space characters.c) Otherwise, the record is filled with alphanumeric space characters.14) Additional rules affecting the execution of the MERGE statement are given in 12.4.5, File control entry, General rules 3 and 4.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

664 ©ISO/IEC 2023

14.9.25 MOVE statement

14.9.25.1 GeneralThe MOVE statement transfers data, in accordance with the rules of editing, to one or more data areas.
14.9.25.2 General formatsFormat 1 (simple):

Format 2 (corresponding):

14.9.25.3 Syntax rulesFORMAT 11) The class of identifier-1 or identifier-2 shall not be index, message-tag, object, or pointer.2) If identifier-2 references a strongly-typed group item, identifier-1 shall be specified and be described as a group item of the same type.3) Literal-1 and the data item referenced by identifier-1 are sending operands.4) Identifier-2 is a receiving operand.5) It is permitted to move an ALL “literal” figurative constant (containing only digits) or an ALL symbolic-character (representing a digit) to an integer numeric item. In all other cases, the move of an alphanumeric figurative constant (SPACE, QUOTE, HIGH-VALUE, LOW-VALUE, ALL “literal”, or ALL symbolic-character) to either a numeric item or a numeric-edited item is prohibited.NOTE Moving an ALL “literal” figurative constant containing only digits or moving an ALL symbolic-character figurative constant representing a digit to an integer numeric receiving item is an obsolete feature and is to be removed from the next edition of standard COBOL.6) The figurative constant ZERO shall not be moved to an alphabetic data item.7) Any figurative constant for which the associated character or characters are not boolean characters shall not be moved to a boolean data item.8) If identifier-1 references a data item described with usage binary-char, binary-short, binary-long, or binary-double, identifier-2 shall reference a numeric or numeric-edited item.

MOVE identifier-1literal-1

 TO { identifier-2 } ...

MOVE CORRESPONDINGCORR

 identifier-3 TO identifier-4

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 665

9) If identifier-1 or identifier-2 references a variable-length group then these groups shall be compatible groups as specified in 8.5.1.12, Variable-length groups.10) For all other cases not described in Syntax rules 8 and 9, table 16, Validity of types of MOVE statements, specifies the validity of the move.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

666 ©ISO/IEC 2023

Table 16 — Validity of types of MOVE statements

FORMAT 211) The words CORR and CORRESPONDING are equivalent.12) Identifier-3 and identifier-4 shall specify group data items and shall not be reference-modified.13) The corresponding data items within identifier-3 are sending operands. The corresponding data items within identifier-4 are receiving operands. The corresponding data items are determined according to the rules specified in 14.7.6, CORRESPONDING phrase.
14.9.25.4 General rulesFORMAT 11) Literal-1 or the content of the data item referenced by identifier-1 is moved to the data item referenced by each identifier-2 in the order specified.Item identification for identifier-2 is performed immediately before the data is moved to the respective data item. If identifier-2 is a zero-length item, the MOVE statement leaves identifier-2 unchanged.If identifier-1 is reference-modified, subscripted, or is a function-identifier, the reference modifier, subscript, or function-identifier is evaluated only once, immediately before data is moved to the first of the receiving operands.

Category of
sending
operand

Category of receiving operand
Alphabetic Alphanumeric

-edited,
Alphanumeric

Boolean
National,
National-

edited

Numeric,
Numeric-

edited

Type-name

Alphabetic Yes Yes No Yes No NoAlphanumeric Yes Yes Yes Yes Yes NoAlphanumeric-edited Yes Yes No Yes No No
Boolean No Yes Yes Yes No NoNational No No Yes Yes Yes NoNational-edited No No No Yes No No
Numeric Integer No Yes No Yes Yes NoNoninteger No No No No Yes NoNumeric-edited No Yes No Yes Yes NoType-name Yes Yes Yes Yes Yes Yes

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 667

The length of the data item referenced by identifier-1 is evaluated only once, immediately before the data is moved to the first of the receiving operands. If identifier-1 is a zero-length item, it is as if literal-1 were specified as a zero-length literal.The evaluation of the length of identifier-1 or identifier-2 may be affected by the DEPENDING ON phrase of the OCCURS clause. The result of the statement
MOVE a (b) TO b, c (b)is equivalent to:
MOVE a (b) TO temp
MOVE temp TO b
MOVE temp to c (b)where 'temp' is an intermediate result item provided by the implementor.2) If literal-1 is an alphanumeric or national zero-length literal and the receiving operand is other than a dynamic-length elementary item, literal-1 is treated as if it were the figurative constant SPACE.3) If literal-1 is a boolean zero-length literal and the receiving operand is other than a dynamic-length elementary item, literal-1 is treated as if it were the figurative constant ZERO.4) Any move in which the sending operand is either a literal or an elementary item and the receiving item is an elementary item is an elementary move. Bit group items and national group items are treated as elementary items in the MOVE statement.Any move that is not an elementary move, and does not reference a variable-length group, is treated exactly as if it were an alphanumeric to alphanumeric elementary move, except that there is no conversion of data from one form of internal representation to another. In such a move, the receiving area will be filled without consideration for the individual elementary or group items contained within either the sending or receiving area, except as specified in General rule 8 of the OCCURS clause and except as may be required by an implementation for subordinate items of class message-tag, object, or pointer.5) De-editing takes place only when the sending operand is a numeric-edited data item and the receiving item is a numeric or a numeric-edited data item.6) Any necessary conversion of data from one form of internal representation to another takes place during valid elementary moves, along with any editing specified for, or de-editing implied by, the receiving data item. When a national group item is referenced in a MOVE statement, no editing or de-editing takes place.NOTE 1 Bit group items and national group items are treated as elementary items in the MOVE statement.Any necessary conversion from alphanumeric character to national character representation shall be performed, before any alignment, in accordance with a correspondence defined by the

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

668 ©ISO/IEC 2023

implementor. If no correspondence exists for any given alphanumeric character in the sending item, an implementor-defined substitution character is used as the corresponding national character in the receiving item and the EC-DATA-CONVERSION exception condition is set to exist.The following rules apply:a) When an alphanumeric, alphanumeric-edited, national, or national-edited data item is a receiving operand, alignment and any necessary space filling shall take place as defined in 14.6.8, Alignment and transfer of data into data items. If the sending operand is described as being signed numeric, the operational sign is not moved; if the operational sign occupies a separate character position, that character is not moved and the size of the sending operand is considered to be one less than its actual size. (See 13.18.52, SIGN clause.) If the usage of the sending operand is different from that of the receiving operand, conversion of the sending operand to the internal representation of the receiving operand takes place. If the sending operand is numeric and contains the picture symbol 'P', all digit positions specified with this symbol are considered to have the value zero and are counted in the size of the sending operand.If the sending item is of class boolean, its boolean value shall be moved.NOTE 2 When the runtime coded character set is the UTF-16 format of the UCS, the COBOL system does not detect truncation that bisects the two halves of a surrogate pair.b) When the sending operand and a receiving operand are identified as referencing the same data item, then:1. If the category of the operand is alphanumeric-edited or national-edited, the result of execution of the statement is undefined.2. If the operand is a variable-length data item, the result of execution of the statement is the same as if the content of the sending operand had been moved to a temporary fixed-length data item of the same class, category and length as the sending operand, and the content of that temporary data item were then moved to the receiving operand.c) When the receiving data item is described with the same usage specification as the sending operand, the data in the sending operand is transferred to the receiving data item without change. When the usage specifications of the receiving data item differ from those of the sending operand only in endianness specifications, the data in the sending operand is transferred to the receiving data item in the endianness of the receiving operand, but without any other change to the data.NOTE 3 These provisions allow the preservation of the exact contents of sending operands, such as NaN representations and infinity representations, as well as finite numeric values, in either the same endianness as, or a different endianness from, the sending operand.d) When a numeric or numeric-edited item is the receiving item, and General rule 6c does not apply:1. If the category of the sending operand is numeric-edited, the content of the sending operand shall be as specified in 14.6.13.2, Incompatible data, and de-editing establishes the operand's numeric value, which may be signed.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 669

Otherwise, if the content of the sending operand would result in a false value in a numeric class condition, the EC-DATA-INCOMPATIBLE exception condition is set to exist, and the results of the execution of the MOVE statement are undefined.2. When the sending operand is numeric, or is the numeric value produced by de-editing:If the sending operand is described with a FLOAT-SHORT, FLOAT-LONG, or FLOAT-EXTENDED usage, the implementor specifies any exception conditions that might be set to exist during data conversion, and, for fixed-point numeric and fixed-point numeric-edited receiving data items, specifies alignment of the data by decimal point.a. When a signed numeric item is the receiving item, the sign of the numeric value shall be represented in the receiving operand. If the sending operand is unsigned, the sign shall be positive.b. When an unsigned numeric item is the receiving item, the absolute value of the sending value is used, and no operational sign is generated for the receiving item.3. When the sending operand is described as alphanumeric or national, the sending operand is treated as if it were an unsigned integer of category numeric with the following characteristics:a. If the sending operand is a data item, the number of digits is the number of character positions in the sending data item unless the number of character positions is greater than 31, in which case the rightmost 31 character positions are used.b. If the sending operand is a figurative constant, the number of digits is the same as the number of digits in the receiving operand and the figurative constant is replicated in this item, from left to right, as described in the rules for figurative constants. If the receiving item is not an integer, the number of digits includes both those to the right and the left of the decimal point.c. If the sending operand is an alphanumeric or national literal, the number of digits is the same as the number of characters in the literal. If the number of characters exceeds 31, the size of the sending operand is 31 digits and only the rightmost 31 characters in the literal are used.4. If the receiving data item is described with a standard floating-point usage or is a floating-point numeric-edited item:a. If the algebraic value of the sending operand is farther from zero than is permitted by the usage specifications of the receiving data item, the EC-DATA-OVERFLOW exception condition is set to exist, and the content of the receiving data item is undefined.b. If the algebraic value of the sending operand is nearer to zero than is permitted by the data description of the receiving operand, the numeric value is treated as zero.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

670 ©ISO/IEC 2023

Alignment of the numeric value by decimal point, any necessary zero filling, any truncation of digits, and transfer of the algebraic data into the receiving data item, take place as defined in 14.6.8, Alignment and transfer of data into data items.7) Alphanumeric, boolean, national, and numeric literals belong to the categories alphanumeric, boolean, national, and numeric, respectively. The category of figurative constants when used in the MOVE statement depends on the category of the receiving operand as shown in Table 17, Category of figurative constants used in the MOVE statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 671

Table 17 — Category of figurative constants used in the MOVE statement

8) If the sending or receiving item is a dynamic-length elementary item, the current content of the dynamic-length elementary item is moved or changed as specified in 8.5.1.10.4, Operations on dynamic-length elementary items.9) If both the sending operand and the receiving data item are group items and one or both is a variable-length group, the following rules apply:a) If the groups are of equal length:The content of each character position that is not occupied by a corresponding table is moved to the corresponding character position in the receiving group.Where two tables correspond, as specified in 8.5.1.12.2, Positional correspondence, the table in the sending group is moved to the corresponding table in the receiving group, as specified in14.6.9.2, Moving a table.b) If the groups are of unequal length:

Figurative constant
Category of

receiving operand
Category of

figurative constantALL literal, where literal is: Alphanumeric Boolean National ——— AlphanumericBooleanNationalALL symbolic character, where symbolic character is: Alphanumeric National —— AlphanumericNationalHIGH-VALUE, HIGH-VALUES; LOW-VALUE, LOW-VALUES; QUOTE, QUOTES AlphabeticAlphanumericAlphanumeric-editedNationalNational-editedNumericNumeric-edited — if usage is display — if usage is national

AlphanumericAlphanumericAlphanumericNationalNationalAlphanumericAlphanumericNationalSPACE, SPACES, ZERO, ZEROS, ZEROES AlphabeticAlphanumericAlphanumeric-editedBooleanNationalNational-edited
AlphanumericAlphanumericAlphanumericBooleanNationalNational— indicates the figurative constant category does not depend on the category of the receiving operand

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

672 ©ISO/IEC 2023

If the sending group is longer than the receiving group, the character positions that occupy the excess part are ignored by the operation.If the sending group is shorter than the receiving group, each location that occupies the excess part is space filled, according to the following recursive procedure:1. If the data item to be space-filled is a dynamic-length elementary item, the length of the receiving operand is set to zero.2. If the data item to be space filled is a dynamic-capacity table, it is space filled according to 14.6.9.4, Space filling a dynamic table.3. All other character positions are filled with space characters.The common part of the variable-length groups is now moved according to the rules for variable-length groups of equal length, as defined in General rule 9a above.NOTE 4 If the receiving table is an occurs-depending table, it is the programmer's responsibility to store an appropriate value in the data item associated with the DEPENDING phrase independently of the MOVE statement, because this data item is not changed by the operation.10) Additional rules and explanations relative to this statement are given in 14.6.10, Overlapping operands.FORMAT 211) Data items within identifier-3 are selected to be moved to selected data items within identifier-4 according to the rules specified in 14.7.6, CORRESPONDING phrase. The results are the same as if the user had referred to each pair of corresponding identifiers in separate MOVE statements except that if subscripting is specified for identifier-3 or identifier-4, the subscript value used is that resulting from the evaluation of the subscript at the start of the execution of the statement.NOTE 5 For purposes of MOVE CORRESPONDING, bit group items and national group items are processed as group items, rather than as elementary items.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 673

14.9.26 MULTIPLY statement

14.9.26.1 GeneralThe MULTIPLY statement causes numeric data items to be multiplied and sets the values of data items equal to the results.
14.9.26.2 General formatsFormat 1 (by):

Format 2 (giving):

where rounded-phrase is described in 14.7.4, ROUNDED phrase.
14.9.26.3 Syntax rules1) Identifier-1 and identifier-2 shall reference a data item of category numeric.2) Identifier-3 shall reference a data item of category numeric or numeric-edited.3) Literal-1 and literal-2 shall be numeric literals.4) When native arithmetic is in effect, the composite of operands described in 14.7.7, Arithmetic statements, is determined by using all of the operands in the statement.

MULTIPLY identifier-1literal-1

 BY identifier-2 [rounded-phrase]

ON SIZE ERROR imperative-statement-1NOT ON SIZE ERROR imperative-statement-2[END-MULTIPLY]

MULTIPLY identifier-1literal-1

 BY identifier-2literal-2

GIVING { identifier-3 [rounded-phrase] } ...ON SIZE ERROR imperative-statement-1NOT ON SIZE ERROR imperative-statement-2[END-MULTIPLY]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

674 ©ISO/IEC 2023

14.9.26.4 General rules1) When format 1 is used and native arithmetic is in effect, the initial evaluation consists of determining the multiplier, which is literal-1 or the value of the data item referenced by identifier-1. The multiplicand is the value of the data item referenced by identifier-2. The product of the multiplier and the multiplicand is stored as the new value of the data item referenced by identifier-2.2) When format 2 is used and native arithmetic is in effect, the initial evaluation consists of determining the multiplier, which is literal-1 or the value of the data item referenced by identifier-1; determining the multiplicand, which is literal-2 or the value of the data item referenced by identifier-2; and forming the product of the multiplier and the multiplicand. The product is stored as the new value of each data item referenced by identifier-3.3) When format 1 or 2 is used and standard-decimal, or standard-binary arithmetic is in effect, the product equals the result of the arithmetic expression(multiplier * multiplicand)where the values for multiplier and multiplicand are as defined in General rules 1 and 2 for the respective formats.4) Additional rules and explanations relative to this statement are given in 14.6.13.2, Incompatible data; 14.7.4, ROUNDED phrase; 14.7.5, SIZE ERROR phrase and size error condition; and 14.7.7, Arithmetic statements.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 675

14.9.27 OPEN statement

14.9.27.1 GeneralThe OPEN statement initiates the processing of files.
14.9.27.2 General format

where sharing-phrase is:

where retry-phrase is described in 14.7.9, RETRY phrase
14.9.27.3 Syntax rules1) The OPEN statement for a report file shall not contain the INPUT phrase or the I-O phrase.2) The EXTEND phrase shall be specified only if the access mode of the file connector referenced by file-name-1 is sequential and the LINAGE clause is not specified in the file description entry for file-name-1.3) An OPEN statement that specifies file-name-1 more than once shall not be specified in imperative-statement-1 of an exception-checking PERFORM statement.4) The files referenced in the OPEN statement need not all have the same organization or access.5) The NO REWIND phrase may be specified only for sequential files.6) The NO REWIND phrase may be specified only when the INPUT or OUTPUT phrase is specified.7) The sharing phrase shall not be specified for a file subject to an APPLY COMMIT clause.8) When file-name-1 is not subject to an APPLY COMMIT clause, then if the sharing phrase is omitted from the OPEN statement and the ALL phrase is specified in the SHARING clause of the file control entry for file-name-1 or if the ALL phrase is specified on the OPEN statement, the LOCK MODE clause shall be specified in the file control entry for file-name-1.

OPEN INPUTOUTPUTI-OEXTEND

 [sharing-phrase] [retry-phrase] { file-name-1 [WITH NO REWIND] } ...

 ...

SHARING WITH ALL OTHERNO OTHERREAD ONLY

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

676 ©ISO/IEC 2023

NOTE Files subject to an APPLY COMMIT clause already have an implicit LOCK mode clause.9) The I-O phrase shall not be specified if the FORMAT clause is specified in the file description entry for file-name-1.
14.9.27.4 General rules1) The execution of the OPEN statement causes the value of the I-O status associated with file-name-1 to be updated to one of the values in 9.1.13, I-O status.2) The file connector referenced by file-name-1 shall not be open. If it is open, the execution of the OPEN statement is unsuccessful and the I-O status associated with file-name-1 is set to '41'.3) If the file associated with file-name-1 is present and insufficient authority exists to open the file, the execution of the OPEN statement is unsuccessful, and the I-O status value in the file connector referenced by file-name-1 is set to ‘37’.4) The successful execution of an OPEN statement associates the file connector referenced by file-name-1 with a file if the file is available, and sets the open mode of the file connector to input, output, I-O, or extend, depending on the keywords INPUT, OUTPUT, I-O or EXTEND specified in the OPEN statement. The open mode determines the input-output statements that are allowed to reference the file connector as shown in Table 20, Permissible I-O statements by access mode and open mode.A file is available if it is physically present and is recognized by the operating environment. Table 18, Opening available and unavailable files (file not currently open), shows the results of opening available and unavailable files that are not currently open by another file connector. Table 19, Opening available shared files that are currently open by another file connector, shows the results of opening available files that are currently open by another file connector, including those implicitly opened by the SORT and MERGE statements.

Table 18 — Opening available and unavailable files (file not currently open)

Open mode File is available File is unavailableINPUT Normal open Open is unsuccessfulINPUT (optional file) Normal open Normal open; the first read causes the at end condition or invalid key conditionI-O Normal open Open is unsuccessfulI-O (optional file) Normal open Open causes the file to be createdOUTPUT Normal open; the file contains no records Open causes the file to be createdEXTEND Normal open Open is unsuccessfulEXTEND (optional file) Normal open Open causes the file to be created

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 677

Table 19 — Opening available shared files that are currently open by another file connector

5) The successful execution of an OPEN statement makes the associated record area available to the runtime element. If the file connector associated with file-name-1 is an external file connector, there is only one record area associated with the file connector for the run unit.6) When a file connector is not open, no statement shall be executed that references the associated file-name, either explicitly or implicitly, except for a MERGE or SORT statement with the USING or GIVING phrase, the COMMIT and ROLLBACK statements, a DELETE FILE statement, or an OPEN statement.7) The OPEN statement for a report file connector shall be executed before the execution of an INITIATE statement that references a report-name that is associated with file-name-1.8) For the file connector referenced by file-name-1, an OPEN statement shall previously be successfully executed for that file connector and the file connector shall be in an open mode at the time of the execution of any other permissible input-output statement referencing that file connector. In Table

Open request

Most restrictive existing sharing mode and open mode
sharing

with
no other

sharing with
read only

sharing with
all other

extend
I-O

input
output

extend
I-O

output

input extend
I-O

output

input

SHARING WITH NO OTHER
EXTENDI-OINPUTOUTPUT Unsuccessful open Unsuccessful open Unsuccessful open Unsuccessful open Unsuccessful open

SHARING WITH READ ONLY
EXTENDI-O Unsuccessful open Unsuccessful open Unsuccessful open Unsuccessful open NormalopenINPUT Unsuccessful open Unsuccessful open Normalopen Unsuccessful open NormalopenOUTPUT Unsuccessful open Unsuccessful open Unsuccessful open Unsuccessful open Unsuccessful open

SHARING WITH ALL OTHER
EXTENDI-O Unsuccessful open Unsuccessful open Unsuccessful open Normalopen NormalopenINPUT Unsuccessful open Normalopen Normalopen Normalopen NormalopenOUTPUT Unsuccessful open Unsuccessful open Unsuccessful open Unsuccessful open Unsuccessful open

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

678 ©ISO/IEC 2023

20, Permissible I-O statements by access mode and open mode, 'X' at an intersection indicates that the specified statement, used in the access mode given for that row, may be used with the open mode given at the top of the column.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 679

Table 20 — Permissible I-O statements by access mode and open mode

9) Execution of the OPEN statement does not obtain or release the first record.10) During the execution of the OPEN statement when the file connector is matched with the file and the file exists, the attributes of the file connector as specified in the file control paragraph and the file description entry are compared with the fixed file attributes of the file. If the attributes don't match, a file attribute conflict condition occurs, the execution of the OPEN statement is unsuccessful, and the I-O status associated with file-name-1 is set to '39'. The implementor defines which of the fixed-file attributes are validated during the execution of the OPEN statement. The validation of fixed-file attributes may vary depending on the organization or storage medium of the file. (See 9.1.6, Fixed file attributes.)11) The NO REWIND phrase will be ignored if it does not apply to the storage medium on which the file resides. If the NO REWIND phrase is ignored, the OPEN statement is successful and the I-O status associated with file-name-1 is set to '07'.12) If the storage medium for the file permits rewinding, the following rules apply:

Access mode Statemen
t

Open mode
Input Output I-O Extend

Sequential READ X XWRITE X XREWRITE XSTART X XSequential (relative and indexed files only) DELETERECORD X
Random

READ X XWRITE X XREWRITE XSTARTDELETERECORD X
Dynamic

READ X XWRITE X XREWRITE XSTART X XDELETERECORD X

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

680 ©ISO/IEC 2023

a) When neither the EXTEND, nor the NO REWIND phrase is specified, execution of the OPEN statement causes the file to be positioned at its beginning.b) When the NO REWIND phrase is specified, execution of the OPEN statement does not cause the file to be repositioned; the file shall be already positioned at its beginning prior to execution of the OPEN statement.13) If the file is not present, and the INPUT phrase is specified in the OPEN statement, and the OPTIONAL clause is specified in the file control entry for file-name-1, the file position indicator in the file connector referenced by file-name-1 is set to indicate that an optional input file is not present.14) When the organization of the file referenced by file-name-1 is sequential or relative and the INPUT or I-O phrase is specified in the OPEN statement, the file position indicator for that file connector is set to 1. When the organization is indexed, the file position indicator is set to the characters that have the lowest ordinal position in the collating sequence associated with the file, and the prime record key is established as the key of reference.15) When the EXTEND phrase is specified, the OPEN statement positions the file immediately after the last logical record for that file. The last logical record for a sequential file is the last record written in the file. The last logical record for a relative file is the currently existing record with the highest relative record number. The last logical record for an indexed file is the currently existing record with the highest prime key value.16) If the I-O phrase is specified, the file shall support the input and output statements that are permitted for the organization of that file when opened in the I-O mode. If the file does not support those statements, the I-O status value for file-name-1 is set to '37' and the execution of the OPEN statement is unsuccessful. The successful execution of an OPEN statement with the I-O phrase sets the open mode of the file connector referenced by file-name-1 to open in the I-O mode.17) If the file is not present, and the EXTEND or I-O phrase is specified in the OPEN statement, and the OPTIONAL clause is specified in the file control entry for file-name-1, the OPEN statement creates the file. This creation takes place as if the following statements were executed in the order shown:OPEN OUTPUT file-name-1.CLOSE file-name-1.These statements are followed by execution of the OPEN statement specified in the source element and the I-O status value associated with file-name-1 is set t05’.18) If the OUTPUT phrase is specified, the successful execution of the OPEN statement creates the file. After the creation of the file, the file contains no records. If physical pages have meaning for the file, the positioning of the output medium with respect to physical page boundaries is implementor-defined following the successful execution of the OPEN statement, whether or not the LINAGE clause is specified in the file description entry of file-name-1.19) Upon successful execution of the OPEN statement, the current volume pointer is set:a) To point to the first or only reel/unit in the physical file if INPUT or I-O is specified.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 681

b) To point to the reel/unit containing the last record in the physical file if EXTEND is specified.c) To point to the newly created reel/unit in the physical file for an unavailable file if EXTEND, I-O, or OUTPUT is specified.20) If more than one file-name is specified in an OPEN statement, the result of executing this OPEN statement is the same as if a separate OPEN statement had been written for each file-name in the same order as specified in the OPEN statement. These separate OPEN statements would each have the same open mode specification, the sharing-phrase, retry-phrase, and REWIND phrase as specified in the OPEN statement. If an implicit OPEN statement results in the execution of a declarative procedure that executes a RESUME statement with the NEXT STATEMENT phrase, processing resumes at the next implicit OPEN statement, if any.21) The SHARING phrase is effective only for files that are shareable.22) The SHARING phrase specifies the level of sharing permitted for the physical file associated with file-name-1 and specifies the operations that may be performed on the physical file through other file connectors sharing the physical file, as indicated in 9.1.15, Sharing mode.23) The SHARING phrase overrides any SHARING clause in the file control entry of file-name-1. If there is no SHARING phrase on the OPEN statement, then file sharing is completely specified in the file control entry. If neither a SHARING phrase on the OPEN statement nor a SHARING clause in the file control entry is specified, the implementor shall define the sharing mode that is established for each file connector.24) The RETRY phrase is used to control the behavior of an OPEN statement when the open mode or sharing mode requested conflicts with those of other file connectors that are currently associated with the physical file. The I-O status is set in accordance with the rules in 14.7.9, RETRY phrase.25) If the execution of the OPEN statement is unsuccessful, the file is not affected and the following actions take place in the following order:a) A value is placed in the I-O status associated with file-name to indicate the condition that caused the OPEN statement to be unsuccessful.b) If it is enabled, the level-3 EC-I-O exception condition associated with the I-O status value is set to exist.c) If the OPEN statement is specified in imperative-statement-1 in an exception-checking PERFORM statement and there is an applicable WHEN phrase in that PERFORM statement, then execution continues according to the rules for that WHEN phrase. No applicable USE declarative is executed.d) Any applicable USE FOR EXCEPTION or USE AFTER EXCEPTION procedure is executed as specified for the rules for the USE statement.26) Additional rules affecting the execution of the OPEN statement are given in 12.4.5, File control entry, General rules 3 and 4.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

682 ©ISO/IEC 2023

14.9.28 PERFORM statement

14.9.28.1 GeneralThe PERFORM statement is used to transfer control explicitly to one or more procedures and to return control implicitly whenever execution of the specified procedure is complete. The PERFORM statement is also used to control execution of one or more imperative statements that are within the scope of that PERFORM statement with or without exception checking within those statements.
14.9.28.2 General formatsFormat 1 (out-of-line):

Format 2 (inline):

Format 3 (exception-checking):

PERFORM procedure-name-1 THROUGHTHRU

 procedure-name-2 times-phraseuntil-phrasevarying-phrase

PERFORM times-phraseuntil-phrasevarying-phrase imperative-statement-1 END-PERFORM

PERFORM [WITH LOCATION]imperative-statement-1

WHEN EXCEPTION
{ file-name-1} ...INPUTOUTPUTIOEXTEND

{ exception-name-1 ...{ exception-name-2 FILE file-name-2 } ...

 imperative-statement-2

[WHEN OTHER EXCEPTION imperative-statement-3][WHEN COMMON EXCEPTION imperative-statement-4][FINALLY imperative-statement-5]END-PERFORM

...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 683

where times-phrase is:

where until-phrase is:

where varying-phrase is:

14.9.28.3 Syntax rulesFORMATS 1 AND 21) If neither the TEST BEFORE nor the TEST AFTER phrase is specified, the TEST BEFORE phrase is assumed.2) Each identifier shall reference a numeric elementary item described in the data division. Identifier-1 shall be an integer.3) Each literal shall be numeric.4) If an index-name is specified in the VARYING or AFTER phrase, then:a) The identifier in the associated FROM and BY phrases shall reference an integer data item.b) The literal in the associated FROM phrase shall be a positive integer.c) The literal in the associated BY phrase shall be a nonzero integer.

identifier-1integer-1

 TIMES

WITH TEST BEFOREAFTER

 UNTIL condition-1EXIT

WITH TEST BEFOREAFTER

VARYING identifier-2index-name-1

 FROM identifier-3index-name-2literal-1

 BY identifier-4literal-2

 UNTIL condition-1

AFTER identifier-5index-name-3

 FROM identifier-6index-name-4literal-3

 BY identifier-7literal-4

 UNTIL condition-2 ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

684 ©ISO/IEC 2023

5) If an index-name is specified in the FROM phrase, then:a) The identifier in the associated VARYING or AFTER phrase shall reference an integer data item.b) The identifier in the associated BY phrase shall reference an integer data item.c) The literal in the associated BY phrase shall be an integer.6) The literal in the BY phrase shall not be zero.7) Condition-1, condition-2, ... , may be any conditional expression. (See 8.8.4, Conditional expressions.)8) The UNTIL EXIT phrase shall not be specified in a PERFORM statement with or under a PERFORM statement with the VARYING phrase or either the TEST BEFORE or TEST AFTER phrase9) At least six AFTER phrases shall be permitted in varying-phrase.FORMAT 110) The words THROUGH and THRU are equivalent.11) When procedure-name-1 and procedure-name-2 are both specified and either is the name of a procedure in the declaratives portion of the procedure division, both shall be procedure-names in the same declarative section.12) Procedure-name-1 shall be the name of either a paragraph or a section in the same source element as that in which the PERFORM statement is specified.13) Procedure-name-2 shall be the name of either a paragraph or a section in the same source element as that in which the PERFORM statement is specified.FORMAT 314) If file-name-1 or file-name-2 is specified in a WHEN phrase, it shall not be specified more than once in any of the WHEN phrases within the scope of a format 3 PERFORM statement unless all such instances are specified in conjunction with an exception-name.15) All instances of an exception-name shall be specified only once in a format 3 PERFORM statement unless done so in conjunction with different file-names.16) If file-name-2 is specified, exception-name-2 shall begin with the COBOL characters ’EC-I-O’.
14.9.28.4 General rulesALL FORMATS1) The range of a PERFORM statement consists logically of all those statements that are executed as a result of executing the PERFORM statement through execution of the implicit transfer of control to the end of the PERFORM statement. The range includes all statements that are executed as the result

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 685

of a transfer of control in the range of the PERFORM statement, except for statements executed as the result of a transfer of control by an EXIT PROGRAM or GOBACK statement specified in the same instance of the same source element as the PERFORM statement. Declarative procedures that are executed as a result of the execution of statements in the range of a PERFORM statement are included in the range of the PERFORM statement. The statements in the range of a PERFORM statement need not appear consecutively in the source element.2) The results of executing the following sequence of PERFORM statements are undefined and no exception condition is set to exist when the sequence is executed:a) a PERFORM statement is executed and has not yet terminated, thenb) within the range of that PERFORM statement another PERFORM statement is executed, thenc) the execution of the second PERFORM statement passes through the exit of the first PERFORM statement.NOTE 1 On some implementations it causes stack overflows, on some it causes returns to unlikely places, and on other implementations other actions can occur. Therefore, the results are unpredictable and are unlikely to be portable.FORMATS 1 AND 2 3) If an index-name is specified in the VARYING or AFTER phrase, and an identifier is specified in the associated FROM phrase, at the time the data item referenced by the identifier is used to initialize the index associated with the index-name, the data item shall have a positive value. If the data item does not have a positive value, the EC-RANGE-PERFORM-VARYING exception condition is set to exist.4) An inline PERFORM statement and an out-of-line PERFORM statement function identically according to the following rules. For an out-of-line PERFORM statement, the specified set of statements consists of all statements beginning with the first statement of procedure-name-1 and ending with the last statement of procedure-name-2, or, if procedure-name-2 is not specified, the last statement of procedure-name-1. For an inline PERFORM statement, the specified set of statements consists of all statements contained within the PERFORM statement.5) When the PERFORM statement is executed, control is transferred to the first statement of the specified set of statements except as indicated in General rules 9, 10, and 11. For those cases where a transfer of control to the specified set of statements does take place, an implicit transfer of control to the end of the PERFORM statement is established as follows:a) If procedure-name-2 is not specified, the return mechanism is after the last statement of procedure-name-1.b) If procedure-name-2 is specified, the return mechanism is after the last statement of procedure-name-2.6) There is no necessary relationship between procedure-name-1 and procedure-name-2 except that a consecutive sequence of operations is to be executed beginning at the procedure named procedure-name-1 and ending with the execution of the procedure named procedure-name-2.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

686 ©ISO/IEC 2023

NOTE 2 Statements such as the GO TO statement, the PERFORM statement, and the procedure format of the EXIT statement can occur in the flow of execution of the specified set of statements, however the flow of execution should eventually pass to the end of procedure-name-2.7) If control passes to the specified set of statements by means other than a PERFORM statement, control will pass through the last statement of the set to the next executable statement as if no PERFORM statement referenced the set.8) A PERFORM statement without times-phrase, until-phrase, or varying-phrase is the basic PERFORM statement. The specified set of statements referenced by this type of PERFORM statement is executed once and then control passes to the end of the PERFORM statement.9) If times-phrase is specified, the specified set of statements is performed the number of times specified by integer-1 or by the value of the data item referenced by identifier-1 at the start of the execution of the PERFORM statement. If at the start of the execution of a PERFORM statement, the value of the data item referenced by identifier-1 is equal to zero or is negative, control passes to the end of the PERFORM statement. Following the execution of the specified set of statements the specified number of times, control is transferred to the end of the PERFORM statement.NOTE 3 During execution of the PERFORM statement, a change to the contents of identifier-1 does not alter the number of times the specified set of statements is performed.10) If until-phrase with condition-1 is specified, the specified set of statements is performed until the condition specified by the UNTIL phrase is true. When the condition is true, control is transferred to the end of the PERFORM statement. If the condition is true when the PERFORM statement is entered, and the TEST BEFORE phrase is specified or implied, no transfer to the specified set of statements takes place, and control is passed to the end of the PERFORM statement. If the TEST AFTER phrase is specified, the PERFORM statement functions as if the TEST BEFORE phrase were specified except that the condition is tested after the specified set of statements has been executed. Item identification associated with the operands specified in condition-1 is done each time the condition is tested.11) If the until-phrase with the EXIT reserved word is specified, execution proceeds exactly as if the same PERFORM statement were coded but with condition-1 specified except that condition-1 never evaluates as true.NOTE 4 When UNTIL EXIT is specified, it is the programmer’s responsibility to ensure that an “escape” from the PERFORM loop will be reached. For an inline PERFORM, this can be done by an EXIT PERFORM (but not EXIT PERFORM CYCLE) statement. For an out-of-line PERFORM this can be done by a GOBACK or STOP statement. It is also the programmers responsibility to take care that the escape statement that they use does actually escape the PERFORM loop. Several statements appear to do so, but don’t actually escape the loop. For example, an EXIT PARAGRAPH (from a performed paragraph) or an EXIT SECTION (from a performed section) do not escape a PERFORM with the UNTIL EXIT phrase.12) If varying-phrase is specified, the execution of the PERFORM statement augments the data items referenced by one or more identifiers or the indexes referenced by one or more index-names in an orderly fashion. In the following rules, the data items referenced by identifier-2 and identifier-5 and the indexes referenced by index-name-1 and index-name-3 are referred to as the induction variables. The content of the data item referenced by the identifier, the occurrence number corresponding to the value of the index referenced by the index-name, or the value of the literal

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 687

referenced in the FROM phrase is referred to as the initialization value. The content of the data item referenced by the identifier or the value of the literal in a BY phrase is referred to as the augment value. For any BY phrase that is omitted, the augment value is 1. Item identification for identifier-2, identifier-5, index-name-1, or index-name-3 is done each time the content of the data item referenced by the identifier or the value of the index referenced by the index-name is set or augmented. Item identification for identifier-3, identifier-4, identifier-6, identifier-7, index-name-2, and index-name-4 is done each time the content of the data item referenced by the identifier or the index referenced by the index-name is used in a setting or augmenting operation. Item identification associated with the operands specified in condition-1 or condition-2 is done each time the condition is tested.NOTE 5 If an augment value is less than 0, the induction variable is actually decremented by the absolute value of the augment value.13) The sequence of operation of the PERFORM statement is as follows:a) All induction variables are set to their associated initialization values in the left-to-right order in which the induction variables are specified.b) If the TEST AFTER phrase is specified, and there is no AFTER phrase, the specified set of statements is executed once and condition-1 is tested. If the condition is false, the induction variable is incremented by the augment value, and the specified set of statements is executed again. The cycle continues until condition-1 is tested and found to be true, at which point control is transferred to the end of the PERFORM statement. At that point, the induction variable contains the value it contained at the completion of the execution of the specified set of statements.c) If the TEST AFTER phrase is specified, and there is one or more AFTER phrase, the following occurs:1. The specified set of statements is executed.2. The rightmost condition-2 is then evaluated.3. If the rightmost condition-2 is false, the associated induction variable is incremented by the associated augment value, and execution proceeds with step 13 a.4. If the last condition evaluated is true, the condition to its left is evaluated. This is repeated until either a false condition is found or the last condition evaluated is condition-1 and condition-1 is true. If a false condition is found, the induction variable associated with that condition is incremented by the associated augment value, all induction variables to the right of the false condition are set to their initialization values, and execution proceeds with step 13 a. If no condition is found to be false, control is transferred to the end of the PERFORM statement.NOTE 6 After successful execution of the PERFORM statement, all induction variables contain the values they had at the completion of the last execution of the specified set of statements.d) If the TEST AFTER phrase is not specified and there is no AFTER phrase, condition-1 is evaluated, and if it is true, control is transferred to the end of the PERFORM statement. If it is false, the

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

688 ©ISO/IEC 2023

specified set of statements is executed. Then, the induction variable is incremented by the augment value, and condition-1 is evaluated again. When control is passed to the end of the PERFORM statement, the induction variable contains the value it contained when condition-1 was evaluated.e) If the TEST AFTER phrase is not specified, and there is one or more AFTER phrase, the following occurs:1. Condition-1 is evaluated.If condition-1 is true, control is transferred to the end of the PERFORM statement; otherwise, the condition-2 immediately to the right becomes the current condition.2. The current condition is evaluated.If the current condition is true:a. the induction variable associated with the current condition is set to its initialization value, andb. the condition to the left of the current condition becomes the current condition, andc. the induction variable associated with the new current condition is incremented by its associated augment value, andd. if the current condition is condition-1 execution proceeds to step a, else execution proceeds to the beginning of step 13 b;otherwise:a. if there is another AFTER phrase to the right of the current condition:—the condition associated with that AFTER phrase becomes the current condition, and—execution proceeds to the beginning of step 13 b;b. otherwise:—the specified set of statements is executed, and—the induction variable associated with the current condition is incremented by the augment value, and—execution proceeds to the beginning of step 13 b.NOTE 7 After successful execution of the PERFORM statement, all induction variables contain the values they had at the completion of the last evaluation of condition-1. With the exception of the induction variable associated with condition-1, these values are the same as they were at the last execution of the specified set of statements, or are their associated initialization values if no statements were executed. If no statements were executed, the induction variable associated with condition-1 contains its associated

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 689

initialization value; otherwise, the induction variable associated with condition-1 contains the value it contained after the last execution of the specified set of statements, incremented by the augment value.During the execution of the specified set of statements associated with the PERFORM statement, all changes to the induction variable, the variables associated with the augment value, and the variables associated with the initialization value have immediate effect and all subsequent references to the associated data items use the updated contents.FORMAT 314) If checking for exception-name-1 or exception-name-2 is not enabled for imperative-statement-1 by a TURN directive, an implicit TURN directive for exception-name-1 or exception-name-2 is assumed before the first statement in imperative-statement-1. If LOCATION is specified, that implicit TURN directive contains LOCATION. If the WHEN OTHER phrase is used, only those exception conditions that are enabled at the point at which they are detected are processed by the WHEN OTHER phrase. Within imperative-statement-1 any TURN directive that turns off checking for an exception that is specified in a WHEN phrase will prevent that WHEN phrase from being invoked if that exception condition would otherwise have been set to exist. An implicit PUSH ALL followed by TURN OFF ALL is assumed at the end of imperative-statement-1. Immediately preceding the END PERFORM phrase, there is an implicit POP ALL followed by an implicit TURN directive with OFF specified for any exception conditions that were implicitly turned on before the first statement in imperative-statement-1.15) When the PERFORM statement is executed, control is transferred to imperative-statement-1. The specified set of statements for a format 3 PERFORM statement consists of all statements contained within imperative-statement-1. However, other statements may be executed depending on whether or not an exception was raised.16) If the FINALLY phrase is specified, the end of the PERFORM statement begins at imperative-statement-5. There shall be no statements that include a transfer of control out of the PERFORM statement within imperative-statement-5. Any EXIT PERFORM statement within imperative-statement-5 transfers control to an implicit CONTINUE statement following the END-PERFORM. If the FINALLY phrase is not specified, the end of the PERFORM statement is indicated by END-PERFORM.17) If during the execution of imperative-statement-1 an exception condition associated with a WHEN phrase is raised, imperative-statement-2 is executed. The rules for determining a match are specified in General rules 3a to 3g of the USE statement. At the completion of the execution of imperative-statement-2, control is passed as indicated in General rule 20 or, if WHEN COMMON is specified, to imperative-statement-4. Any USE declarative that would normally match the exception condition is ignored.18) If during the execution of imperative-statement-1 any exception condition that is not associated with any exception condition specified in a WHEN phrase is raised and there is a WHEN OTHER phrase, imperative-statement-3 is executed. At the completion of the execution of imperative-statement-3, control is passed to the end of the PERFORM statement or, if WHEN COMMON is specified, to imperative-statement-4. At the completion of the execution of imperative-statement-3, control is passed as indicated in General rule 14.9.29 or, if WHEN COMMON is specified, to imperative-statement-4. Any USE declarative that would normally match the exception condition is ignored.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

690 ©ISO/IEC 2023

19) If WHEN COMMON is specified, imperative-statement-4 is executed. At the completion of the execution of imperative-statement-4, control is passed as indicated in General rule 20.20) If execution of the last statement in imperative-statement-1 completes successfully, execution proceeds to the end of the PERFORM statement. If an exception-condition was raised during the processing of imperative-statement-1 that caused a transfer to the imperative-statement in a WHEN phrase, and the processing in General rules 17, 18, and 19 is completed, return depends on whether the exception condition was fatal or nonfatal. If the exception condition was nonfatal, execution continues with an implicit CONTINUE statement immediately following the statement in imperative-statement-1 in which the exception condition occurred. If that statement was the last statement in imperative-statement-1, execution continues at the end of the PERFORM statement. If the exception condition was fatal, execution continues as specified in 14.6.13.1.3, Fatal exception conditions.NOTE 8 The end of the PERFORM statement includes the statements in a FINALLY phrase, if it is specified.21) Any exception conditions raised during the execution of imperative-statement-2, imperative-statement-3, imperative-statement-4, or imperative-statement-5 will not cause transfer of control to any of these imperative-statements. The results are as if these statements were specified in a format 2 PERFORM statement.22) At the completion of the execution of the PERFORM statement, If WHEN is specified and an exception condition was raised and checking for that exception condition was enabled by a TURN directive before the execution of the PERFORM statement, that checking remains enabled. If there is a TURN directive within the range of the PERFORM statement, the checking for that TURN directive is retained. Otherwise, any checking for an exception condition specified in a WHEN phrase is not enabled.NOTE 9 If control is transferred outside of the PERFORM during WHEN processing, exceptions can occur. These will be processed by whatever mechanism is normally used for this processing (such as a USE or TURN directive that can cause transfer of control to some place in the program that would never hit the exit of this PERFORM or a CALL to a program that raises an exception). The user is advised to avoid transfers outside of the PERFORM for WHEN processing.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 691

14.9.29 RAISE statement

14.9.29.1 GeneralThe RAISE statement causes a specified exception condition to be raised.
14.9.29.2 General format

14.9.29.3 Syntax rules1) Exception-name-1 shall be a level-3 exception-name as specified in 14.6.13.1, Exception conditions.2) Identifier-1 shall be an object reference; the predefined object references NULL and SUPER shall not be specified.3) Identifier-1 is a sending operand.4) Within an exception-checking PERFORM statement, the RAISE statement shall not be specified in any imperative statement other than imperative-statement-1.
14.9.29.4 General rules1) If exception-name-1 is specified, the associated exception condition is raised, and EXCEPTION-OBJECT is set to null. Execution continues as specified in 14.6.13, Exception condition handling.NOTE For fatal exception conditions, it is likely that the run unit will be terminated. For nonfatal exception conditions where there are no applicable exception processing procedures, the RAISE statement acts as a CONTINUE statement.2) If identifier-1 is specified, EXCEPTION-OBJECT is set to reference the object referenced by identifier-1. If there is no applicable declarative, processing continues with the statement following the RAISE statement.

RAISE EXCEPTION exception-name-1identifier-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

692 ©ISO/IEC 2023

14.9.30 READ statement

14.9.30.1 GeneralFor sequential access, the READ statement makes available the next logical record from a file. For random access, the READ statement makes available a specified record from a mass storage file.
14.9.30.2 General formatsFormat 1 (sequential):

Format 2 (random):

where retry-phrase is described in 14.7.9, RETRY phrase

READ file-name-1 NEXTPREVIOUS

 RECORD [INTO identifier-1]

ADVANCING ON LOCKIGNORING LOCKretry-phraseWITH LOCKWITH NO LOCKAT END imperative-statement-1NOT AT END imperative-statement-2[END-READ]
READ file-name-1 RECORD [INTO identifier-1]IGNORING LOCKretry-phraseWITH LOCKWITH NO LOCK

KEY IS data-name-1record-key-name-1

INVALID KEY imperative-statement-3NOT INVALID KEY imperative-statement-4[END-READ]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 693

14.9.30.3 Syntax rulesALL FORMATS1) The INTO phrase may be specified in a READ statement:a) If no record description entry or only one record description is subordinate to the file description entry, orb) If the data item referenced by identifier-1 and all record-names associated with file-name-1 describe an alphanumeric group item or an elementary item of category alphanumeric or category national.2) If identifier-1 is a strongly-typed group item, there shall be at most one record area subordinate to the FD for file-name-1. This record area, if specified, shall be a strongly-typed group item of the same type as identifier-1.3) The LOCK phrase shall not be specified in the same READ statement as the IGNORING LOCK phrase.4) If automatic locking has been specified for file-name-1, none of the phrases IGNORING LOCK, WITH LOCK, or WITH NO LOCK shall be specified.5) If file-name-1 is subject to an APPLY COMMIT clause, none of the phrases IGNORING LOCK, WITH LOCK, or WITH NO LOCK shall be specified.FORMAT 16) None of the phrases ADVANCING, AT END, NEXT, NOT AT END, or PREVIOUS shall be specified if ACCESS MODE RANDOM is specified in the file control entry for file-name-1.7) The phrase PREVIOUS shall not be specified if FILE ORGANIZATION LINE SEQUENTIAL is specified in the file control entry for file-name-1.8) If neither the NEXT phrase nor the PREVIOUS phrase is specified and ACCESS MODE SEQUENTIAL is specified in the file control entry for file-name-1, the NEXT phrase is implied.9) If neither the NEXT phrase nor the PREVIOUS phrase is specified and ACCESS MODE DYNAMIC is specified in the file control entry for file-name-1, the NEXT phrase is implied if any of the following phrases is specified: ADVANCING, AT END, or NOT AT END.FORMAT 210) The KEY phrase may be specified only if ORGANIZATION IS INDEXED is specified in the file control entry for file-name-1.11) Data-name-1 or record-key-name-1 shall be specified in the RECORD KEY clause or an ALTERNATE RECORD KEY clause associated with file-name-1.12) Data-name-1 or record-key-name-1 may be qualified.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

694 ©ISO/IEC 2023

14.9.30.4 General rulesALL FORMATS1) The execution of the READ statement causes the value of the I-O status in the file connector referenced by file-name-1 to be updated as indicated in 9.1.13, I-O status.2) The open mode of the file connector referenced by file-name-1 shall be input or I-O. If it is any other value, the execution of the READ statement is unsuccessful and the I-O status value for file-name-1 is set to '47'.3) When the logical records of a file are described with more than one record description, the content of any data item, where any part of that data item lies beyond the range of the current record, is undefined at the completion of the execution of the READ statement.4) If the execution of a READ statement with the INTO phrase is successful, the result is equivalent to the application of the following rules in the order specified:a) The same READ statement without the INTO phrase is executed.b) The current record is moved from the record area to the area specified by identifier-1 according to the rules for the MOVE statement without the CORRESPONDING phrase. The size of the current record is determined by rules specified in the RECORD clause. If the file description entry contains a RECORD IS VARYING clause, the implied move is an alphanumeric group move. Item identification of the data item referenced by identifier-1 is done after the record has been read and immediately before it is moved to the data item. The record is available in both the record area and the data item referenced by identifier-1.NOTE 1 14.6.10, Overlapping operands, and 14.9.25, MOVE statement, General rules, apply to any cases in which the storage area identified by identifier-1 and the record area associated with file-name-1 share any part of their storage areas. The result of execution of the READ statement is undefined if the result of execution of the implicit MOVE statement described in General rule 4b is undefined.5) If the execution of a READ statement with the INTO phrase is unsuccessful, the content of the data item referenced by identifier-1 is unchanged and item identification of the data item referenced by identifier-1 is not done.6) The execution of a READ statement with the INTO phrase when there are no record description entries subordinate to the file description entry proceeds as though there were one record description entry describing an alphanumeric group item of the maximum size established by the RECORD clause.7) Whether record locking is in effect is determined by the rules specified in 12.4.5.9, LOCK MODE clause.8) If record locking is enabled for the file connector referenced by file-name-1 and the record identified for access by the general rules for the READ statement is locked by that file connector, the record lock is ignored and the READ operation proceeds as if the record were not locked.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 695

9) If record locking is enabled for the file connector referenced by file-name-1 and the record identified for access is locked by another file connector, the result of the operation depends on the presence or absence of the RETRY phrase. If the RETRY phrase is specified, additional attempts may be made to read the record as specified in the rules in 14.7.9, RETRY phrase. If the RETRY phrase is not specified or the record is not successfully accessed as specified by the RETRY phrase, the record operation conflict condition exists. The I-O status is set in accordance with the rules for the RETRY phrase.10) If the record operation conflict condition exists as a result of the READ statement:a) The file position indicator is unchanged.b) A value is placed into the I-O status associated with file-name-1 to indicate the record operation conflict condition.c) The content of the associated record area is undefined.d) The key of reference for indexed files is unchanged.e) The READ statement is unsuccessful.11) If record locks are in effect, the following actions take place:a) If single record locking is specified for the file connector associated with file-name-1, any prior record lock associated with that file connector is released by the execution of the READ statement.b) If multiple record locking is specified for the file connector associated with file-name-1, no record locks are released, except when the NO LOCK phrase is specified and the record accessed was already locked by that file connector. In this case, that record lock is released at the completion of the successful execution of the READ statement.c) If the lock mode is automatic, the record lock associated with a successfully accessed record is set.d) If lock mode is manual, the record lock associated with a successfully accessed record is set only if the LOCK phrase is specified on the READ statement.12) If the IGNORING LOCK phrase is specified on the READ statement, the requested record is made available, even if it is locked.13) If neither an at end nor an invalid key condition occurs during the execution of a READ statement, the AT END phrase or the INVALID KEY phrase is ignored, if specified, and the following actions occur:a) The I-O status associated with file-name-1 is updated and, if the record operation conflict condition did not occur, the file position indicator is set.b) If an exception condition that is not an at end or an invalid key condition exists, control is transferred according to the rules in 9.1.12, Input-output exception processing. If the exception

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

696 ©ISO/IEC 2023

condition is not a fatal exception condition, control is then transferred to the end of the READ statement.:c) If no exception condition exists, the record is made available in the record area and any implicit move resulting from the presence of an INTO phrase is executed. Control is transferred to the end of the READ statement, or, if the NOT AT END phrase or NOT INVALID KEY phrase is specified, to imperative-statement-2. If control is returned from imperative-statement-2, control is then transferred to the end of the READ statement.14) For a record sequential file, if the number of bytes in the record that is read is less than the minimum size specified by the record description entries for file-name-1, the portion of the record area that is to the right of the last valid character read is undefined. If the number of bytes in the record that is read is greater than the maximum size specified by the record description entries for file-name-1, the record is truncated on the right to the maximum size. In either of these cases, the READ statement is successful, and the I-O status value for file-name-1 is set to ‘04’. (9.1.13, I-O status).NOTE 2 It is expected that this situation will occur only when the operating environment does not check either the minimum or maximum record length as a fixed file attribute during OPEN processing or when a specific physical record within a physical file violates the fixed file attributes for that physical file.15) For a line sequential file, if the number of bytes in the record that is read is less than the minimum size specified by the record description entries for file-name-1, the portion of the record area that is to the right of the last valid character read is padded with trailing spaces. If the record-area associated with file-name-1 is specified implicitly or explicitly as alphanumeric, a trailing space is defined to be the alphanumeric space character. If the record-area associated with file-name-1 is specified implicitly or explicitly as national, a trailing space is defined to be the national space character.If the number of bytes in the record that is read is greater than the maximum size specified by the record description entries for file-name-1, the record is truncated on the right to the maximum size. In that case, the READ statement is successful and the I-O status in the read file connector is set t06’ indicating that the line delimiter or end-of-file was not detected. (9.1.13, I-O status). After the read the file position indicator will reference the next unread character in the record.NOTE 3 One or more subsequent READ statements can be used to read the rest of the record up to the line delimiter or until end of-file is detected.16) If the execution of the READ statement is successful but the record area contains one or more characters not in the implementor-defined character set for a line sequential file, the I-O status in the read file connector is set to ‘09’. (9.1.13, I-O status)17) Regardless of the method used to overlap access time with processing time, the concept of the READ statement is unchanged; a record is available to the runtime element prior to the execution of imperative-statement-2 or imperative-statement-4, if specified, or prior to the execution of any statement following the READ statement, if imperative-statement-2 or imperative-statement-4 is not specified.18) Unless otherwise specified, at the completion of any unsuccessful execution of a READ statement, the content of the associated record area is undefined, the key of reference is undefined for indexed files, and the file position indicator is set to indicate that no valid record position has been established.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 697

FORMAT 119) An implicit or explicit NEXT phrase or a PREVIOUS phrase results in a sequential read: otherwise, the read is a random read and the rules for format 2 apply.20) If the PREVIOUS phrase is specified, the physical file associated with the file connector referenced by file-name-1 shall be a single reel/unit mass storage file.21) For a sequential READ statement, if the previous READ or START statement for the file connector was unsuccessful, then the READ statement is unsuccessful and the I-O status is set to ‘46’ and execution proceeds as indicated in General rule 24.The setting of the file position indicator at the start of the execution of the READ statement is used in determining the record to be made available. If the file position indicator indicates that an optional input file is not present or that no next or previous logical record exists, the I-O status value associated with file-name-1 is set to '10', the at end condition exists, and execution proceeds as specified in General rule 24. If the file position indicator indicates that no valid record position has been established, execution of the READ statement is unsuccessful, and execution proceeds as indicated in General rule 24.When the file is an indexed file:a) Comparisons for records relate to the value of the current key of reference. The comparisons are made according to the collating sequence of the file.b) If the KEY phrase is specified, the key of reference is set to the key specified in that phrase. Otherwise, the key of reference is set to the last key of reference in the file position indicator.c) If the key of reference is an alternate key, any record identified as being suppressed by the SUPPRESS WHEN phrase of the ALTERNATE RECORD KEY clause is not considered to exist.d) If the previous operation on the file was a successful OPEN or START statement, the first existing record to be made available is either:1. If NEXT is specified or implied, the record to be made available is the first existing record in the physical file whose key of reference value is greater than or equal to the key value in the file position indicator.2. If PREVIOUS is specified and the previous operation on the file was a START statement, the first existing record in the physical file whose key of reference value is less than or equal to the key value in the file position indicator.3. If no such record is found or PREVIOUS is specified and the previous operation on the file was an OPEN statement, the at end condition exists and execution proceeds as indicated in General rule 24.e) If the previous operation on the file was a successful READ statement and the current key of reference is not an alternate key that allows duplicates, the first existing record to be made available is either:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

698 ©ISO/IEC 2023

1. If NEXT is specified or implied, the record to be made available is the first existing record in the physical file whose key value is greater than or equal to the key value in the file position indicator.2. If PREVIOUS is specified, the first existing record in the physical file whose key value is less than or equal to the key value in the file position indicator.3. If no such record is found, the at end condition exists and execution proceeds as indicated in General rule 24. Otherwise, the first record in the physical file whose key value is greater than the key of reference is made available.f) If the previous operation on the file was a successful READ statement and the current key of reference is an alternate key that allows duplicates the record to be made available is one of the following:1. If NEXT is specified or implied, and there exists in the physical file a record whose key value is equal to the key of reference and whose logical position within the set of duplicates is after the record that was made available by that prior READ statement, the record within the set of duplicates that is immediately after the record that was made available by that prior READ statement. Otherwise, the first record in the physical file whose key value is greater than the key of reference value.2. If PREVIOUS is specified and there exists in the physical file a record whose key value is equal to the file position indicator and whose logical position within the set of duplicates is before the record that was made available by that prior READ statement is made available. the record within the set of duplicates that is immediately before the record that was made available by that prior READ statement; Otherwise, the last record within the set of duplicates, if any, whose key value is the first key value is less than the key of reference value.3. If no such record is found, the at end condition exists and execution proceeds as indicated in General rule 24.g) If a record is made available, the file position indicator is set to the value of the current key of reference of the record made available and the read operation is successful.When the file is a relative file:a) Comparisons for records in relative files relate to the relative key number.b) If the file position indicator was established by a prior successful OPEN or START statement, the first existing record that is selected is made available, regardless of whether NEXT or PREVIOUS is specified.c) If the file position indicator was established by a prior successful READ statement, the first existing record in the physical file whose relative key number is greater than the file position indicator if NEXT is specified or implied or is less than the file position indicator if PREVIOUS is specified is selected.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 699

d) If a record is found according to the above rules, the record is made available in the record area associated with file-name-1 unless the RELATIVE KEY clause is specified for file-name-1 and the number of significant digits in the relative key number of the selected record is larger than the size of the relative key data item. In that case, the I-O status value associated with file-name-1 is set to '14', the at end condition exists, the file position indicator is set to indicate that no next or previous logical record exists, and execution proceeds as specified in General rule 24.NOTE 4 The record made available can have a length of zero.e) If no record is found that satisfies the above rules, the at end condition exists, and execution proceeds as specified in General rule 24.f) If a record is made available, the file position indicator is set to the relative record number of the record made available.When the file is a sequential file:a) Comparisons for records in sequential files relate to the record number. b) If the file position indicator was established by a prior successful OPEN or START statement, the first existing record that is selected is made available, regardless of whether NEXT or PREVIOUS is specified.c) If the file position indicator was established by a prior successful READ statement, the first existing record in the physical file whose relative key number is greater than the file position indicator if NEXT is specified or implied or is less than the file position indicator if PREVIOUS is specified is selected.d) If a record is found according to the above rules, the record is made available in the record area associated with file-name-1.e) If no record is found that satisfies the above rules, the at end condition exists, and execution proceeds as specified in General rule 24.f) If a record is made available, the file position indicator is set to the record number of the record made available.NOTE 5 The record made available can have a length of zero.22) If the ADVANCING ON LOCK phrase is specified on the READ statement of a file open for file sharing and the record to be made available is locked by another file connector, the result of this READ statement is as if the locked record were read and then the same READ statement were executed. If the record to be made available is locked by another file connector, this action is repeated until either an unlocked record is read or the end of the file is encountered if NEXT is specified or implied, or the beginning of file is encountered if PREVIOUS is specified. A record operation conflict condition does not exist. If the end of the file or beginning of the file is encountered, the file position indicator is set to indicate that no next or previous logical record exists and execution proceeds as indicated in General rule 24.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

700 ©ISO/IEC 2023

If the file is not open for file sharing, the ADVANCING ON LOCK phrase is ignored.23) If, during the execution of the READ statement, the end of reel/unit is recognized or a reel/unit contains no logical records, and the logical end of the file has not been reached for a given file connector, a reel/unit swap occurs and the current volume pointer is updated to point to the next reel/unit existing for the physical file.24) If, during the execution of the READ statement, the at end condition exists, the following occurs in the order specified:a) The I-O status of the file connector associated with file-name-1 is set to ‘10’ to indicate the at end condition, and, if enabled, the EC-I-O-AT-END exception condition is set to exist.b) The file position indicator is set to indicate that no next or previous logical record exists.c) If the AT END phrase is specified in the READ statement causing the condition, control is transferred to imperative-statement-1. Any other applicable exception processing statements are not executed. If control is returned from imperative-statement-1, control is then transferred to the end of the READ statement.d) If the AT END phrase is not specified in the input-output statement, any applicable at end exception processing statements are executed. If there are no applicable at end exception processing statements, control is transferred to the end of the READ statement.When the at end condition exists, execution of the READ statement is unsuccessful.NOTE 6 The content of the associated record area is undefined as indicated in General rule 18.25) For a relative file, if the RELATIVE KEY clause is specified for file-name-1, the execution of a READ statement moves the relative record number of the record made available to the relative key data item according to the rules for the MOVE statement. 26) For an indexed file being sequentially accessed, records having the same duplicate value in an alternate record key that is the key of reference are made available in the same order, or, in the case of PREVIOUS, in the reverse order, in which they are released by execution of WRITE statements, or by execution of REWRITE statements that create such duplicate values.27) The I-O status for the file connector referenced by file-name-1 is set to '02' if the execution of the READ statement is successful, an indexed file is being sequentially accessed, the key of reference is an alternate record key, and one of the following is true:a) the NEXT phrase is specified or implied and the alternate record key in the record that follows the record that was successfully read duplicates the same key in the record that was successfully read, orb) the PREVIOUS phrase is specified and the alternate record key in the record that immediately precedes the record that was successfully read duplicates the same key in the record that was successfully read.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 701

NOTE 7 If the sharing mode of the file is sharing with all other, I-O status value '02' on a sequential read cannot be relied on for a subsequent sequential read. The record with a duplicate key might have been deleted through another file connector between the return of I-O status value '02' and the execution of the subsequent READ statement. NOTE 8 If the sharing mode of the file is sharing with all other, the lack of an I-O status value '02' on a sequential read cannot be relied on as an indication that no duplicate key will exist at the time of a subsequent sequential read. A record with a duplicate key might have been added through another file connector before the execution of that subsequent READ statement.FORMAT 228) If, at the time of the execution of a READ statement, the file position indicator indicates that an optional input file is not present, the invalid key condition exists and execution of the READ statement is unsuccessful. (See 9.1.14, Invalid key condition.)29) For a relative file, execution of a READ statement sets the file position indicator to the value contained in the data item referenced by the RELATIVE KEY clause for the file, and the record whose relative record number equals the file position indicator is made available in the record area associated with file-name-1. If the physical file does not contain such a record, the invalid key condition exists and execution of the READ statement is unsuccessful. (See 9.1.14, Invalid key condition.)30) For an indexed file accessed through a given file connector, if the KEY phrase is specified, data-name-1 or record-key-name-1 is established as the key of reference for this retrieval. If the dynamic access mode is specified, this key of reference is also used for retrievals by any subsequent executions of sequential format READ statements for the file through the file connector until a different key of reference is established for the file through that file connector.31) For an indexed file accessed through a given file connector, if the KEY phrase is not specified, the prime record key is established as the key of reference for this retrieval. If the dynamic access mode is specified, this key of reference is also used for retrievals by any subsequent executions of sequential format READ statements for the file through the file connector until a different key of reference is established for the file through that file connector.32) For an indexed file accessed through a given file connector, execution of a READ statement sets the file position indicator to the value in the key of reference. This value is compared with the value contained in the corresponding data item of the stored records in the file until the first record having an equal value is found. In the case of an alternate key with duplicate values, the first record found is the first record in a sequence of duplicates that was released to the operating environment. The record so found is made available in the record area associated with file-name-1. If no record is so identified, the invalid key condition exists and execution of the READ statement is unsuccessful. (See 9.1.14, Invalid key condition.)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

702 ©ISO/IEC 2023

14.9.31 RECEIVE statement

14.9.31.1 GeneralThe RECEIVE statement receives a message from a requestor or a message server run unit.
14.9.31.2 General format

14.9.31.3 Syntax rules1) Data-name-1 shall be the name of a message-tag data item.2) The data description entries of identifier-1 or any data items subordinate to it shall not contain the ANY LENGTH clause, the BASED clause, the CONSTANT RECORD clause, the DYNAMIC-LENGTH clause, the FUNCTION-POINTER clause, the OBJECT-REFERENCE clause, the OCCURS clause with the DEPENDING ON phrase where the depending on data item is not within identifier-1, the POINTER clause, or the PROGRAM-POINTER clause.NOTE The normal case would be to define identifier-1 as an 01 level item whose data description is exactly that in the message requestor.3) Data-name-2 shall be an integer data item of the class numeric.
14.9.31.4 General rules1) The RECEIVE statement receives a message from a server run unit or, in the case where the current run unit is being activated as a server run unit, from that requestor run unit.a) If the content of data-name-1 is the value NULL before the execution of the RECEIVE statement, the RECEIVE statement is waiting for any requestor run unit to send a message to the current run unit. At the successful completion of the execution of the RECEIVE statement, data-name-1 will be set to an implementor-defined value that identifies the requestor run unit (the message tag). This value is used in a subsequent SEND statement to return any information requested by the sender.b) Otherwise, the content of data-name-1 is an implementor-defined value that identifies the run unit that sent a message to the current run unit via a SEND statement. The content of identifier-1 is the content of the message sent by that SEND statement. If the content of the message tag

RECEIVE FROM data-name-1 GIVING identifier-1 data-name-2
CONTINUE AFTER arithmetic-expression-1 SECONDSMESSAGE RECEIVED

ON EXCEPTION imperative-statement-1NOT ON EXCEPTION imperative-statement-2 [END-RECEIVE]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 703

does not identify a requestor or is not a correct format for the MCS, the RECEIVE statement is unsuccessful and the EC-MCS-INVALID-TAG exception condition is set to exist. If the content of the message tag specifies a requestor that does not exist, the RECEIVE statement is unsuccessful and the EC-MCS-REQUESTOR-FAILED exception condition is set to exist.NOTE The failed exception condition can happen if the requestor run unit aborted for some reason or if it didn’t send any message or other reasons.2) If the CONTINUE phrase is specified, the RECEIVE statement execution is completed either when the message or an exception is returned from the MCS or when the CONTINUE parameters are completed. In the latter case, the content of identifier-1 will be all space characters and the RECEIVE statement is assumed to be successful. 3) If the execution of the RECEIVE statement was successful, data-name-2 will contain the length, in alphanumeric characters, of the message received. If that length exceeds the length of identifier-1, the EC-MCS-MESSAGE-LENGTH exception condition is set to exist and the execution of the RECEIVE statement is unsuccessful.4) If the execution of the RECEIVE statement is successful, the ON EXCEPTION phrase, if specified, is ignored and control is transferred to the end of the RECEIVE statement, or, if the NOT ON EXCEPTION phrase is specified to imperative-statement-2. If control is returned from imperative-statement-2, control is then transferred to the end of the RECEIVE statement.5) If the execution of the RECEIVE statement is unsuccessful, then:a) If the ON EXCEPTION phrase is specified in the RECEIVE statement, control is transferred to imperative-statement-1. If control is returned from imperative-statement-1, control is then transferred to the end of the RECEIVE statement.b) If the ON EXCEPTION phrase is not specified in the RECEIVE statement, one of the following occurs:1. If the RECEIVE statement is specified in a statement that is in imperative-statement-1 in an exception-checking PERFORM statement and a WHEN phrase in that statement specifies the exception condition that occurred, control is transferred to that WHEN phrase. If control is returned from the WHEN phrase, control is then transferred to the end of the RECEIVE statement.2. If there is no applicable WHEN phrase and there is an applicable USE declarative, control is transferred to that declarative. If control is returned from the declarative, control is then transferred to the end of the RECEIVE statement.3. Otherwise, control is transferred to the end of the RECEIVE statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

704 ©ISO/IEC 2023

14.9.32 RELEASE statement

14.9.32.1 GeneralThe RELEASE statement transfers records to the initial phase of a sort operation.
14.9.32.2 General format

14.9.32.3 Syntax rules1) Record-name-1 shall be the name of a logical record in a sort-merge file description entry and it may be qualified.2) If identifier-1 is a function-identifier, it shall reference an alphanumeric or national function.3) Identifier-1 or literal-1 shall be valid as a sending operand in a MOVE statement specifying record-name-1 as the receiving operand.4) Literal-1 shall not be a zero-length literal.
14.9.32.4 General rules1) A RELEASE statement may be executed only when it is within the range of an input procedure being executed by a SORT statement that references the file-name associated with record-name-1. If it is executed at any other time, the EC-FLOW-RELEASE exception condition is set to exist.2) The execution of a RELEASE statement causes the record named by record-name-1 to be released to the initial phase of a sort operation.3) The logical record released by the execution of the RELEASE statement is no longer available in the record area unless the sort-merge file-name associated with record-name-1 is specified in a SAME RECORD AREA clause. The logical record is also available as a record of other files referenced in the same SAME RECORD AREA clause as the associated output file, as well as the file associated with record-name-1.4) The result of the execution of a RELEASE statement with the FROM phrase is equivalent to the execution of the following statements in the order specified:a) The statement:

MOVE identifier-1 TO record-name-1or

RELEASE record-name-1 FROM identifier-1literal-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 705

MOVE literal-1 TO record-name-1according to the rules specified for the MOVE statement.b) The same RELEASE statement without the FROM phrase.NOTE 14.6.10, Overlapping operands, and 14.9.25, MOVE statement, general rules, apply to any cases in which the storage area identified by identifier-1 and the record area associated with record-name-1 share any part of their storage areas. The result of execution of the RELEASE statement is undefined if the result of execution of the implicit MOVE statement described in General rule 4b is undefined.5) After the execution of the RELEASE statement is complete, the information in the area referenced by identifier-1 is available, even though the information in the area referenced by record-name-1 is not available except as specified by the SAME RECORD AREA clause.6) If the number of bytes to be released to the sort operation is greater than the number of bytes in record-name-1, the content of the bytes that extend beyond the end of record-name-1 are undefined.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

706 ©ISO/IEC 2023

14.9.33 RESUME statement

14.9.33.1 GeneralThe RESUME statement transfers control to a procedure-name or to the statement following the statement that caused a declarative or an imperative-statement in a WHEN phrase of an exception-checking PERFORM statement to be executed.
14.9.33.2 General format

14.9.33.3 Syntax rules1) The RESUME statement may be specified only in a declarative or in an imperative statement in a WHEN phrase of an exception-checking PERFORM statement. In the latter case, the NEXT STATEMENT phrase shall be specified.2) The RESUME statement shall not be specified in a declarative procedure for which the GLOBAL phrase is specified in the associated USE statement.3) Procedure-name-1 shall be a procedure-name in the nondeclarative portion of the function, method, or program.
14.9.33.4 General rules1) If the RESUME statement is executed within the scope of execution of a global declarative, it is the equivalent of the execution of a CONTINUE statement.2) If the NEXT STATEMENT phrase is specified, control is transferred to an implicit CONTINUE statement that is determined as follows:a) When an exception condition caused an exception processing procedure to be executed, the implicit CONTINUE statement immediately follows the end of the statement that was executing when control was transferred to the exception processing procedure unless general rules associated with the applicable statement specify otherwise. The applicable statement is one of the following:1. If the exception condition was raised within a statement within the runtime entity and was not a propagated exception condition, the applicable statement is the one in which the exception condition was raised.2. If the exception condition was propagated from an activated runtime entity, the applicable statement is the CALL or INVOKE statement that activated the entity, or, for an inline invocation or a function invocation, it is the statement in which the inline invocation or function invocation was specified.

RESUME AT NEXT STATEMENTprocedure-name-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 707

3. If the statement is contained in other statements, the applicable statement is the lowest level statement, not the containing statement.b) If the declarative was not executed because of an exception condition but was executed instead by a PERFORM statement in the nondeclarative portion of the source element that referenced the declarative procedure, the implicit CONTINUE statement immediately follows the last statement of the terminating procedure referenced in that PERFORM statement.NOTE 1 Use of NEXT STATEMENT may cause a transfer of control to a statement that in the normal course of events would not be executed. For example IF a GO TO x ELSE GO TO y END-IF. If an exception condition was raised during the evaluation of 'a', transfer would be after the END-IF even though control normally would never be passed there.3) If procedure-name-1 is specified, control is transferred to procedure-name-1 as if a GO TO procedure-name-1 were executed.NOTE 2 Use of this method of recovery can cause the flow of control for PERFORM statements to be undefined as described in 14.9.28, PERFORM statement General rule 2.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

708 ©ISO/IEC 2023

14.9.34 RETURN statement

14.9.34.1 GeneralThe RETURN statement obtains either sorted records from the final phase of a sort operation or merged records during a merge operation.
14.9.34.2 General format

14.9.34.3 Syntax rules1) File-name-1 shall be described by a sort-merge file description entry in the data division.2) The INTO phrase may be specified in a RETURN statement:a) If only one record description is subordinate to the sort-merge file description entry, orb) If all record-names associated with file-name-1 and the data item referenced by identifier-1 describe an alphanumeric group item or an elementary item of category alphanumeric or category national.3) If identifier-1 is a strongly-typed group item, there shall be exactly one record area subordinate to the SD for file-name-1. This record area shall be a strongly-typed group item of the same type as identifier-1.4) The AT END phrase and the NOT AT END phrase, when specified, may be written in reversed order.
14.9.34.4 General rules1) A RETURN statement may be executed only when it is within the range of an output procedure being executed by a MERGE or SORT statement that references file-name-1. If it is executed at any other time, the EC-FLOW-RETURN exception condition is set to exist.2) When the logical records of a file are described with more than one record description, the content of any data item, where any part of that data item lies outside the range of the current record, is undefined at the completion of the execution of the RETURN statement.3) The execution of the RETURN statement causes the next existing record in the file referenced by file-name-1, as determined by the keys listed in the SORT or MERGE statement, to be made available in the record area associated with file-name-1. If no next logical record exists in the file referenced by file-name-1, the at end condition is set to exist and control is transferred to imperative-statement-1 of the AT END phrase. If control is returned from imperative-statement-1,

RETURN file-name-1 RECORD [INTO identifier-1]AT END imperative-statement-1[NOT AT END imperative-statement-2][END-RETURN]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 709

control is then transferred to the end of the RETURN statement. When the at end condition exists, execution of the RETURN statement is unsuccessful and the contents of the record area associated with file-name-1 are undefined. After the execution of imperative-statement-1 in the AT END phrase, no RETURN statement may be executed as part of the current output procedure. If such a RETURN statement is executed, the EC-SORT-MERGE-RETURN exception condition is set to exist and the results of the execution of the RETURN statement are undefined.4) If an at end condition does not exist during the execution of a RETURN statement, then after the record is made available and after executing any implicit move resulting from the presence of an INTO phrase, control is transferred to imperative-statement-2, if specified; otherwise, control is transferred to the end of the RETURN statement.5) The result of the execution of a RETURN statement with the INTO phrase is equivalent to the application of the following rules in the order specified:a) The same RETURN statement without the INTO phrase is executed.b) The current record is moved from the record area to the area specified by identifier-1 according to the rules for the MOVE statement without the CORRESPONDING phrase. The size of the current record is determined by rules specified for the RECORD clause. If the file description entry contains a RECORD IS VARYING clause, the implied move is an alphanumeric group move. The implied MOVE statement does not occur if the execution of the RETURN statement was unsuccessful. Item identification of the data item referenced by identifier-1 is done after the record has been read and immediately before it is moved to the data item. The record is available in both the record area and the data item referenced by identifier-1.NOTE 14.6.10, Overlapping operands, and 14.9.25, MOVE statement, general rules, apply to any cases in which the storage area identified by identifier-1 and the record area associated with file-name-1 share any part of their storage areas. The result of execution of the RETURN statement is undefined if the result of execution of the implicit MOVE statement described in General rule 4b is undefined.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

710 ©ISO/IEC 2023

14.9.35 REWRITE statement

14.9.35.1 GeneralThe REWRITE statement logically replaces a record existing in a mass storage file.
14.9.35.2 General format

where retry-phrase is described in 14.7.9, RETRY phrase
14.9.35.3 Syntax rules1) Record-name-1 is the name of a logical record in the file section of the data division and may be qualified.2) Neither the INVALID KEY phrase nor the NOT INVALID KEY phrase shall be specified for a REWRITE statement that references a file with sequential organization or a file with relative organization and sequential access mode.3) If record-name-1 is defined in a containing program and is referenced in a contained program, the file description entry for the file associated with record-name-1 shall contain a GLOBAL clause.4) If automatic locking has been specified for the rewrite file, neither the WITH LOCK phrase nor the WITH NO LOCK phrase shall be specified.5) If the rewrite file is subject to an APPLY COMMIT clause, neither the WITH LOCK phrase nor the WITH NO LOCK phrase shall be specified.6) If record-name-1 is specified, identifier-1 or literal-1 shall be valid as a sending operand in a MOVE statement specifying record-name-1 as the receiving operand.7) If identifier-1 references a bit data item other than a function and the FILE phrase is specified, identifier-1 shall be described such that:

REWRITE record-name-1FILE file-name-1

 RECORD FROM identifier-1literal-1

[retry-phrase]WITH LOCKWITH NO LOCKINVALID KEY imperative-statement-1NOT INVALID KEY imperative-statement-2[END-REWRITE]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 711

a) subscripting and reference modification in identifier-1 consist of only fixed-point numeric literals or arithmetic expressions in which all operands are fixed-point numeric literals and the exponentiation operator is not specified; andb) it is aligned on a byte boundary.8) If identifier-1 references a function and the FILE phrase is specified, identifier-1 shall reference an alphanumeric or national function.9) If identifier-1 references a function and the FILE phrase is not specified, identifier-1 shall reference an alphanumeric, boolean, or national function.10) If the FILE phrase is specified, the FROM phrase shall also be specified and:a) identifier-1 shall be valid as a sending operand in a MOVE statement;b) literal-1 shall be an alphanumeric, boolean, or national literal and shall not be a figurative constant.11) File-name-1 shall not reference a report file or a sort-merge file description entry.12) If the FILE phrase is specified, the description of identifier-1, including its subordinate data items, shall not contain a data item described with a USAGE OBJECT REFERENCE clause.
14.9.35.4 General rules1) The execution of the REWRITE statement causes the I-O status value in the rewrite file connector to be updated as indicated in 9.1.13, I-O status.2) The rewrite file connector is the file connector referenced by file-name-1 or the file-name associated with record-name-1.3) The rewrite file connector shall have an open mode of I-O. If the open mode is some other value or the file is not open, the I-O status in the rewrite file connector is set to '49' and the execution of the REWRITE statement is unsuccessful.4) The successful execution of the REWRITE statement releases a logical record to the operating environment.5) If the rewrite file connector has an access mode of sequential, the immediately previous input-output statement executed that referenced this file connector shall have been a successfully executed READ statement. If this is not true, the I-O status in the rewrite file connector is set to '43' and the execution of the REWRITE statement is unsuccessful. For a successful REWRITE statement, the operating environment logically replaces the record that was accessed by the READ statement.NOTE 1 Logical records in relative and sequential files can have a length of zero. Logical records in an indexed file will always be long enough to contain the record keys.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

712 ©ISO/IEC 2023

6) The logical record released by a successful execution of the REWRITE statement is no longer available in the record area unless file-name-1 or the file-name associated with record-name-1 is specified in a SAME RECORD AREA clause. The logical record is also available as a record of other file-names referenced in the same SAME RECORD AREA clause as file-name-1 or the file-name associated with record-name-1, as well as the file associated with record-name-1.7) The result of the execution of a REWRITE statement specifying record-name-1 and the FROM phrase is equivalent to the execution of the following statements in the order specified:a) The statement:
MOVE identifier-1 TO record-name-1or
MOVE literal-1 TO record-name-1according to the rules specified for the MOVE statement.b) The same REWRITE statement without the FROM phrase.NOTE 2 14.6.10, Overlapping operands, and 14.9.25, MOVE statement, general rules, apply to any cases in which the storage area identified by identifier-1 and the record area associated with file-name-1 share any part of their storage areas. The result of execution of the REWRITE statement is undefined if the result of execution of the implicit MOVE statement described in General rule 7a is undefined.8) The figurative constant SPACE when specified in the REWRITE statement references one alphanumeric space character.9) The result of execution of a REWRITE statement with the FILE phrase is equivalent to the execution of the following implicit MOVE statement and implicit REWRITE statement in the order specified:— The statement
MOVE identifier-1 TO implicit-record-1or
MOVE literal-1 TO implicit-record-1— The statement
REWRITE implicit-record-1where implicit-record-1 refers to the record area for file-name-1 and is treated:a) when identifier-1 references an intrinsic function, as though implicit-record-1 were a record description entry subordinate to the file description entry having the same class, category, usage, and length as the returned value of the intrinsic function, or

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 713

b) when identifier-1 does not reference an intrinsic function, as though implicit-record-1 were a record description entry subordinate to the file description entry having the same description as identifier-1, orc) when literal-1 is specified, as though implicit-record-1 were a record description entry subordinate to the file description entry having the same class, category, usage, and length as literal-1.NOTE 3 14.6.10, Overlapping operands, and 14.9.25, MOVE statement, general rules, apply to any cases in which the storage area identified by identifier-1 and the record area associated with implicit-record-1 share any part of their storage areas. The result of execution of the REWRITE statement is undefined if the result of execution of the implicit MOVE statement is undefined.10) After the execution of the REWRITE statement is complete, the information in the area referenced by identifier-1 is available, provided that identifier-1 is not one or part of one of the record descriptions subordinate to the file-description, even though the information in the area referenced by record-name-1 is not available except as specified for the SAME RECORD AREA clause as indicated in General rule 6.11) If record locking is enabled for the rewrite file connector and the record identified for rewriting is locked by another file connector, the result of the operation depends on the presence or absence of the RETRY phrase. If the RETRY phrase is specified, additional attempts may be made to rewrite the record as specified in the rules in 14.7.9, RETRY phrase. If the RETRY phrase is not specified or the record is not successfully rewritten as specified by the RETRY phrase, the record operation conflict condition exists. The I-O status is set in accordance with the rules for the RETRY phrase. When the record operation conflict condition exists as a result of the REWRITE statement:a) The file position indicator is unchanged.b) A value is placed into the I-O status associated with the rewrite file connector to indicate the record operation conflict condition.c) The REWRITE statement is unsuccessful.12) If record locks are in effect, the following actions take place at the beginning or at the successful completion of the execution of the REWRITE statement:a) If single record locking is specified for the rewrite file connector:1. If that file connector holds a record lock on the record to be logically replaced, that lock is released at completion unless the WITH LOCK phrase is specified.2. If that file connector holds a record lock on a record other than the one to be logically replaced, that lock is released at the beginning.b) If multiple record locking is specified for the rewrite file connector, and a record lock is associated with the record to be logically replaced, that record lock is released at completion only when the WITH NO LOCK phrase is specified and the record to be logically replaced was already locked by that file connector.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

714 ©ISO/IEC 2023

c) If the WITH LOCK phrase is specified, the record lock associated with the record to be replaced is set at completion.13) The file position indicator in the rewrite file connector is not affected by the execution of a REWRITE statement.14) If the execution of the REWRITE statement is unsuccessful, no logical record updating takes place, the content of the record area is unaffected, and the I-O status in the rewrite file connector is updated as indicated in General rules 2, 5, 11, 16, 17, 20, 21, 22, 23, and 25. The transfer of control depends on other clauses and the value of I-O status as described in 9.1.12, Input-output exception processing, 9.1.13, I-O status, and 9.1.14, Invalid key condition.15) When record-name-1 is specified, if the number of bytes to be written to the file is greater than the number of bytes in record-name-1, the content of the bytes that extend outside the end of record-name-1 are undefined.SEQUENTIAL FILES16) For a record sequential file, if the number of bytes in the data item referenced by identifier-1, the runtime representation of literal-1, or the record referenced by record-name-1 is not equal to the number of bytes in the record being replaced, the execution of the REWRITE statement is unsuccessful and the I-O status in the rewrite file connector is set to '44'.17) For a line sequential filea) If the execution of the preceding READ statement results in only part of the record being transferred to the record area, the execution of the REWRITE statement is unsuccessful and the I-O status in the rewrite file connector is set to ‘44’. (9.1.13, I-O status)NOTE 4 A READ statement executed on a line sequential file transfers sufficient characters to fill the record area or characters up to the line delimiter. If there are further characters in the record being read these are transferred by the execution of subsequent READ statements. In this situation the execution of a REWRITE statement to replace the record is unsuccessful.b) If the number of bytes in the data item referenced by identifier-1, the runtime representation of literal-1, or the record referenced by record-name-1 is greater than the number of bytes in the record being replaced, the execution of the REWRITE statement is unsuccessful and the I-O status in the rewrite file connector is set to ‘44’. (9.1.13, I-O status).c) If the number of bytes in the data item referenced by identifier-1, the runtime representation of literal-1, or the record referenced by record-name-1 is less than the number of bytes in the record being replaced, then a sufficient number of the space character is appended to the data item referenced by identifier-1, the runtime representation of literal-1, or the record referenced by record-name-1 to increase the length of the record being transferred to the length of the record being replaced. If the data item referenced by identifier-1, the runtime representation of literal1, or the record referenced by record-name-1 is specified implicitly or explicitly as alphanumeric, a space is defined to be the alphanumeric space character. If the data item referenced by identifier-1, the runtime representation of literal-1, or the record referenced by record-name-1 is specified implicitly or explicitly as national, a space is defined to be the national space character.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 715

d) If the record area contains one or more characters that are not in the implementor-defined character set defined for a line sequential file the execution of the REWRITE statement is unsuccessful and the I-O status in the rewrite file connector is set to ‘71’. (9.1.13, I-O status)RELATIVE AND INDEXED FILES18) The number of bytes in the record referenced by identifier-1, the runtime representation of literal-1, or the record referenced by record-name-1 may differ from the number of bytes in the record being replaced.19) Transfer of control following the successful or unsuccessful execution of the REWRITE operation depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the REWRITE statement. (See 9.1.14, Invalid key condition.)20) The number of bytes in the runtime representation of literal-1, the data item referenced by identifier-1, or the record referenced by record-name-1 after any changes made to the record length by the FORMAT clause shall not be larger than the largest or smaller than the smallest number of bytes allowed by the RECORD IS VARYING clause associated with file-name-1 or the file-name associated with record-name-1. If this rule is violated, the execution of the REWRITE statement is unsuccessful and the I-O status in the rewrite file connector is set to '44'.RELATIVE FILES21) For a file accessed in either random or dynamic access mode, the operating environment logically replaces the record identified by the relative key data item specified for file-name-1 or the file-name associated with record-name-1. If the file does not contain the record specified by the key, the invalid key condition exists. When the invalid key condition is recognized, the execution of the REWRITE statement is unsuccessful and the I-O status in the rewrite file connector is set to the invalid key condition '23'.INDEXED FILES22) If the access mode of the REWRITE file connector is sequential, the record to be replaced is specified by the value of the prime record key. When the REWRITE statement is executed the value of the prime record key of the record to be replaced shall be equal to the value of the prime record key of the last record read using this file connector. If it is not, the execution of the REWRITE statement is unsuccessful and the I-O status in the rewrite file connector is set to the invalid key condition, '21'. 23) If the access mode of the rewrite file connector is random or dynamic, the record to be replaced is specified by the prime record key. If there is no existing record in the physical file with that prime record key, the execution of the REWRITE statement is unsuccessful and the I-O status in the rewrite file connector is set to the invalid key condition, '23'.24) Execution of the REWRITE statement for a record that has an alternate record key occurs as follows:a) When the value of a specific alternate record key is not changed, the order of retrieval when that key is the key of reference remains unchanged.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

716 ©ISO/IEC 2023

b) When the value of a specific alternate record key is changed, the subsequent order of retrieval of that record may be changed when that specific alternate record key is the key of reference. When duplicate key values are permitted, the record is logically positioned last within the set of duplicate records where the alternate record key value is equal to the same alternate key value in one or more records in the file based on the collating sequence for the file.NOTE 5 If two or more file connectors share the physical file, a duplicate alternate key might not actually be positioned last at the completion of the REWRITE statement, because another duplicate key might have been created by another operation.If the SUPPRESS WHEN phrase is specified in the ALTERNATE RECORD KEY clause and the value of the alternate record key is no longer equal to the literal specified in that phrase:1. an access path to this record using this key of reference shall be provided, and2. the record shall be logically positioned so that it will be found when accessed using the alternate record key.If alternate record key suppression is specified for this alternate record key and the value of this alternate record key is now equal to its key suppression value:1. the access path to the record using this alternate record key shall no longer be provided, and2. the record shall be logically repositioned so that it will not be found when accessed using this alternate record key.The comparison used for determining changes to the key is based on the collating sequence for the file according to the rules for a relation condition. Any number of records may have the same alternate key value equal to its key suppression value without requiring the DUPLICATES phrase to be specified for that key. Key entries that are suppressed shall not cause a duplicate key condition to exist.25) The comparison for equality for record keys is based on the collating sequence for the file according to the rules for a relation condition. The invalid key condition exists under the following circumstances:a) When the rewrite file connector is open in the sequential access mode and the value of the prime record key of the record to be replaced is not equal to the value of the prime record key of the last record read through the file connector, the I-O status associated with the file connector is set to '21'.b) When the rewrite file connector is open in the dynamic or random access mode and the value of the prime record key of the record to be replaced is not equal to the value of the prime record key of any record existing in that physical file, the I-O status associated with the rewrite file connector is set to '23'.c) When an alternate record key of the record to be replaced does not allow duplicates and the value of that alternate record key is equal to the value of the corresponding alternate record key

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 717

of a record in that physical file, the I-O status associated with the rewrite file connector is set to '22'.When the invalid key condition is recognized, the execution of the REWRITE statement is unsuccessful, the updating operation does not take place, and the content of the record area is unaffected.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

718 ©ISO/IEC 2023

14.9.36 ROLLBACK statement

14.9.36.1 GeneralThe ROLLBACK statement reverses all changes made to the files and data-items explicitly or implicitly referenced in all the active APPLY COMMIT clauses to the state that they were in at the latest COMMIT statement, or the start of the run unit if no COMMIT statements had previously been executed. Data items in canceled runtime elements or initial programs that have been exited are not restored.
14.9.36.2 General format

14.9.36.3 Syntax rules1) This statement shall not be specified in a recursive source element.2) This statement shall not be specified in the input or output procedure of a MERGE or SORT statement.
14.9.36.4 General rules1) If this statement is executed when there is no active APPLY COMMIT clause, then it has the same effect as a CONTINUE statement with no additional phrases.NOTE When there is no active APPLY COMMIT clause then no files or data items will have been specified for commit and rollback.2) If this statement is attempted to be executed under the control of a recursive runtime element or a file SORT or MERGE statement, then the exception condition EC-FLOW-ROLLBACK is set to exist. 3) All files and data-items referenced in active APPLY COMMIT clauses are restored to the state they were in at the execution of the last COMMIT statement or the start of the run unit if no COMMIT statements had previously been executed. This includes the setting of all file and record locks on those files. It also includes the file status data items and data-items specified in the linage or record clauses of the file descriptions.4) Those data-items whose containing item has been canceled are not restored, unless they are external items for which another defining entry subject to an active APPLY COMMIT clause still exists.5) Data items in initial programs that have been exited are not restored, unless they are external items for which another defining entry subject to an active APPLY COMMIT clause still exists in a runtime element for which the initial attribute has not been specified or that runtime element has not yet been exited.6) Any APPLY COMMIT clauses in exited initial programs or canceled runtime elements are deactivated.

ROLLBACK

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 719

7) After a rollback, execution continues with the next logical statement (see 14.6.3, Explicit and implicit transfers of control).

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

720 ©ISO/IEC 2023

14.9.37 SEARCH statement

14.9.37.1 GeneralThe SEARCH statement is used to search a table for a table element that satisfies the specified condition and to adjust the value of the associated index to indicate that table element.
14.9.37.2 General formatsFormat 1 (serial):

NOTE 1 NEXT SENTENCE is an archaic feature. For details see F.1, Archaic language elements.Format 2 (all):

NOTE 2 NEXT SENTENCE is an archaic feature. For details see F.1, Archaic language elements.

SEARCH identifier-1 VARYING identifier-2index-name-1

[AT END imperative-statement-1]
WHEN condition-1 imperative-statement-2NEXT SENTENCE

 ...
[END-SEARCH]

SEARCH ALL identifier-1 [AT END imperative-statement-1]
WHEN data-name-1 IS EQUAL TOIS =

 identifier-3literal-1arithmetic-expression-1

condition-name-1

AND data-name-2 IS EQUAL TOIS =

 identifier-4literal-2arithmetic-expression-2

condition-name-2

 ...
imperative-statement-2NEXT SENTENCE

[END-SEARCH]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 721

14.9.37.3 Syntax rulesALL FORMATS1) Identifier-1 shall not be reference-modified.2) The data description of identifier-1 shall contain an OCCURS clause with an INDEXED phrase and identifier-1 shall not be subscripted at the level for which the SEARCH is applicable.3) Identifier-1 may be contained within one or more other tables, for which the subscripting is still required.4) If the END-SEARCH phrase is specified, the NEXT SENTENCE phrase shall not be specified.FORMAT 15) Identifier-2 shall reference a data item whose usage is index or a data item that is an integer. Identifier-2 shall not be subscripted by the first or only index-name specified in the INDEXED phrase in the OCCURS clause specified in the data description entry for identifier-1.6) Condition-1 may be any conditional expression evaluated as specified in 8.8.4, Conditional expressions.FORMAT 27) The OCCURS clause associated with identifier-1 shall contain the KEY phrase.8) Data-name-1 and all repetitions of data-name-2 shall be subscripted by the first index-name associated with identifier-1 along with any subscripts required to uniquely identify the data item, and shall be referenced in the KEY phrase in the OCCURS clause associated with identifier-1. The index-name subscript shall not be followed by a '+' or a '–'.9) All referenced condition-names shall be defined as having only a single value and shall be subscripted by the first index-name associated with identifier-1, along with any subscripts required to uniquely identify the condition-name. The data-name associated with each condition-name shall be specified in the KEY phrase in the OCCURS clause associated with identifier-1. The index-name subscript shall not be followed by a '+' or a '–'.10) Identifier-3, identifier-4, identifiers specified in arithmetic-expression-1, and identifiers specified in arithmetic-expression-2 shall be neither referenced in the KEY phrase of the OCCURS clause associated with identifier-1 nor subscripted by the first index-name associated with identifier-1.11) When a data-name in the KEY phrase in the OCCURS clause associated with identifier-1 is referenced or when a condition-name associated with a data-name in the KEY phrase in the OCCURS clause associated with identifier-1 is referenced, all preceding data-names in that KEY phrase or their associated condition-names shall also be referenced.12) Data-name-1, data-name-2, identifier-3, or identifier-4 shall not specify a variable-length group.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

722 ©ISO/IEC 2023

13) Neither literal-1 nor literal-2 shall be zero-length literals.
14.9.37.4 General rulesALL FORMATS1) The SEARCH statement automatically varies the first or only index associated with identifier-1 and tests conditions specified in WHEN phrases in the SEARCH statement to determine whether a table element satisfies these conditions. Any subscripting specified in a WHEN phrase is evaluated each time the conditions in that WHEN phrase are evaluated. For Format 1, an additional index or data item may be varied. If identifier-1 references a data item that is subordinate to a data item whose data description entry contains an OCCURS clause, only the setting of an index associated with identifier-1 (and any data item referenced by identifier-2 or any index referenced by index-name-1, if specified) is modified by the execution of the SEARCH statement. The subscript that is used to determine the occurrence of each superordinate table to search is specified by the user in the WHEN phrases. Therefore, each appropriate subscript shall be set to the desired value before the SEARCH statement is executed.Upon completion of the search operation, one of the following occurs:a) If the search operation is successful according to the general rules that follow, then: the search operation is terminated immediately; the index being varied by the search operation remains set at the occurrence number that caused a WHEN condition to be satisfied; if the WHEN phrase contains the NEXT SENTENCE phrase, control is transferred to an implicit CONTINUE statement immediately preceding the next separator period; if the WHEN phrase contains imperative-statement-2, control is transferred to that imperative-statement-2 and execution continues according to the rules for each statement specified in that imperative-statement-2. If the execution of a procedure branching or conditional statement results in an explicit transfer of control, control is transferred in accordance with the rules for that statement; otherwise, upon completion of the execution of that imperative-statement-2, control is transferred to the end of the SEARCH statement.b) If the search operation is unsuccessful according to the general rules that follow, then: 1. If the AT END phrase is specified, control is transferred to imperative-statement-1 and execution continues according to the rules for each statement specified in imperative-statement-1. If the execution of a procedure branching or conditional statement results in an explicit transfer of control, control is transferred in accordance with the rules for that statement; otherwise, upon completion of the execution of imperative-statement-1, control is transferred to the end of the SEARCH statement.2. If the AT END phrase is not specified and either the EC-RANGE-SEARCH-INDEX or EC-RANGE-SEARCH-NO-MATCH exception condition was raised during the execution of the SEARCH statement and an applicable exception processing statement associated with that exception condition exists, control is transferred according to the rules for that statement, and if control is returned from that statement, control is transferred to the end of the SEARCH statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 723

3. If the AT END phrase is not specified and neither exception condition was raised because the checking for those exception conditions was not enabled, control is transferred to the end of the SEARCH statement.2) The comparison associated with each WHEN phrase is executed in accordance with the rules specified for conditional expressions. (See 8.8.4, Conditional expressions.)FORMAT 13) The index to be varied by the search operation is referred to as the search index and it is determined as follows:a) If the VARYING phrase is not specified, the search index is the index referenced by the first (or only) index-name specified in the INDEXED phrase in the OCCURS clause associated with identifier-1.b) If the VARYING identifier-2 phrase is specified, the search index is the same as in General rule 3a and the following also applies:1. If identifier-2 references an index data item, that data item is incremented by the same amount as, and at the same time as, the search index.2. If identifier-2 references an integer data item, that data item is incremented by the value one at the same time as the search index is incremented.c) If the VARYING index-name-1 phrase is specified, the search index depends on the following:1. If index-name-1 is specified in the INDEXED BY phrase in the OCCURS clause associated with identifier-1, the index referenced by index-name-1 is the search index.2. If index-name-1 is not one of the indexes specified in the INDEXED phrase in the OCCURS clause associated with identifier-1, the search index is the same as in General rule 3a. The index referenced by index-name-1 is incremented by one occurrence number at the same time as the search index is incremented.Only the data item and indexes indicated are varied by the search operation. All other indexes associated with identifier-1 are unchanged by the search operation.4) The search operation is serial, starting from the occurrence number that corresponds to the value of the search index at the beginning of the execution of the SEARCH statement. If, at the start of the execution, the search index contains a value that corresponds to an occurrence number that is negative, zero, or greater than the highest permissible occurrence number for identifier-1, the search operation is unsuccessful, the EC-RANGE-SEARCH-INDEX exception condition is set to exist, and execution proceeds as indicated in General rule 1b. The number of occurrences of identifier-1, the last of which is permissible, is specified in the OCCURS clause. If, at the start of the execution of the SEARCH statement, the search index contains a value that corresponds to an occurrence number that is not greater than the highest permissible occurrence number for identifier-1, the search operation proceeds by evaluating the conditions in the order they are written. If none of the conditions is satisfied, the search index is incremented by one occurrence number. The process is

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

724 ©ISO/IEC 2023

then repeated using the new index setting unless the new value for the search index corresponds to a table element outside the permissible range of occurrence values, in which case the search operation is unsuccessful, the EC-RANGE-SEARCH-NO-MATCH exception condition is set to exist, and execution proceeds as indicated in General rule 1b. If one of the conditions is satisfied upon its evaluation, the search operation is successful and the execution proceeds as indicated in General rule 1a.FORMAT 25) At the start of the execution of a SEARCH statement with the ALL phrase specified, the following conditions shall be true:a) The contents of each key data item referenced in the WHEN phrase shall be sequenced in the table according to the ASCENDING or DESCENDING phrase associated with that key data item. (See 13.18.38, OCCURS clause.)b) If identifier-1 is subordinate to one or more data description entries that contain an OCCURS clause, the evaluation of the conditions within a WHEN phrase that reference a key data item subordinate to identifier-1 shall result in the same occurrence number for any subscripts associated with a given level of the superordinate tables. That is, the outermost level occurrence numbers shall all be equal, the next level occurrence numbers shall all be equal down to, but not including, the innermost table.6) If any condition specified in General rule 5 is not satisfied:a) If one or more settings of the search index satisfy all conditions in the WHEN phrase, one of the following occurs:1. the final setting of the search index is set equal to one of those settings, but it is undefined which one; execution proceeds as in General rule 1a;2. the final setting of the search index is undefined, the EC-RANGE-SEARCH-NO-MATCH exception condition is set to exist, and execution proceeds as in General rule 1b.It is undefined which of these alternatives occurs.b) If no such setting of the search index exists, the final setting of the search index is undefined, the EC-RANGE-SEARCH-NO-MATCH exception condition is set to exist, and execution proceeds as in General rule 1b.7) If both conditions specified in General rule 5 are satisfied and there is more than one setting of the search index for which all conditions in the WHEN phrase are satisfied, the search operation is successful. The final setting of the search index is equal to one of them, but it is undefined which one.8) The search index is the index referenced by the first (or only) index-name specified in the INDEXED phrase in the OCCURS clause associated with identifier-1. Any other indexes associated with identifier-1 remain unchanged by the search operation.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 725

9) A non serial type of search operation may take place. The initial setting of the search index is ignored. Its setting is varied during the search operation in a manner specified by the implementor. At no time is it set to a value that exceeds the value that corresponds to the last element of the table or is less than the value that corresponds to the first element of the table. The length of the table is discussed in the OCCURS clause. If any of the conditions specified in the WHEN phrase is not satisfied for any setting of the search index within the permitted range, the final setting of the search index is undefined, the search operation is unsuccessful, the EC-RANGE-SEARCH-NO-MATCH exception condition is set to exist, and execution proceeds as indicated in General rule 1b. If all the conditions are satisfied, the search operation is successful and execution proceeds as indicated in General rule 1a.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

726 ©ISO/IEC 2023

14.9.38 SEND statement

14.9.38.1 GeneralThe SEND statement sends a message to a message server run unit and optionally receives a return message from the message server run unit or sends a return message to a requestor run unit.
14.9.38.2 General formatsFormat 1 (to-message-server)

Format 2 (message-server-response)

14.9.38.3 Syntax rules1) Literal-1 shall be an alphanumeric or national literal.2) Message-server-name-1 is the name of a message server run unit.3) The data description entries of identifier-1 or any data items subordinate to it shall not contain the ANY LENGTH clause, the BASED clause, the DYNAMIC-LENGTH clause, the OBJECT-REFERENCE clause, the OCCURS clause with the DEPENDING ON phrase where the depending on data item is not within identifier-1, the POINTER clause, the FUNCTION-POINTER clause or the PROGRAM-POINTER clause.

SEND TO literal-1message-server-name-1

 FROM identifier-1RETURNING data-name-1ON EXCEPTION imperative-statement-1NOT ON EXCEPTION imperative-statement-2END-SEND

SEND TO data-name-2 FROM identifier-1
RAISING EXCEPTION exception-name-1LAST EXCEPTION

ON EXCEPTION imperative-statement-1NOT ON EXCEPTION imperative-statement-2END-SEND

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 727

NOTE The normal case would be to define identifier-1 as an 01 level item whose data description is exactly that in the message server.4) Data-name-1 and data-name-2 shall be the name of a message-tag data item.
14.9.38.4 General rulesALL FORMATS1) The number of character positions of identifier-1 shall not be zero nor larger than the message server allows. If so and checking for that exception is enabled, the EC-MCS-MESSAGE-LENGTH exception is set to exist and the execution of the RECEIVE statement is unsuccessful.NOTE The user is responsible for ensuring that the content of identifier-1 and the matching data item in the message server RECEIVE statement correspond. It is not possible for the MCS to detect any differences. The message server will determine if the size of the message sent differs from the size of the message expected and will return the appropriate exception condition.2) If the execution of the SEND statement is successful, the ON EXCEPTION phrase, if specified, is ignored and control is transferred to the end of the SEND statement, or, if the NOT ON EXCEPTION phrase is specified to imperative-statement-2. If control is returned from imperative-statement-2, control is then transferred to the end of the SEND statement.3) If the execution of the SEND statement is unsuccessful, then:a) If the ON EXCEPTION phrase is specified in the SEND statement, control is transferred to imperative-statement-1. If control is returned from imperative-statement-1, control is transferred to the end of the SEND statementb) If the ON EXCEPTION phrase is not specified in the SEND statement, one of the following occurs:1. If the SEND statement is specified in a statement that is in imperative-statement-1 in an exception-checking PERFORM statement and a WHEN phrase in that statement specifies the exception condition that occurred, control is transferred to that WHEN phrase. If control is returned from the WHEN phrase, control is then transferred to the end of the SEND statement.2. If there is no applicable WHEN phrase and there is an applicable USE declarative, control is transferred to that declarative. If control is returned from the declarative, control is then transferred to the end of the SEND statement.3. Otherwise, control is transferred to the end of the SEND statement.FORMAT 14) A message is sent to the run unit identified by the content of literal-1 or message-server-name-1. The message contains the content of data-name-1 as well as any additional implementor-defined data. This additional data is not included in the message moved to the data item in the receiving run unit. The statement suspends execution until the message is received by the server run unit. The server run unit does not necessarily have to respond to the message.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

728 ©ISO/IEC 2023

5) Message-server-name-1 or literal-1 identify a message server run unit. If such a run unit is not identified, the EC-MCS-NO-SERVER exception condition is set to exist, and the execution of the SEND statement is unsuccessful.6) If the execution of the SEND statement is successful, data-name-1 contains the implementor-defined information (the message tag) that identifies the server run unit and the message sent.FORMAT 27) Data-name-2 shall contain a message tag that identifies a requestor run unit that was received by the current run unit via a RECEIVE statement and has not yet been responded to by a SEND statement in the current run unit. If data-name-2 does not identify such a run unit, the EC-MCS-NO-RECEIVER exception condition is raised, and the execution of the SEND statement is unsuccessful.8) If the RAISING phrase is specified, exception-name-1 or the name of the last exception raised in the current run unit is sent to the requestor program.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 729

14.9.39 SET statement

14.9.39.1 GeneralThe SET statement provides a means for:— establishing reference points for table handling operations by setting indexes associated with table elements,— altering the status of external switches,— altering the value of conditional variables,— assigning object references,— altering the attributes associated with a screen item,— assigning the address of a data item to a data-pointer data item,— assigning the address of a based item,— assigning the address of a function to a function-pointer data item,— assigning the address of a program to a program-pointer data item,— setting and saving locale categories,— clearing the last exception status,— setting the capacity of a dynamic capacity table,— setting numeric maxima and minima,— setting floating point non-numeric values, and — setting the length of a dynamic-length elementary data item.— setting the content of a message-tag data item to NULL or another message-tag
14.9.39.2 General formatsFormat 1 (index-assignment):

Format 2 (index-arithmetic):

Format 3 (switch-setting):

SET index-name-1identifier-1

 ... TO arithmetic-expression-1index-name-2identifier-2

SET { index-name-3 } ... UP BYDOWN BY

 arithmetic-expression-2

SET { mnemonic-name-1 } ... TO ONOFF

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

730 ©ISO/IEC 2023

Format 4 (condition-setting):

Format 5 (object-reference-assignment):

Format 6 (attribute):

Format 7 (data-pointer-assignment):

Format 8 (function-pointer-assignment):
Format 9 (program-pointer-assignment):

SET { condition-name-1 } ... TO TRUEFALSE

SET { identifier-3 } ... TO object-class-name-1identifier-4

SET screen-name-1 ATTRIBUTE
BELLBLINKHIGHLIGHTLOWLIGHTREVERSE-VIDEOUNDERLINE

OFFON

SET ADDRESS OF data-name-1identifier-5

 ... TO identifier-6

 SET { identifier-12 } ... TO identifier-13
SET { identifier-7 } ... TO identifier-8

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 731

Format 10 (data-pointer-arithmetic):

Format 11 (set-locale):

Format 12 (save-locale):

Format 13 (saved-exception):
Format 14 (dynamic-capacity-table):

SET { identifier-9 } ... UPDOWN

 BY arithmetic-expression-3

SET LOCALE
LC_ALLLC_COLLATELC_CTYPELC_MESSAGESLC_MONETARYLC_NUMERICLC_TIME

USER-DEFAULT

TO identifier-10locale-name-1USER-DEFAULTSYSTEM-DEFAULT

SET identifier-11 TO LOCALE LC_ALLUSER-DEFAULT

SET LAST EXCEPTION TO OFF

SET data-name-2 UP BYDOWN BYTO

 integer-1arithmetic-expression-4

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

732 ©ISO/IEC 2023

Format 15 (numeric-content):

Format 16 (dynamic-length-elementary-data-item):

Format 17 (message-tag):

14.9.39.3 Syntax rulesFORMAT 11) Identifier-1 shall reference a data item of class index or an integer data item.2) Identifier-2 shall reference a data item of class index.3) If identifier-1 references a data item of class index, arithmetic-expression-1 shall not be specified.4) If identifier-1 references a numeric data item, index-name-2 shall be specified.

SET CONTENT OF { identifier-14 } ... TO
FARTHEST-FROM-ZERO [IN-ARITHMETIC-RANGE] SIGN NEGATIVEPOSITIVE

FLOAT-INFINITY SIGN NEGATIVEPOSITIVE

FLOAT-NOT-A-NUMBER SIGN NEGATIVEPOSITIVE

FLOAT-NOT-A-NUMBER-SIGNALING SIGN NEGATIVEPOSITIVE

NEAREST-TO-ZERO [IN-ARITHMETIC-RANGE] SIGN NEGATIVEPOSITIVE

SET SIZE OF data-name-3 TO integer-2arithmetic-expression-5

SET data-name-4 TO data-name-5NULL

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 733

FORMAT 35) Mnemonic-name-1 shall be associated with an external switch, the status of which may be altered. The implementor defines which external switches may be referenced by the SET statement.FORMAT 46) Condition-name-1 shall be associated with a conditional variable.7) If the FALSE phrase is specified, the FALSE phrase shall be specified in the VALUE clause of the data description entry for condition-name-1.FORMAT 58) Identifier-3 shall be any item of class object that is permitted as a receiving item.9) Identifier-4 shall be an object reference; the predefined object reference SUPER shall not be specified.10) If identifier-4 is specified and the data item referenced by identifier-3 is described with an interface-name that identifies the interface int-1, the data item referenced by identifier-4 shall be one of the following:a) an object reference described with an interface-name that identifies int-1 or an interface inheriting from int-1;b) an object reference described with an object-class-name, subject to the following rules: 1. if described with a FACTORY phrase, the factory object of the specified class shall implement int-1,2. if described without a FACTORY phrase, the objects of the specified class shall implement int-1;c) an object reference described with an ACTIVE-CLASS phrase, subject to the following rules: 1. if described with a FACTORY phrase, the factory object of the class containing the data item referenced by identifier-4 shall implement int-1,2. if described without a FACTORY phrase, the objects of the class containing the data item referenced by identifier-4 shall implement int-1;d) the predefined object reference SELF, subject to the following rules:1. if the SET statement is contained in a method within the factory definition of the class, that factory definition shall be described with an IMPLEMENTS clause that references int-1,2. if the SET statement is contained in a method within the instance definition of the class, that instance definition shall be described with an IMPLEMENTS clause that references int-1;

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

734 ©ISO/IEC 2023

e) the predefined object reference NULL.11) If object-class-name-1 is specified and the data item referenced by identifier-3 is described with an interface-name that identifies the interface int-1, the factory object of object-class-name-1 shall be described with an IMPLEMENTS clause that references int-1.12) If identifier-4 is specified and the data item referenced by identifier-3 is described with an object-class-name, the data item referenced by identifier-4 shall be one of the following: a) an object reference described with an object-class-name, subject to the following rules:1. if the data item referenced by identifier-3 is described with an ONLY phrase, the data item referenced by identifier-4 shall be described with the ONLY phrase, and the object-class-name specified in the description of the data item referenced by identifier-4 shall be the same as the object-class-name specified in the description of the data item referenced by identifier-3,2. if the data item referenced by identifier-3 is described without an ONLY phrase, the object-class-name specified in the description of the data item referenced by identifier-4 shall reference the same class or a subclass of the class specified in the description of the data item referenced by identifier-3,3. the presence or absence of the FACTORY phrase shall be the same as in the description of the data item referenced by identifier-3;b) an object reference described with an ACTIVE-CLASS phrase, subject to the following rules:1. the data item referenced by identifier-3 shall not be described with the ONLY phrase,2. the class containing the data item referenced by identifier-4 shall be the same class or a subclass of the class specified in the description of the data item referenced by identifier-3,3. the presence or absence of the FACTORY phrase shall be the same as in the description of the data item referenced by identifier-3;c) the predefined object reference SELF, subject to the following rules:1. the data item referenced by identifier-3 shall not be described with the ONLY phrase,2. the class containing the SET statement shall be the same class or a subclass of the class specified in the description of the data item referenced by identifier-3,3. if the data item referenced by identifier-3 is described without a FACTORY phrase, the method containing the SET statement shall be defined in the instance definition of its containing class,4. if the data item referenced by identifier-3 is described with a FACTORY phrase, the method containing the SET statement shall be defined in the factory definition of its containing class;

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 735

d) the predefined object reference NULL.13) If object-class-name-1 is specified and the data item referenced by identifier-3 is described with an object-class-name, the data item shall be described with the FACTORY phrase, and the following rules apply:a) if the data item referenced by identifier-3 is described with the ONLY phrase, object-class-name-1 shall be the object-class-name specified in the description of the data item referenced by identifier-3;b) otherwise, object-class-name-1 shall reference the same class or a subclass of the class specified in the description of the data item referenced by identifier-3.14) If the data item referenced by identifier-3 is described with an ACTIVE-CLASS phrase, the data item referenced by identifier-4 shall be one of the following: a) an object reference described with the ACTIVE-CLASS phrase, where the presence or absence of the FACTORY phrase is the same as in the data item referenced by identifier-3;b) the predefined object SELF, subject to the following rules:1. if the data item referenced by identifier-3 is described without a FACTORY phrase, the method containing the SET statement shall be defined in the instance definition of its containing class,2. if the data item referenced by identifier-3 is described with a FACTORY phrase, the method containing the SET statement shall be defined in the factory definition of its containing class;c) the predefined object reference NULL.FORMAT 615) Any particular screen-attribute shall not be specified more than once in a SET statement.16) HIGHLIGHT and LOWLIGHT shall not both be specified in the same SET statement.FORMAT 717) Identifier-5 shall reference a data item of category data-pointer. Identifier-6 shall be of category data-pointer.18) Data-name-1 shall be a based data item.19) If identifier-5 references a restricted data-pointer, identifier-6 shall be the predefined address NULL or shall reference a data-pointer restricted to the same type. If data-name-1 is a strongly-typed group item or a restricted pointer, identifier-6 shall reference a data-pointer restricted to the type of data-name-1.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

736 ©ISO/IEC 2023

If identifier-6 references a restricted data-pointer, either identifier-5 shall reference a data-pointer restricted to the same type or data-name-1 shall be a typed item of the type to which identifier-6 is restricted.FORMAT 820) Identifier-12 shall reference a data item of category function-pointer. Identifier-13 shall be of category function-pointer. Identifier-13 shall be the predefined address NULL or shall reference a function-pointer. The function-prototypes associated with identifier-12 and identifier-13 shall have the same signature.FORMAT 921) Identifier-7 shall reference a data item of category program-pointer. Identifier-8 shall be of category program-pointer.22) If identifier-7 references a restricted program-pointer, identifier-8 shall be the predefined address NULL or shall reference a program-pointer and the program-prototypes associated with identifier-7 and identifier-8 shall have the same signature.FORMAT 1023) Identifier-9 shall be of category data-pointer.24) Identifier-9 shall not be a data-pointer restricted to a type described with the STRONG phrase.FORMAT 1125) If USER-DEFAULT is specified as the first operand, identifier-10 or locale-name-1 shall be specified in the TO phrase.26) Locale-name-1 shall be specified in the LOCALE clause of the SPECIAL-NAMES paragraph.27) Identifier-10 shall reference an elementary data item of category data-pointer.FORMAT 1228) Identifier-11 shall reference an elementary data item of category data-pointer.FORMAT 1429) Data-name-2 shall reference a data item defined in the CAPACITY phrase of a dynamic-capacity-table format OCCURS clause.30) Integer-1 shall be nonnegative and, if TO is specified, integer-1 shall be not less than the minimum capacity defined in the corresponding OCCURS clause and not greater than the expected capacity, if specified.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 737

FORMAT 1531) If FARTHEST-FROM-ZERO or NEAREST-TO-ZERO is specified, identifier-14 shall reference a numeric data item, and the following rules apply:a) If FARTHEST-FROM-ZERO is specified, and identifier-14 describes a signed numeric item for which the absolute value of the positive value farthest from zero is different from the absolute value of the negative value farthest from zero, the SIGN phrase shall be specified.b) If NEAREST-TO-ZERO is specified, and identifier-14 describes a signed numeric item for which the absolute value of the positive nonzero value nearest to zero is different from the absolute value of the corresponding negative nonzero value nearest to zero, the SIGN phrase shall be specified.32) If FLOAT-INFINITY, FLOAT-NOT-A-NUMBER, or FLOAT-NOT-A-NUMBER-SIGNALING is specified, identifier-14 shall reference a data item described with a standard floating-point usage.FORMAT 1633) Data-name-3 shall reference a dynamic-length elementary data item.34) Integer-2 shall be non-negative, and shall be equal to or less than the maximum size of data-name-3, as specified in 8.5.1.10, Dynamic-length elementary items.FORMAT 1735) Data-name-4 and data-name-5 shall be message-tag data items.
14.9.39.4 General rulesFORMATS 1 AND 21) Index-names are associated with a given table by being specified in the INDEXED BY phrase of the OCCURS clause for that table.FORMAT 12) The value of the sending operand is determined once at the beginning of the execution of the statement. However, item identification of the data item referenced by identifier-1 is done immediately before the value of that data item is changed. For each occurrence of index-name-1 or identifier-1:a) If index-name-1 is specified:1. If arithmetic-expression-1 is specified,a. If the value of arithmetic-expression-1 does not result in an integer, and—the EC-BOUND-SUBSCRIPT exception condition is set to exist, and

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

738 ©ISO/IEC 2023

—the execution of the SET statement is unsuccessful and—the content of the receiving operand is unchanged.b. Otherwise, if the value of the arithmetic-expression-1 is outside the limit specified in General rule 2 of 13.18.38, OCCURS clause:—the EC-RANGE-INDEX exception condition is set to exist, and—the execution of the SET statement is unsuccessful, and—the content of the receiving operand is unchanged.c. Otherwise, the evaluation of the expression is successful and index-name-1 is set to a value causing it to refer to the table element that would correspond in occurrence number to that expression, even if that occurrence is not a valid occurrence within this table.2. If identifier-2 is specified:a. If the value of the identifier-2 is outside the limit specified in General rule 2 of 13.18.38, OCCURS clause:—the EC-RANGE-INDEX exception condition is set to exist, and—the execution of the SET statement is unsuccessful, and—the content of the receiving operand is unchanged.b. Otherwise, index-name-1 is set to a value causing it to refer to the table element that would correspond in occurrence number to the value of identifier-2, even if that occurrence is not a valid occurrence within this table.3. If index-name-2 is specified:a. If index-name-2 is associated with the same table as index-name-1, the content of the index referenced by index-name-2 is placed in the index referenced by index-name-1 unchanged.b. Otherwise, if the value that corresponds to the occurrence number of the table element associated with index-name-2 is outside the limit specified in General rule 2 of 13.18.38, OCCURS clause:—the EC-RANGE-INDEX exception condition is set to exist, and—the execution of the SET statement is unsuccessful, and—the content of the receiving operand is unchanged.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 739

c. Otherwise, index-name-1 is set to a value causing it to refer to the table element that would correspond in occurrence number to the occurrence number of the table associated with index-name-2, even if that occurrence is not a valid occurrence within this table.b) If identifier-1 references an index data item, the content of index-name-2 or of the data item referenced by identifier-2 is placed in the index referenced by index-name-1 unchanged.c) If identifier-1 references a numeric data item, that item is set to the occurrence number of the table element referenced by index-name-2.FORMAT 23) The value of arithmetic-expression-2 is determined once at the beginning of the execution of the statement. If arithmetic-expression-2 does not evaluate to an integer:— the EC-BOUND-SUBSCRIPT exception condition is set to exist, and— the execution of the SET statement is unsuccessful, and — the content of the receiving operand is unchanged.4) For each occurrence of index-name-3 one of the following occurs:a) If the value that corresponds to the occurrence number represented by the content of index-name-3 incremented (UP BY) or decremented (DOWN BY) by the result of the evaluation of arithmetic-expression-2 is outside the limit specified in General rule 2 of 13.18.38, OCCURS clause:— the EC-RANGE-INDEX exception condition is set to exist, and— the execution of the SET statement is unsuccessful, and— the content of the receiving operand is unchanged.b) Otherwise, index-name 3 is set to a value causing it to refer to the table element that corresponds to the occurrence number incremented or decremented by the result of the evaluation of arithmetic-expression-2, even if that occurrence is not a valid occurrence within this table.FORMAT 35) The status of each external switch associated with the specified mnemonic-name-1 is modified such that the truth value resultant from evaluation of a condition-name associated with that switch will reflect an on status if the ON phrase is specified, or an off status if the OFF phrase is specified. (See 8.8.4.6, Simple switch-status condition.)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

740 ©ISO/IEC 2023

FORMAT 46) If the TRUE phrase is specified, the literal in the VALUE clause associated with condition-name-1 is placed in the conditional variable according to the rules for the VALUE clause, except that when the conditional variable is an alphanumeric group item, bit group item, or national group item to which a table is subordinate, its length is determined as specified in 13.18.38, OCCURS clause. If the length of the conditional variable is zero, the SET statement leaves it unchanged. If more than one literal is specified in the VALUE clause, the conditional variable is set to the value of the first literal that appears in the VALUE clause.7) If the FALSE phrase is specified, the literal in the FALSE phrase of the VALUE clause associated with condition-name-1 is placed in the conditional variable according to the rules for the VALUE clause, except that when the conditional variable is an alphanumeric group item, bit group item, or national group item to which a table is subordinate, its length is determined as specified in 13.18.38, OCCURS clause. If the length of the conditional variable is zero, the SET statement leaves it unchanged.8) If multiple condition-names are specified, the results are the same as if a separate SET statement had been written for each condition-name-1 in the same order as specified in the SET statement.FORMAT 59) If identifier-4 is specified, a reference to the object identified by identifier-4 is placed into each data item referenced by identifier-3 in the order specified.10) If object-class-name-1 is specified, a reference to the factory object of the class identified by object-class-name-1 is placed into each data item referenced by identifier-3 in the order specified.FORMAT 611) When the SET statement is executed, the settings of the specified attributes of the screen item referenced by screen-name-1 are turned on or off as specified. The latest settings of the attributes are used when screen-name-1 is referenced in an ACCEPT screen or DISPLAY screen statement.FORMAT 712) If identifier-5 is specified, the address identified by identifier-6 is stored in each data item referenced by identifier-5 in the order specified. Item identification of the data item referenced by identifier-5 is done immediately before the value of that data item is changed13) If data-name-1 is specified, the address identified by identifier-6 is assigned to each based item referenced by data-name-1 in the order specified.FORMAT 814) The address identified by identifier-13 is stored in each data item referenced by identifier-12 in the order specified. Item identification of the data item referenced by identifier-12 is done immediately before the value of that data item is changed. If the address identified by identifier-13 is neither the predefined address NULL nor the address of a function defined with the same signature as the function

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 741

referenced in the definition of identifier-13, the EC-FUNCTION-PTR-INVALID exception condition is set to exist, no data items are changed, and the execution of the SET statement is terminated.15) The effect of the SET statement on the function whose address is being stored in the function-pointer is implementor-defined.FORMAT 916) The address identified by identifier-8 is stored in each data item referenced by identifier-7 in the order specified. Item identification of the data item referenced by identifier-7 is done immediately before the value of that data item is changed.17) The effect of the SET statement on the program whose address is being stored in the program-pointer is implementor-defined.FORMAT 1018) If identifier-9 contains the predefined address NULL, the EC-DATA-PTR-NULL exception condition is set to exist.19) If arithmetic-expression-3 does not evaluate to an integer, the EC-SIZE-ADDRESS exception condition is set to exist, the execution of the SET statement is unsuccessful, and the content of identifier-9 is unchanged.20) The address contained in each identifier-9, in the order specified, is incremented, if UP is specified, or decremented, if DOWN is specified, by the number of bytes specified by arithmetic-expression-3. Item identification of the data item referenced by identifier-9 is done immediately before the value of that data item is changed. If this new address is outside the range of values allowed by the implementor for a data-pointer data item, the EC-RANGE-PTR exception condition is set to exist and the value of the data item referenced by identifier-9 is unchanged.FORMAT 1121) The content of the pointer data item referenced by identifier-10 shall reference saved locale information; otherwise, the EC-LOCALE-INVALID-PTR exception condition is set to exist and the SET statement is unsuccessful.A reference to 'saved locale' or 'saved locale information' in the rules of COBOL is a reference to a locale and its locale category information as established with a set-locale format of the SET statement.22) If USER-DEFAULT immediately follows the keyword LOCALE, the user default locale is set to the locale identified by the second operand.23) If a locale category immediately follows the keyword LOCALE:a) If locale-name-1 or identifier-10 is specified in the TO phrase, the current runtime locale for the specified category is set to that category in the saved locale identified by locale-name-1 or by the content of the data item referenced by identifier-10, respectively.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

742 ©ISO/IEC 2023

b) If USER-DEFAULT is specified in the TO phrase, the current runtime locale for the specified category is set to that category in the user default locale.c) If SYSTEM-DEFAULT is specified, the current runtime locale for the specified category is set to that category in the system default locale.24) If the locale specified by locale-name-1 is not available, the EC-LOCALE-MISSING exception condition is set to exist.25) Each locale category specified remains in effect for the duration of the run unit or until another SET statement specifying that category is processed.FORMAT 1226) If LC_ALL is specified, the current locale is saved and a reference to the saved locale is placed into the pointer data item referenced by identifier-11.27) If USER-DEFAULT is specified, the user default locale is saved and a reference to the saved locale is placed into the pointer data item referenced by identifier-11.FORMAT 1328) The predefined object reference EXCEPTION-OBJECT is set to null, and the last exception status is set to indicate no exception.FORMAT 1429) If arithmetic-expression-4 does not evaluate to a nonnegative integer, the EC-BOUND-SUBSCRIPT exception condition is set to exist and the execution of the SET statement is unsuccessful.30) A new capacity of the dynamic-capacity table is computed, according to the rules specified in 8.5.1.9.4, Explicit changes in capacity, and as follows:a) If TO is specified, the new capacity is specified by integer-1 or arithmetic-expression-4.b) If UP is specified, the new capacity is obtained by adding integer-1 or the value of arithmetic-expression-4 to the current capacity of the table.c) If DOWN is specified, the new capacity is obtained by subtracting integer-1 or the value of arithmetic-expression-4 from the current capacity of the table.If the new capacity of the table exceeds the implementor's maximum capacity for this dynamic-capacity table, the EC-BOUND-TABLE-LIMIT exception condition is set to exist and the capacity of the table is unchanged; otherwise, if an expected maximum capacity is specified for the table and the new capacity of the table exceeds that expected maximum capacity, the EC-BOUND-SET exception condition is set to exist.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 743

If the new capacity of the table is less than the minimum capacity defined in the corresponding OCCURS clause, the new capacity of the table shall be the minimum capacity. In all other cases, the new capacity of the table shall become the current capacity.If the new capacity of the table is greater than the previous current capacity, new occurrences are created and are initialized as described in 8.5.1.9.5, Implicit initialization.31) This statement shall not be executed during the execution of a SEARCH statement referring to the same table. If this rule is violated, the EC-FLOW-SEARCH exception condition is set to exist and the SET statement is not executed.FORMAT 1532) If FARTHEST-FROM-ZERO Is specified, the content of identifier-14 is set as follows:a) If the IN-ARITHMETIC-RANGE phrase is not specified, the content is set to the value farthest away from zero permitted by the specifications of identifier-14.NOTE 1 The resulting content of identifier-14 might not be within the range of values permitted for the mode of arithmetic in effect.b) If the IN-ARITHMETIC-RANGE phrase is specified, the content is set either to the value farthest away from zero permitted by the specifications of identifier-14, or to the value farthest away from zero permitted by the specifications appropriate to the mode of arithmetic, whichever is closer to zero.c) If the SIGN phrase is specified, the sign of the content of identifier-14 is set according to the SIGN specification; otherwise, the sign of identifier-14 shall be set to indicate that the content is positive.33) If FLOAT-INFINITY is specified, the content of identifier-14 is set to a canonical representation of infinity as described in ISO/IEC 60559:2020, Clause 3, for the basic interchange format corresponding to the usage of identifier-14. If the SIGN phrase is specified, the sign of the content is set according to the SIGN specification, otherwise the sign is positive.34) If FLOAT-NOT-A-NUMBER is specified, the content of identifier-14 is set to a canonical representation of a quiet NaN, with the payload set to an implementor-defined value, as described in ISO/IEC 60559:2020, Clause 3, for the basic interchange format corresponding to the usage of identifier-14. If the SIGN phrase is specified, the sign of the content is set according to the SIGN specification, otherwise the sign is positive.35) If FLOAT-NOT-A-NUMBER-SIGNALING is specified, the content of identifier-14 is set to a canonical representation of a signaling NaN, with the payload set to an implementor-defined value, as described in ISO/IEC 60559:2020, Clause 3, for the basic interchange format corresponding to the usage of identifier-14. If the SIGN phrase is specified, the sign of the content is set according to the SIGN specification, otherwise the sign is positive.36) If NEAREST-TO-ZERO Is specified, the content of identifier-14 is set as follows:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

744 ©ISO/IEC 2023

a) If the IN-ARITHMETIC-RANGE phrase is not specified, the content is set to the nonzero value nearest to zero permitted by the specifications of identifier-14.NOTE 2 The resulting content of identifier-14 might not be within the range of values permitted for the mode of arithmetic in effect.b) If the IN-ARITHMETIC-RANGE phrase is specified, the content is set either to the value nearest to zero permitted by the specifications of identifier-14, or to the value nearest to zero permitted by the specifications appropriate to the mode of arithmetic, whichever is farther from zero.c) If the SIGN phrase is specified, the sign of the content of identifier-14 is set according to the SIGN specification; otherwise, the sign of the content of identifier-14 is set to indicate that the content is positive.FORMAT 1637) If arithmetic-expression-5 does not evaluate to a nonnegative number, the length of data-name-3 is set to 0 and an EC-STORAGE-NOT-AVAIL exception condition is set to exist. If arithmetic-expression-5 evaluates to a number that is not an integer, the result of arithmetic-expression-5 is truncated to the nearest integer.38) If integer-2 is specified, the length of data-name-3 is set to integer-2, otherwise the length of data-name-3 is set to either arithmetic-expression-5, or, if arithmetic-expression-5 evaluates to a number that is greater than the maximum size of data-name-3, the length of data-name-3 is set to the maximum size allowed and an EC-STORAGE-NOT-AVAIL exception condition is set to exist. If the amount of storage required to expand the size of data-name-3 is not available, the size of data-name-3 is not changed, and an EC-STORAGE-NOT-AVAIL exception condition is set to exist.39) If the new length of data-name-3 is greater than the previous length of data-name-3, the characters that were added to data-name-3 are initialized to alphanumeric or national spaces, depending on the class of data-name-3.FORMAT 1740) If data-name-5 is specified, the content of data-name-4 is moved to data-name-5.41) If NULL is specified, the content of data-name-5 shall be set to that of the null value.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 745

14.9.40 SORT statement

14.9.40.1 GeneralThe SORT statement causes a set of records or table elements to be arranged in a user-specified sequence.
14.9.40.2 General formatsFormat 1 (file):

SORT file-name-1 ON ASCENDINGDESCENDING

 KEY { data-name-1 } ...

[WITH DUPLICATES IN ORDER]
COLLATING SEQUENCE IS alphabet-name-1 [alphabet-name-2]FOR ALPHANUMERIC IS alphabet-name-1FOR NATIONAL IS alphabet-name-2

INPUT PROCEDURE IS procedure-name-1 THROUGHTHRU

 procedure-name-2

USING { file-name-2 } ...

OUTPUT PROCEDURE IS procedure-name-3 THROUGHTHRU

 procedure-name-4

GIVING { file-name-3 } ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

746 ©ISO/IEC 2023

Format 2 (table):

14.9.40.3 Syntax rulesALL FORMATS1) Alphabet-name-1 shall reference an alphabet that defines an alphanumeric collating sequence.2) Alphabet-name-2 shall reference an alphabet that defines a national collating sequence.FORMAT 13) A SORT statement shall not appear in imperative-statement-1 of an exception-checking PERFORM statement, in an input or output procedure, or in a declarative procedure.4) File-name-1 shall be described in a sort-merge file description entry in the data division.5) If the USING phrase is specified and the file description entry for file-name-1 describes variable-length records, the file description entry for file-name-2 shall describe neither records smaller than the smallest record nor larger than the largest record described for file-name-1. If the file description entry for file-name-1 describes fixed-length records, the file description entry for file-name-2 shall not describe a record that is larger than the record described for file-name-1.6) Data-name-1 is a key data-name. Key data-names are subject to the following rules:a) The data items identified by key data-names shall be described in records associated with file-name-1.b) Key data names shall not be subject to any OCCURS clauses.c) Key data items shall not be of the class boolean, message-tag, object, or pointer.d) A key data item shall not be a variable-length group, an occurs-depending-on data item, a dynamic-length elementary item or an item subordinate to a dynamic-capacity table.

SORT data-name-2 ON ASCENDINGDESCENDING

 KEY [data-name-1] ...

[WITH DUPLICATES IN ORDER]
COLLATING SEQUENCE IS alphabet-name-1 [alphabet-name-2]FOR ALPHANUMERIC IS alphabet-name-1FOR NATIONAL IS alphabet-name-2

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 747

e) If file-name-1 has more than one record description, then the data items identified by key data-names need be described in only one of the record descriptions. The same byte positions that are referenced by a key data-name in one record description entry are taken as the key in all records of the file.f) None of the data items identified by key data-names may be described by an entry that either contains an OCCURS clause or is subordinate to an entry that contains an OCCURS clause.g) If the file referenced by file-name-1 contains variable-length records, all the data items identified by key data-names shall be contained within the first x bytes of the record, where x is the number of bytes of the minimum record size for the file referenced by file-name-1.7) The words THROUGH and THRU are equivalent.8) File-name-2 and file-name-3 shall be described in a file description entry that is not for a report file and is not a sort-merge file description entry.9) If file-name-3 references an indexed file, the first specification of data-name-1 shall be associated with an ASCENDING phrase and the data item referenced by that data-name-1 shall begin at the same byte location within its record and occupy the same number of bytes as the prime record key for that file.10) No pair of file-names in the same SORT statement may be specified in the same SAME SORT AREA orSAME SORT-MERGE AREA clause. File-names associated with the GIVING phrase shall not be specified in the same SAME AREA clause.11) If the GIVING phrase is specified and the file description entry for file-name-3 describes variable-length records, the file description entry for file-name-1 shall describe neither records smaller than the smallest record nor larger than the largest record described for file-name-3. If the file description entry for file-name-3 describes fixed-length records, the file description entry for file-name-1 shall not describe a record that is larger than the record described for file-name-3.12) If file-name-2 references a relative or an indexed file, its access mode shall be sequential or dynamic.FORMAT 213) Data-name-2 shall have an OCCURS clause in its data description entry. Subscripting shall be specified in accordance with 8.4.2.3, Subscripts.14) Data-name-1 is a key data-name, subject to the following rules:a) The data item identified by a key data-name shall be the same as, or subordinate to, the data item referenced by data-name-2.b) Key data names shall not.be subscripted.c) Key data items shall not be of class boolean, object, or pointer. d) A key data item shall not reference a variable-length group or an occurs-depending group item.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

748 ©ISO/IEC 2023

e) If the data item identified by a key data-name is subordinate to data-name-2, it shall not be described with an OCCURS clause, and it shall not be subordinate to an entry that is also subordinate to data-name-2 and contains an OCCURS clause.15) The KEY phrase may be omitted only if the description of the table referenced by data-name-2 contains a KEY phrase.
14.9.40.4 General rulesALL FORMATS1) The words ASCENDING and DESCENDING are transitive across all occurrences of data-name-1 until another word ASCENDING or DESCENDING is encountered.2) The data items referenced by the specifications of data-name-1 are the key data items that determine the order in which records are returned from the file referenced by file-name-1 or the order in which the table elements are stored after sorting takes place. The order of significance of the keys is the order in which they are specified in the SORT statement, without regard to their association with ASCENDING or DESCENDING phrases.3) If the DUPLICATES phrase is specified and the contents of all the key data items associated with one record or table element are equal to the contents of the corresponding key data items associated with one or more other records or table elements, the order of return of these records or the relative order of the contents of these table elements is:a) The order of the associated input files as specified in the SORT statement. Within a given input file the order is that in which the records are accessed from that file.b) The order in which these records are released by an input procedure, when an input procedure is specified.c) The relative order of the contents of these table elements before sorting takes place.4) If the DUPLICATES phrase is not specified and the contents of all the key data items associated with one record or table element are equal to the contents of the corresponding key data items associated with one or more other records or table elements, the order of return of these records or the relative order of the contents of these table elements is undefined.5) The alphanumeric collating sequence that applies to the comparison of key data items of class alphabetic and class alphanumeric, and the national collating sequence that applies to the comparison of key data items of class national, are each separately determined at the beginning of the execution of the SORT statement in the following order of precedence:a) First, the collating sequence established by the COLLATING SEQUENCE phrase, if specified, in this SORT statement. The collating sequence associated with alphabet-name-1 applies to key data items of class alphabetic and alphanumeric; the collating sequence associated with alphabet-name-2 applies to key data items of class national.b) Second, the collating sequences established as the program collating sequences.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 749

6) Additional rules affecting the execution of the SORT statement are given in 12.4.5, File control entry, General rules 3 and 4.FORMAT 17) If the file referenced by file-name-1 contains only fixed-length records, any record in the file referenced by file-name-2 containing fewer character positions than that fixed-length is space filled on the right to that fixed length, beginning with the first character position after the last character in the record, when that record is released to the file referenced by file-name-1, as follows:a) If there is only one record description entry associated with the file referenced by file-name-2 and that record is described as a national data item or as an elementary data item of usage national and of category numeric, numeric-edited, or boolean, the record is filled with national space characters. b) If there are multiple record description entries associated with the file referenced by file-name-2 and the descriptions include a SELECT WHEN clause, the rules of the SELECT WHEN clause are applied to the record to select its description. When the record is described as a national data item or as an elementary data item of usage national and of category numeric, numeric-edited, or boolean, the record is filled with national space characters.c) Otherwise, the record is space filled with alphanumeric space characters.8) To determine the relative order in which two records are returned from the file referenced by file-name-1, the contents of corresponding key data items are compared according to the rules for comparison of operands in a relation condition, starting with the most significant key data item.a) If the contents of the corresponding key data items are not equal and the key is associated with the ASCENDING phrase, the record containing the key data item with the lower value is returned first;b) If the contents of the corresponding key data items are not equal and the key is associated with the DESCENDING phrase, the record containing the key data item with the higher value is returned first; and,c) If the contents of the corresponding key data items are equal, the determination is made on the contents of the next most significant key data item.9) The execution of the SORT statement consists of three distinct phases as follows:a) Records are made available to the file referenced by file-name-1. If INPUT PROCEDURE is specified, the execution of RELEASE statements in the input procedure makes the records available. If USING is specified, implicit READ and RELEASE statements make the records available. If the file referenced by file-name-2 is in an open mode when this phase commences, the EC-SORT-MERGE-FILE-OPEN exception condition is set to exist and the results of the execution of the SORT statement are undefined. When this phase terminates, the file referenced by file-name-2 is not in an open mode.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

750 ©ISO/IEC 2023

b) The file referenced by file-name-1 is sequenced. No processing of the files referenced by file-name-2 and file-name-3 takes place during this phase.c) The records of the file referenced by file-name-1 are made available in sorted order. The sorted records are either written to the file referenced by file-name-3 or, by the execution of a RETURN statement, are made available for processing by the output procedure. If the file referenced by file-name-3 is in an open mode when this phase commences, the EC-SORT-MERGE-FILE-OPEN exception condition is set to exist and the results of the execution of the SORT statement are undefined. When this phase terminates, the file referenced by file-name-3 is not in the open mode.10) The input procedure may consist of any procedure needed to create the records that are to be made available to the sort mechanism by executing RELEASE statements. The range includes all statements that are executed as the result of a transfer of control in the range of the input procedure, as well as all statements in declarative procedures that are executed as a result of the execution of statements in the range of the input procedure. If the range of the input procedure causes the execution of any MERGE, RETURN, or format 1 SORT statements, the EC-SORT-MERGE-ACTIVE exception condition is set to exist and the results of the execution of the SORT statement are undefined. (See 14.6.3, Explicit and implicit transfers of control.)11) If an input procedure is specified, control is passed to the input procedure before the file referenced by file-name-1 is sequenced by the SORT statement. The compiler inserts a return mechanism after the last statement in the input procedure. When control passes to that return mechanism, the records that have been released to the file referenced by file-name-1 are sorted.12) If the USING phrase is specified, all the records in the file(s) referenced by file-name-2 are transferred to the file referenced by file-name-1. For each of the files referenced by file-name-2 the execution of the SORT statement causes the following actions to be taken:a) The processing of the file is initiated. If the file-control entry for the file has a SHARING clause with the ALL phrase, the initiation is performed as if an OPEN statement with the INPUT phrase and the SHARING WITH READ ONLY phrase had been executed; otherwise, the initiation is performed as if an OPEN statement with the INPUT phrase and without a SHARING phrase is executed. The absence of the SHARING phrase means that the sharing mode is completely determined by the SHARING clause, if any, in the file control entry for the file connector referenced by file-name-2. If a nonfatal exception condition exists as a result of the execution of the implicit OPEN statement and there is an applicable USE procedure that completes normally or if there is no applicable USE procedure, the SORT statement continues as if the exception condition did not exist.b) The logical records are obtained and released to the sort operation. Each record is obtained as if a READ statement with the NEXT phrase, the IGNORING LOCK phrase, and the AT END phrase had been executed. When the at end condition exists for file-name-1, the processing for that file connector is terminated. If the file referenced by file-name-1 is described with variable-length records, the size of any record released to file-name-1 is the size of that record when it was read from file-name-2, regardless of the content of the data item referenced by the DEPENDING ON phrase of either a RECORD IS VARYING clause or an OCCURS clause specified in the sort-merge file description entry for file-name-1. If the size of the record read from the file referenced by file-name-2 is larger than the largest record allowed in the file description entry for file-name-1,

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 751

the EC-SORT-MERGE-RELEASE exception condition is set to exist and the execution of the SORT statement is terminated. If file-name-1 is specified with variable-length records and the size of the record read from the file referenced by file-name-2 is smaller than the smallest record allowed in the file description entry for file-name-1, the EC-SORT-MERGE-RELEASE exception condition is set to exist and the execution of the SORT statement is terminated. If a fatal exception condition exists for file-name-1, the SORT is terminated.c) The processing of file-name-1 is terminated. The termination is performed as if a CLOSE statement without optional phrases had been executed. This termination is performed before the file referenced by file-name-1 is sequenced by the SORT statement. For a relative file, the content of the relative key data item associated with file-name-2 is undefined after the execution of the SORT statement if file-name-2 is not referenced in the GIVING phrase.These implicit functions are performed such that any applicable USE procedures are executed; however, the execution of such a USE procedure shall not cause the execution of any statement manipulating the file referenced by, or accessing the record area associated with, file-name-2.The value of the data item referenced by the DEPENDING ON phrase of a RECORD IS VARYING clause specified in the file description entry for file-name-2 is undefined upon completion of the SORT statement.13) The output procedure may consist of any procedure needed to process the records that are made available one at a time by the RETURN statement in sorted order from the file referenced by file-name-1. The range includes all statements that are executed as the result of a transfer of control in the range of the output procedure, as well as all statements in declarative procedures that are executed as a result of the execution of statements in the range of the output procedure. If the range of the output procedure causes the execution of any MERGE, RELEASE, or format 1 SORT statement, the EC-SORT-MERGE-ACTIVE exception condition is set to exist and the results of the execution of the SORT statement are undefined. (See 14.6.3, Explicit and implicit transfers of control.)14) If an output procedure is specified, control passes to it after the file referenced by file-name-1 has been sequenced by the SORT statement. The compiler inserts a return mechanism after the last statement in the output procedure. When control passes to that return mechanism, the mechanism provides for the termination of the sort and then passes control to the next executable statement after the SORT statement. Before entering the output procedure, the sort procedure reaches a point at which it selects the next record in sorted order when requested. The RETURN statements in the output procedure are the requests for the next record.NOTE This return mechanism transfers control from the end of the output procedure and is not associated with the RETURN statement.15) If the GIVING phrase is specified, all the sorted records are written on the file referenced by file-name-3 as the implied output procedure for the SORT statement. For each of the files referenced by file-name-3, the execution of the SORT statement causes the following actions to be taken:a) The processing of the file is initiated. The initiation is performed as if an OPEN statement with the OUTPUT and SHARING WITH NO OTHER phrases had been executed. This initiation is performed after the execution of any input procedure.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

752 ©ISO/IEC 2023

b) The sorted logical records are returned and written onto the file. Each record is written as if a WRITE statement without any optional phrases had been executed. If the file referenced by file-name-3 is described with variable-length records, the size of any record written to file-name-3 is the size of that record when it was read from file-name-1, regardless of the content of the data item referenced by the DEPENDING ON phrase of either a RECORD IS VARYING clause or an OCCURS clause specified in the file description entry for file-name-3.For a relative file, the relative key data item for the first record returned has the value 1; for the second record returned, the value 2; etc. After execution of the SORT statement, the content of the relative key data item indicates the last record returned to the file.c) The processing of the file is terminated. The termination is performed as if a CLOSE statement without optional phrases had been executed.These implicit functions are performed such that any associated USE AFTER EXCEPTION/ERROR procedures are executed; however, the execution of such a USE procedure shall not cause the execution of any statement manipulating the file referenced by, or accessing the record area associated with, file-name-3. On the first attempt to write outside the externally defined boundaries of the file, any USE AFTER EXCEPTION procedure associated with the file connector referenced by file-name-3 is executed; if that USE procedure completes normally or if no such USE procedure is specified, the processing of the file is terminated as in General rule 15c above. If a fatal exception condition exists for file-name-3 as a result of the implicit OPEN during file initiation, the SORT is terminated. If a nonfatal exception condition exists for file-name-3 as a result of the implicit OPEN during file initiation, and there is an applicable USE procedure that completes normally, or no applicable USE procedure is available, the SORT statement continues.The value of the data item referenced by the DEPENDING ON phrase of a RECORD IS VARYING clause specified in the sort-merge file description entry for file-name-1 is undefined upon completion of the SORT statement for which the GIVING phrase is specified.16) If the file referenced by file-name-3 contains only fixed-length records, any record in the file referenced by file-name-1 containing fewer character positions than that fixed-length is space filled on the right to that fixed length, beginning with the first character position after the last character in the record, when that record is returned to the file referenced by file-name-3, as follows:a) If there is only one record description entry associated with the file referenced by file-name-2 and that record is described as a national data item or as an elementary data item of usage national and of category numeric, numeric-edited, or boolean, the record is filled with national space characters. b) If there are multiple record description entries associated with the file referenced by file-name-2 and the descriptions include a SELECT WHEN clause, the rules of the SELECT WHEN clause are applied to the record to select its description. When the record is described as a national data item or as an elementary data item of usage national and of category numeric, numeric-edited, or boolean, the record is filled with national space characters.c) Otherwise, the record is space filled with alphanumeric space characters.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 753

17) If a USE procedure invoked while a format 1 SORT statement is active does not complete normally, the SORT statement is terminated.FORMAT 218) The SORT statement sorts the table referenced by data-name-2 and presents the sorted table in data-name-2 either in the order determined by the ASCENDING or DESCENDING phrases, if specified, or in the order determined by the KEY phrase associated with data-name-2.19) To determine the relative order in which the table elements are stored after sorting, the contents of corresponding key data items are compared according to the rules for comparison of operands in a relation condition, starting with the most significant key data item.a) If the contents of the corresponding key data items are not equal and the key is associated with the ASCENDING phrase, the table element containing the key data item with the lower value has the lower occurrence number.b) If the contents of the corresponding key data items are not equal and the key is associated with the DESCENDING phrase, the table element containing the key data item with the higher value has the lower occurrence number.c) If the contents of the corresponding key data items are equal, the determination is based on the contents of the next most significant key data item.20) The number of occurrences of table elements referenced by data-name-2 is determined by the rules in the OCCURS clause.21) If the KEY phrase is not specified, the sequence is determined by the KEY phrase in the data description entry of the table referenced by data-name-2.22) If the KEY phrase is specified, it overrides any KEY phrase specified in the data description entry of the table referenced by data-name-2.23) If data-name-1 is omitted, the data item referenced by data-name-2 is the key data item.24) The sorted table elements of the table referenced by data-name-2 are placed in the table referenced by data-name-2.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

754 ©ISO/IEC 2023

14.9.41 START statement

14.9.41.1 GeneralThe START statement provides a basis for logical positioning within a file, for subsequent sequential retrieval of records.
14.9.41.2 General format

14.9.41.3 Syntax rules1) The access mode of the file referenced by file-name-1 shall be either sequential or dynamic.2) If the organization of the file referenced by file-name-1 is sequential, either the FIRST or the LAST phrase shall be specified.3) In the KEY phrase, relational-operator is a relational operator specified in the general-relation format of 8.8.4.2, Simple relation conditions, with the exception of the relational operators 'IS NOT EQUAL TO' or 'IS NOT='.4) Data-name-1 or record-key-name-1 shall not be subject to any OCCURS clauses.5) For relative files, data-name-1, if specified, shall be the data item specified in the RELATIVE KEY clause in the associated file control entry.6) For indexed files, data-name-1, if specified, shall reference either:a) A data item specified as a prime or alternate record key associated with file-name-1, orb) A data item with the following characteristics:1. Its leftmost character position within a record of the file corresponds to the leftmost character position of a prime or alternate record key that is associated with file-name-1 and that is defined without the SOURCE phrase in the RECORD KEY clause or ALTERNATE RECORD KEY clause.

START file-name-1FIRST KEY relational-operator data-name-1record-key-name-1

 [WITH LENGTH arithmetic-expression-1]LAST INVALID KEY imperative-statement-1NOT INVALID KEY imperative-statement-2[END-START]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 755

2. It has the same class, category, and usage as that record key.3. Its length is not greater than the length of that record key.7) Record-key-name-1 shall be specified with the SOURCE phrase in the RECORD KEY clause or in the ALTERNATE RECORD KEY clause in the file control entry for file-name-1.8) If the LENGTH phrase is specified, file-name-1 shall reference a file with indexed organization.
14.9.41.4 General rules1) The open mode of the file connector referenced by file-name-1 shall be input or I-O.2) The execution of the START statement does not alter either the content of the record area or the content of the data item referenced by the data-name specified in the DEPENDING ON phrase of the RECORD clause associated with file-name-1.3) The execution of the START statement does not detect, acquire, or release record locks.4) The execution of the START statement causes the value of the I-O status associated with file-name-1 to be updated. (See 9.1.13, I-O status.)5) If, at the time of the execution of the START statement, the file position indicator indicates that an optional input file is not present, the invalid key condition exists and the execution of the START statement is unsuccessful.6) Transfer of control following the successful or unsuccessful execution of the START operation depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the START statement as specified in 9.1.14, Invalid key condition.7) Following the unsuccessful execution of a START statement, the file position indicator is set to indicate that no valid record position has been established. For indexed files, the key of reference is undefined.RELATIVE FILES8) If the KEY phrase is omitted, the START statement behaves as though KEY IS EQUAL TO data-name-1 had been specified, where data-name-1 is the name of the key specified in the RELATIVE KEY clause associated with file-name-1.9) The type of comparison specified by the relational operator in the KEY phrase occurs between a key associated with a record in the file referenced by file-name-1 and a data item as specified in General rule 10. Numeric comparison rules apply. (See 8.8.4.2.4, Comparison of numeric operands.)a) If the relational operator is EQUAL, GREATER, NOT LESS, or GREATER OR EQUAL, the file position indicator is set to the relative record number of the first logical record in the file whose key satisfies the comparison searching the file sequentially.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

756 ©ISO/IEC 2023

b) If the relational operator is LESS, NOT GREATER, or LESS OR EQUAL, the file position indicator is set to the relative record number of the first logical record in the file whose key satisfies the comparison searching the file in reverse order.c) If the comparison is not satisfied by any record in the file, the invalid key condition exists and the execution of the START statement is unsuccessful.10) The comparison described in General rule 9 uses the data item referenced by the RELATIVE KEY clause in the file control entry associated with file-name-1.11) If FIRST is specified, the file position indicator is set to the relative record number of the first existing logical record in the file. If no records exist in the file, the invalid key condition exists and the execution of the START statement is unsuccessful.12) If LAST is specified, the file position indicator is set to the relative record number of the last existing logical record in the file. If no records exist in the file, the invalid key condition exists and the execution of the START statement is unsuccessful.INDEXED FILES13) The value of arithmetic-expression-1 reflects the number of characters that will be used as a partial key for positioning to a record in file-name-1. If data-name-1 or record-key-name-1 is of class alphanumeric, arithmetic-expression-1 is the number of alphanumeric character positions; if data-name-1 or record-key-name-1 is of class national, arithmetic-expression-1 is the number of national character positions.14) If arithmetic-expression-1 does not evaluate to a positive nonzero integer that is less than or equal to the length of the associated key, the I-O status value in the file connector referenced by file-name-1 is set to '23', the invalid key condition exists, and the execution of the START statement is unsuccessful.15) If the KEY phrase is not specified, the behavior is the same as if KEY IS EQUAL TO data-name-1 or record-key-name-1 had been specified, with data-name-1 or record-key-name-1 being the prime record key for the file.16) The key specified in the KEY phrase, or that shares a leftmost character with the data item specified in the KEY phrase, becomes the key of reference. This key of reference is used to establish the ordering of records for the purpose of this START statement as indicated in General rule 17. If the execution of the START statement is successful, this key of reference is used for subsequent sequential READ statements referencing file-name-1.17) Execution of the START statement behaves as if:a) The specified key is set up by moving the relevant parts of the record area into a temporary data area.b) The length of this temporary area is considered to be the length specified in the LENGTH clause, if specified, or else the length of record-key-name-1, if specified, or else the length of data-name-1.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 757

c) If the relational operator is EQUAL, GREATER, NOT LESS, or GREATER OR EQUAL, the file is searched sequentially with the key of reference being extracted from each record in turn into another temporary area. This second temporary area is truncated to the same length as the first.d) If the relational operator is LESS, NOT GREATER, or LESS OR EQUAL, the file is searched in reverse order with the key of reference being extracted from each record in turn into another temporary area. This second temporary area is truncated to the same length as the first.e) The comparison specified by the relational operator in the KEY phrase is made between these two temporary areas, with the second temporary area on the left hand side, and according to the collating sequence of the file. Comparison proceeds as specified for items of the class of data-name-1 and operands of equal length in 8.8.4.2.7, Comparison of alphanumeric operands, or 8.8.4.2.9, Comparison of national operands. If the key of reference is an alternate key, any record identified as being suppressed by the SUPPRESS WHEN phrase of the ALTERNATE RECORD KEY clause is ignored. Then, either:1. The file position indicator is set to the value of the key of reference in the first logical record whose key satisfies the comparison, or 2. If the comparison is not satisfied by any record in the file, the invalid key condition exists and the execution of the START statement is unsuccessful.18) If FIRST is specified, the file position indicator is set to the value of the primary key of the first existing logical record in the physical file and the key of reference is set to the primary key. If no records exist in the file, the I-O status value in the file connector referenced by file-name-1 is set to '23', the invalid key condition exists, and the execution of the START statement is unsuccessful.19) If LAST is specified, the file position indicator is set to the value of the primary key of the last existing logical record in the physical file and the key of reference is set to the primary key. If no records exist in the file, the I-O status value in the file connector referenced by file-name-1 is set to '23', the invalid key condition exists, and the execution of the START statement is unsuccessful.SEQUENTIAL FILES20) If FIRST is specified, the file position indicator is set to 1 if records exist in the physical file. If no records exist in the file, or the physical file does not support the ability to position at the first record, the I-O status value in the file connector referenced by file-name-1 is set to '23', the invalid key condition exists, and the execution of the START statement is unsuccessful.21) If LAST is specified, the file position indicator is set to the record number of the last existing logical record in the physical file. If no records exist in the file, or the physical file does not support the ability to position at the last record, the I-O status value in the file connector referenced by file-name-1 is set to '23', the invalid key condition exists, and the execution of the START statement is unsuccessful.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

758 ©ISO/IEC 2023

14.9.42 STOP statement

14.9.42.1 GeneralThe STOP statement causes termination of the execution of the run unit.
14.9.42.2 General format

14.9.42.3 Syntax rules1) The STOP statement shall be specified only as the last statement in any discreet block of code.2) Identifier-1 shall reference an integer data item or a data item with usage display or usage national.3) If literal-1 is numeric, it shall be an integer.4) Literal-1 shall not be a zero-length literal.
14.9.42.4 General rules1) The operations described in 14.6.11, Normal run unit termination, are performed.2) If the ERROR phrase is specified, the operating system will indicate an error termination of the run unit if such a capability exists within the operating system.3) If the NORMAL phrase is specified, the operating system will indicate a normal termination of the run unit if such a capability exists within the operating system.4) If neither the ERROR phrase nor the NORMAL phrase is specified, the operating system will indicate a normal termination of the run unit if such a capability exists within the operating system unless error termination has been indicated by an implementor-defined mechanism.5) During execution of the STOP statement with literal-1 or identifier-1 specified, literal-1 or the contents of the data item referenced by identifier-1 are passed to the operating system. Any constraints on the value of literal-1 or the contents of the data item referenced by identifier-1 are defined by the implementor.6) Execution of the run unit terminates and control is transferred to the operating system.

STOP RUN WITH ERRORNORMAL

 STATUS identifier-1literal-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 759

14.9.43 STRING statementThe STRING statement provides concatenation of the partial or complete contents of one or more data items into a single data item.
14.9.43.1 General

14.9.43.2 General format

14.9.43.3 Syntax rules1) All literals shall be described as alphanumeric, boolean, or national literals, and all identifiers, except identifier-4, shall be described implicitly or explicitly as usage display or national. If any one of literal-1, literal-2, identifier-1, identifier-2, or identifier-3 is of class national, then all shall be of class national.2) Literal-1 or literal-2 shall not be a figurative constant that begins with the word ALL.3) Literal-2 shall not be a zero-length literal.4) Identifier-3 shall not be reference-modified.5) Identifier-3 shall not reference an edited data item and shall not be described with the JUSTIFIED clause.6) Identifier-3 shall not reference a strongly-typed group item.7) Identifier-4 shall be described as an elementary numeric integer data item of sufficient size to contain a value equal to 1 plus the size of the data item referenced by identifier-3. The symbol 'P' shall not be used in the picture character-string of identifier-4.8) Where identifier-1 or identifier-2 is an elementary numeric data item, it shall be described as an integer without the symbol 'P' in its picture character-string.

STRING identifier-1literal-1

 DELIMITED BY identifier-2literal-2SIZE

 ...

INTO identifier-3[WITH POINTER identifier-4]ON OVERFLOW imperative-statement-1NOT ON OVERFLOW imperative-statement-2[END-STRING]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

760 ©ISO/IEC 2023

9) The DELIMITED phrase may be omitted only immediately preceding the INTO phrase. If it is omitted, DELIMITED BY SIZE is implied.10) Literal-1 or the data item referenced by identifier-1 is the sending operand. The data item referenced by identifier-3 is the receiving operand.11) Identifier-1, identifier-2, or identifier-3 shall not specify a variable-length group.
14.9.43.4 General rules1) Literal-2 or the content of the data item referenced by identifier-2 indicates the character(s) delimiting the move. If the SIZE phrase is used, the content of the complete data item defined by identifier-1 or literal-1 is moved. If the SIZE phrase is associated with an identifier-1 that references a dynamic-length elementary item, the current length of the data item is used to determine the number of characters moved.2) When a figurative constant is specified as literal-1 or literal-2, it refers to an implicit one character data item whose usage shall be the same as the usage of identifier-3, either display or national.3) When the STRING statement is executed, the transfer of data is governed by the following rules:a) Characters from literal-1 or from the content of the data item referenced by identifier-1 are transferred to the data item referenced by identifier-3 in accordance with the MOVE statement rules for alphanumeric-to-alphanumeric moves or, when identifier-3 is of class national, national-to-national moves, except that no space filling is provided. If an identifier-1 references a zero-length item, that sending operand is ignored.b) If the DELIMITED phrase is specified and literal-2 is specified or identifier-2 is specified and is not a zero-length item, the content of the data item referenced by identifier-1, or the value of literal-1, is transferred to the receiving data item in the sequence specified in the STRING statement beginning with the leftmost character positions and continuing from left to right until the end of the sending data item is reached or the end of the receiving data item is reached or until the character(s) specified by literal-2, or by the content of the data item referenced by identifier-2, are encountered. The character(s) specified by literal-2 or by the data item referenced by identifier-2 are not transferred.c) If the DELIMITED phrase is specified and the SIZE phrase is specified or identifier-2 is specified and is a zero-length item, the entire content of literal-1, or the content of the data item referenced by identifier-1, is transferred, in the sequence specified in the STRING statement, to the data item referenced by identifier-3 until all data has been transferred or the end of the data item referenced by identifier-3 has been reached.This behavior is repeated until all occurrences of literal-1 or data items referenced by identifier-1 have been processed.4) If the POINTER phrase is specified, the data item referenced by identifier-4 shall have a value greater than zero at the start of execution of the STRING statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 761

5) If the POINTER phrase is not specified, the following general rules apply as if the user had specified identifier-4 referencing a data item with an initial value of 1.6) When characters are transferred to the data item referenced by identifier-3, the moves behave as though the characters were moved one at a time from the source into the character positions of the data item referenced by identifier-3 designated by the value of the data item referenced by identifier-4 (provided the value of the data item referenced by identifier-4 does not exceed the length of the data item referenced by identifier-3), and then the data item referenced by identifier-4 was increased by one prior to the move of the next character or prior to the end of execution of the STRING statement. The value of the data item referenced by identifier-4 is changed during execution of the STRING statement only by the behavior specified above.7) At the end of execution of the STRING statement, only the portion of the data item referenced by identifier-3 that was referenced during the execution of the STRING statement is changed. All other portions of the data item referenced by identifier-3 will contain data that was present before this execution of the STRING statement.8) Before each move of a character to the data item referenced by identifier-3, if the value associated with the data item referenced by identifier-4 is either less than one or exceeds the number of character positions in the data item referenced by identifier-3, the following occurs: a) No further data is transferred to the data item referenced by identifier-3.b) The EC-OVERFLOW-STRING exception condition is set to exist.c) If the ON OVERFLOW phrase is specified, control is transferred to imperative-statement-1 and execution continues according to the rules for each statement specified in imperative-statement-1. If a procedure branching or conditional statement that causes explicit transfer of control is executed, control is transferred in accordance with the rules for that statement; otherwise, upon completion of the execution of imperative-statement-1, control is transferred to the end of the STRING statement.d) If the ON OVERFLOW phrase is not specified, execution continues as specified in 14.6.13.1.4, Nonfatal exception conditions.e) The NOT ON OVERFLOW phrase, if specified, is ignored.9) If, at the time of execution of a STRING statement with the NOT ON OVERFLOW phrase, the conditions described in General rule 8 are not encountered, after completion of the transfer of data according to the other general rules, the ON OVERFLOW phrase, if specified, is ignored and control is transferred to the end of the STRING statement or, if the NOT ON OVERFLOW phrase is specified, to imperative-statement-2. If control is returned from imperative-statement-2, control is then transferred to the end of the STRING statement.10) If identifier-1, or identifier-2, occupies the same storage area as identifier-3, or identifier-4, or if identifier-3 and identifier-4 occupy the same storage area, the result of the execution of this statement is undefined, even if they are defined by the same data description entry. (See 14.6.10, Overlapping operands.)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

762 ©ISO/IEC 2023

14.9.44 SUBTRACT statement

14.9.44.1 GeneralThe SUBTRACT statement is used to subtract one, or the sum of two or more, numeric data items from one or more items, and set the values of one or more items equal to the results.
14.9.44.2 General formatsFormat 1 (simple):

Format 2 (giving):

Format 3 (corresponding):

where rounded-phrase is described in 14.7.4, ROUNDED phrase.

SUBTRACT identifier-1literal-1

 ... FROM { identifier-2 [rounded-phrase] } ...

ON SIZE ERROR imperative-statement-1NOT ON SIZE ERROR imperative-statement-2[END-SUBTRACT]

SUBTRACT identifier-1literal-1

 ... FROM identifier-2literal-2

GIVING { identifier-3 [rounded-phrase] } ...ON SIZE ERROR imperative-statement-1NOT ON SIZE ERROR imperative-statement-2[END-SUBTRACT]

SUBTRACT CORRESPONDINGCORR

 identifier-4 FROM identifier-5 [rounded-phrase]

ON SIZE ERROR imperative-statement-1NOT ON SIZE ERROR imperative-statement-2[END-SUBTRACT]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 763

14.9.44.3 Syntax rulesALL FORMATS1) When native arithmetic is in effect, the composite of operands described in 14.7.7, Arithmetic statements, is determined as follows:a) In format 1, by using all of the operands in the statement.b) In format 2, by using all of the operands in the statement excluding the data item that follow the word GIVING.c) In format 3, by using the two corresponding operands for each separate pair of corresponding items.FORMATS 1 AND 22) Identifier-1 and identifier-2 shall reference numeric data items.3) Literal-1 and literal-2 shall be numeric literals.FORMAT 24) Identifier-3 shall reference a numeric data item or a numeric-edited data item.FORMAT 35) The words CORR and CORRESPONDING are equivalent.6) Identifier-4 and identifier-5 shall be alphanumeric group items, national group items, variable-length groups, or strongly-typed group items and shall not be described with level-number 66.
14.9.44.4 General rules1) When format 1 is used, the initial evaluation consists of determining the value to be subtracted, which is literal-1 or the value of the data item referenced by identifier-1, or if more than one is specified, the sum of such operands. The initial evaluation is subtracted from the value of the data item referenced by identifier-2 and the result is stored as the new value of the data item referenced by identifier-2.When standard-decimal arithmetic, or standard-binary arithmetic is in effect, the result of the initial evaluation is equivalent to the result of the arithmetic expression(operand-11 + operand-12 + ... + operand-1n)where the values of operand-1 are the values of literal-1 and the data items referenced by identifier-1 in the order in which they are specified in the SUBTRACT statement. The result of the subtraction from the value of each data item referenced by identifier-2 is equivalent to the result of the arithmetic expression

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

764 ©ISO/IEC 2023

(identifier-2 – initial-evaluation)where initial-evaluation represents the result of the initial evaluation.2) When format 2 is used, the initial evaluation consists of determining the value to be subtracted, which is literal-1 or the value of the data item referenced by identifier-1, or if more than one is specified, the sum of such operands; and subtracting this value from literal-2 or the value of the data item referenced by identifier-2. The result is stored as the new value of the data item referenced by identifier-3.When standard-decimal arithmetic, or standard-binary arithmetic is in effect, the result of the subtraction is equivalent to the arithmetic expression(operand-2 – (operand-11 + operand-12 + ... + operand-1n))where the values of operand-1 are the values of literal-1 and the data items referenced by identifier-1 in the order in which they are specified in the SUBTRACT statement and the value of operand-2 is the value of either literal-2 or the data item referenced by identifier-2 in the SUBTRACT statement.3) When format 3 is used, data items in identifier-4 are subtracted from and stored in corresponding items in identifier-5. When standard-decimal arithmetic, or standard-binary arithmetic is in effect, the result of the subtraction is equivalent to(operand-1 – operand-2)where the value of operand-1 is the value of the data item in identifier-4 and the value of operand-2 is the value of the corresponding data item in identifier-5.4) When native arithmetic is in effect and none of the operands is described with usage binary-char, binary-short, binary-long, binary-double, float-short, float-long, or float-extended, enough places shall be carried so as not to lose significant digits during execution.5) Data items within identifier-4 are selected to be subtracted from selected data items within identifier-5 according to the rules specified in 14.7.6, CORRESPONDING phrase. The results are the same as if the user had referred to each pair of corresponding identifiers in separate SUBTRACT statements.6) Additional rules and explanations relative to this statement are given in 14.6.13.2, Incompatible data; 14.7.4, ROUNDED phrase; 14.7.5, SIZE ERROR phrase and size error condition; 14.7.6, CORRESPONDING phrase; and 14.7.7, Arithmetic statements.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 765

14.9.45 SUPPRESS statement

14.9.45.1 GeneralThe SUPPRESS statement inhibits the printing of a report group.
14.9.45.2 General format

14.9.45.3 Syntax rule1) The SUPPRESS statement may appear only in a USE BEFORE REPORTING procedure.
14.9.45.4 General rules1) The SUPPRESS statement inhibits printing only for the report group named in the USE procedure within which the SUPPRESS statement appears.2) The effect of the SUPPRESS statement is limited to the current instance of the report group.NOTE To ensure correct results, a SUPPRESS statement can be executed again on each further occasion that the associated report group is to be inhibited.3) When the SUPPRESS statement is executed, the following report group functions are inhibited:a) The printing of the print lines of the report group.b) Any page advance associated with the report group.c) The processing of any NEXT GROUP clause in the report group.d) Any changes to LINE-COUNTER associated with the report group.e) If the associated report group is a detail, the SUPPRESS statement does not affect the sensing for control breaks or the subsequent control break processing.

SUPPRESS PRINTING

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

766 ©ISO/IEC 2023

14.9.46 TERMINATE statement

14.9.46.1 GeneralThe TERMINATE statement completes the processing of the specified reports.
14.9.46.2 General format

14.9.46.3 Syntax rules1) Report-name-1 shall be defined by a report description entry in the report section.2) If report-name-1 is defined in a containing program, the file description entry associated with report-name-1 shall contain a GLOBAL clause.3) A TERMINATE statement that specifies more than one report-name shall not be specified in an exception checking PERFORM statement.
14.9.46.4 General rules1) The TERMINATE statement may be executed only for a report that is in the active state. If the report is not in the active state, the EC-REPORT-INACTIVE exception condition is set to exist and the execution of the statement has no other effect.2) If no GENERATE statement has been executed for a report during the interval between the execution of an INITIATE statement and a TERMINATE statement for that report, the TERMINATE statement causes no processing of any kind to take place for any report groups and has the sole effect of changing the state of the report to inactive.3) If at least one GENERATE statement has been executed for a report during the interval between the execution of an INITIATE statement and a TERMINATE statement for that report, the TERMINATE statement causes the following actions to take place:a) The contents of any control data items are changed to their prior values.b) Each control footing is printed, if defined, beginning with the minor control footing, as defined for the GENERATE statement, as though a control break has been sensed in the most major control data item.c) The report footing is printed, if defined.d) The contents of any control data items are restored to the values they had at the start of execution of the TERMINATE statement.4) The result of executing a TERMINATE statement in which more than one report-name-1 is specified is as though a separate TERMINATE statement had been executed for each report-name-1 in the same order as specified in the statement. If an implicit TERMINATE statement results in the

TERMINATE { report-name-1 } ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 767

execution of a declarative procedure that executes a RESUME statement with the NEXT STATEMENT phrase, processing resumes at the next implicit TERMINATE statement, if any.5) If a nonfatal exception condition is raised during the execution of a TERMINATE statement, execution resumes at the next report item, line, or report group, whichever follows in logical order.6) The TERMINATE statement does not close the file associated with report-name-1.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

768 ©ISO/IEC 2023

14.9.47 UNLOCK statement

14.9.47.1 GeneralThe UNLOCK statement explicitly releases any record locks associated with a file connector.
14.9.47.2 General format

14.9.47.3 Syntax rules1) File-name-1 shall not refer to a sort file or a merge file.2) File-name-1 shall not be a file specified in an APPLY COMMIT clause.
14.9.47.4 General rules1) Any record locks associated with the file connector referenced by file-name-1 are released by the execution of the UNLOCK statement. The presence or absence of any record locks does not affect the success of the execution of the UNLOCK statement.NOTE To unlock one particular record, use the READ statement with the NO LOCK phrase.2) File-name-1 shall reference a file connector in the open mode.3) The execution of the UNLOCK statement causes the value of the I-O status of the file connector referenced by file-name-1 to be updated.

UNLOCK file-name-1 RECORDRECORDS

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 769

14.9.48 UNSTRING statement

14.9.48.1 GeneralThe UNSTRING statement causes contiguous data in a sending field to be separated and placed into multiple receiving fields.
14.9.48.2 General format

14.9.48.3 Syntax rules1) Literal-1 and literal-2 shall be literals of the category alphanumeric or national and shall be neither a figurative constant that begins with the word ALL nor a zero-length literal.2) Identifier-1, identifier-2, identifier-3, and identifier-5 shall reference data items of category alphanumeric or national. 3) If any of identifier-1, identifier-2, identifier-3, identifier-4, identifier-5, literal-1, or literal-2 are of category national, then all shall be of category national. 4) Identifier-4 shall be described implicitly or explicitly as usage display and category alphabetic, alphanumeric, or numeric; or as usage national and category national or numeric. Numeric items shall not be specified with the symbol 'P' in their picture character-string.5) Identifier-6 and identifier-8 shall reference integer data items. The symbol 'P' shall not be used in the picture character-string.6) Identifier-7 shall be described as an elementary numeric integer data item of sufficient size to contain a value equal to 1 plus the size of the data item referenced by identifier-1. The symbol 'P' shall not be used in the picture character-string of identifier-7.7) The DELIMITER IN phrase and the COUNT IN phrase may be specified only if the DELIMITED BY phrase is specified.

UNSTRING identifier-1
DELIMITED BY [ALL] identifier-2literal-1

 OR [ALL] identifier-3literal-2

INTO { identifier-4 [DELIMITER IN identifier-5] [COUNT IN identifier-6] } ...[WITH POINTER identifier-7][TALLYING IN identifier-8]ON OVERFLOW imperative-statement-1NOT ON OVERFLOW imperative-statement-2[END-UNSTRING]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

770 ©ISO/IEC 2023

8) The data item referenced by identifier-1 is the sending operand.9) The data item referenced by identifier-4 is the receiving operand for data. The data item referenced by identifier-5 is the receiving operand for delimiters.10) Identifier-1, identifier-2, identifier-3, identifier-4 or identifier-5, shall not reference a variable-length group.
14.9.48.4 General rules1) All references to identifier-2 and literal-1 apply equally to identifier-3 and literal-2, respectively, and all recursions thereof.2) If the data item referenced by identifier-1 is a zero-length item, execution of the UNSTRING statement terminates immediately.3) Literal-1 or the data item referenced by identifier-2 specifies a delimiter.4) The data item referenced by identifier-6 represents the count of the number of characters within the data item referenced by identifier-1 isolated by the delimiters for the move to the data item referenced by identifier-4. This value does not include a count of the delimiter character(s).5) The data item referenced by identifier-7 contains a value that indicates a relative character position within the area referenced by identifier-1.6) The data item referenced by identifier-8 is a counter that is incremented by 1 for each occurrence of the data item referenced by identifier-4 accessed during the UNSTRING operation.7) When a figurative constant is used as the delimiter, it stands for a single-character national literal if identifier-1 is a national data item; otherwise, it stands for a single-character alphanumeric literal.When the ALL phrase is specified, one occurrence or two or more contiguous occurrences of literal-1 (figurative constant or not) or the content of the data item referenced by identifier-2 are treated as if they were only one occurrence, and one occurrence of literal-1 or the data item referenced by identifier-2 is moved to the receiving data item according to the rules in General rule 11d.8) When any examination encounters two contiguous delimiters, the current receiving area shall be space-filled if it is described as alphabetic, alphanumeric, or national; or zero-filled if it is described as numeric.9) Each literal-1 or the data item referenced by identifier-2 represents one delimiter. When a delimiter contains two or more characters, all of the characters shall be present in contiguous positions of the sending item, and in the order given, to be recognized as a delimiter. If the data item referenced by identifier-2 or identifier-3 is a zero-length item, that delimiter is ignored. When neither literal-1 nor literal-2 is specified and all data items referenced by identifier-2 and identifier-3 are zero-length items, it is as if the DELIMITED phrase were not specified.10) When two or more delimiters are specified in the DELIMITED BY phrase, an OR condition exists between them. Each delimiter is compared to the sending field. If a match occurs, the character(s)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 771

in the sending field is considered to be a single delimiter. No character(s) in the sending field shall be considered a part of more than one delimiter.Each delimiter is applied to the sending field in the sequence specified in the UNSTRING statement.11) When the UNSTRING statement is initiated, the current receiving area is the data item referenced by identifier-4. Data is transferred from the data item referenced by identifier-1 to the data item referenced by identifier-4 according to the following rules:a) If the POINTER phrase is specified, the string of characters referenced by identifier-1 is examined beginning with the relative character position indicated by the content of the data item referenced by identifier-7. If the POINTER phrase is not specified, the string of characters is examined beginning with the leftmost character position.b) If the DELIMITED BY phrase is specified, the examination proceeds left to right until a delimiter specified by either literal-1 or the value of the data item referenced by identifier-2 is encountered. (See General rule 9.) If the DELIMITED BY phrase is not specified, the number of characters examined is equal to the size of the current receiving area. However, if the sign of the receiving item is defined as occupying a separate character position, the number of characters examined is one less than the size of the current receiving area. Size is defined as number of character positions.If the end of the data item referenced by identifier-1 is encountered before the delimiting condition is met, the examination terminates with the last character examined.c) The characters examined, excluding any delimiting characters, shall be treated as an elementary national data item if identifier-1 is of category national, and otherwise as an elementary alphanumeric data item, and shall be moved into the current receiving area according to the rules for the MOVE statement.d) If the DELIMITER IN phrase is specified the delimiting character(s) shall be treated as an elementary national data item if identifier-1 is of category national, and otherwise as an elementary alphanumeric data item and shall be moved into the data item referenced by identifier-5 according to the rules for the MOVE statement. If the delimiting condition is the end of the data item referenced by identifier-1, then the data item referenced by identifier-5 is space filled.e) If the COUNT IN phrase is specified, a value equal to the number of characters examined, excluding any delimiter characters, shall be moved into the area referenced by identifier-6 according to the rules for an elementary move.f) If the DELIMITED BY phrase is specified the string of characters is further examined beginning with the first character position to the right of the delimiter. If the DELIMITED BY phrase is not specified the string of characters is further examined beginning with the character position to the right of the last character transferred.g) After data is transferred to the data item referenced by identifier-4, the current receiving area is the data item referenced by the next recurrence of identifier-4. The behavior described in

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

772 ©ISO/IEC 2023

General rules 12b through 12f is repeated until either all the characters are exhausted in the data item referenced by identifier-1, or until there are no more receiving areas.12) The initialization of the contents of the data items associated with the POINTER phrase or the TALLYING phrase is the responsibility of the user.13) The content of the data item referenced by identifier-7 will be incremented by one for each character examined in the data item referenced by identifier-1. When the execution of an UNSTRING statement with a POINTER phrase is completed, the content of the data item referenced by identifier-7 will contain a value equal to the initial value plus the number of characters examined in the data item referenced by identifier-1.14) When the execution of an UNSTRING statement with a TALLYING phrase is completed, the content of the data item referenced by identifier-8 contains a value equal to its value at the beginning of the execution of the statement plus a value equal to the number of identifier-4 receiving data items accessed during execution of the statement.15) Either of the following situations causes an overflow condition:a) An UNSTRING is initiated, and the value in the data item referenced by identifier-7 is less than 1 or greater than the number of character positions described for the data item referenced by identifier-1.b) If, during execution of an UNSTRING statement, all receiving areas have been acted upon, and the data item referenced by identifier-1 contains characters that have not been examined.16) When an overflow condition exists, the following occurs:a) The UNSTRING operation is terminated.b) The EC-OVERFLOW-UNSTRING exception condition is set to exist.c) If the ON OVERFLOW phrase is specified, control is transferred to imperative-statement-1. If control is returned from imperative-statement-1, control is then transferred to the end of the UNSTRING statement.d) If the ON OVERFLOW phrase is not specified, execution continues as specified in 14.6.13.1.4, Nonfatal exception conditions.e) The NOT ON OVERFLOW phrase, if specified, is ignored.17) If, at the time of execution of an UNSTRING statement, the conditions described in General rule 15 are not encountered, after completion of the transfer of data according to the other general rules, the ON OVERFLOW phrase, if specified, is ignored and control is transferred to the end of the UNSTRING statement or, if the NOT ON OVERFLOW phrase is specified, to imperative-statement-2. If control is returned from imperative-statement-2, control is then transferred to the end of the UNSTRING statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 773

18) If identifier-1, identifier-2, or identifier-3, occupies the same storage area as identifier-4, identifier-5, identifier-6, identifier-7, or identifier-8, or if identifier-4, identifier-5, or identifier-6, occupies the same storage area as identifier-7 or identifier-8, or if identifier-7 and identifier-8 occupy the same storage area, the result of the execution of this statement is undefined, even if they are defined by the same data description entry. (See 14.6.10, Overlapping operands.)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

774 ©ISO/IEC 2023

14.9.49 USE statement

14.9.49.1 GeneralThe USE statement specifies:— Procedures for error or exception handling that are in addition to the standard procedures provided by other facilities,NOTE These facilities can include the input-output control system and the operating system.— A procedure to be executed just before the printing of the designated report group, or— Procedures that are executed after the detection of exception conditions.
14.9.49.2 General formatsFormat 1 (file-exception):

Format 2 (reporting):
Format 3 (exception-name):

Format 4 (exception-object):

USE [GLOBAL] AFTER STANDARD EXCEPTIONERROR

 PROCEDURE ON

{ file-name-1 } ...INPUTOUTPUTI-OEXTEND

USE [GLOBAL] BEFORE REPORTING identifier-1
USE AFTER EXCEPTION CONDITIONEC

 exception-name-1exception-name-2 { FILE file-name-2 } ...

 ...

USE AFTER EXCEPTION OBJECTEO

 object-class-name-1interface-name-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 775

14.9.49.3 Syntax rulesALL FORMATS1) A USE statement, when present, shall immediately follow a section header in the declaratives portion of the procedure division and shall appear in a sentence by itself. The remainder of the section shall consist of zero, one, or more procedural paragraphs that define the procedures to be used.2) File-name-1 or file-name-2 shall not be a sort or a merge file.3) Within a declarative procedure, there shall be no reference to any nondeclarative procedures except in a RESUME statement.4) Procedure-names within a declarative section may be referenced in a different declarative section or in a nondeclarative procedure only with a PERFORM statement.FORMATS 1 AND 35) The files implicitly or explicitly referenced in the USE statement need not all have the same organization or access.FORMAT 16) The words ERROR and EXCEPTION are synonymous and may be used interchangeably.7) The INPUT, OUTPUT, I-O, and EXTEND phrases may each be specified only once in the declaratives portion of a given procedure division.8) The same file-name shall not appear in more than one USE AFTER EXCEPTION statement within the same procedure division.FORMAT 29) Identifier-1 shall reference a report group. The same identifier-1 shall not appear in more than one USE BEFORE REPORTING statement within the same procedure division.10) The GENERATE, INITIATE, or TERMINATE statements shall not appear in a paragraph within a USE BEFORE REPORTING procedure.11) A USE BEFORE REPORTING procedure shall not alter the value of any control data item.FORMAT 312) EC is synonymous with EXCEPTION CONDITION.13) Exception-name-2 shall be an exception-name beginning with 'EC-I-O'.14) The same pair of exception-name-2 and file-name-2 shall not be specified in more than one USE statement within the same procedure division.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

776 ©ISO/IEC 2023

FORMAT 415) EO is synonymous with EXCEPTION OBJECT.16) Object-class-name-1 shall be the name of a class specified in the REPOSITORY paragraph.17) Interface-name-1 shall be the name of an interface specified in the REPOSITORY paragraph.
14.9.49.4 General rulesALL FORMATS1) The USE statement defines the conditions calling for the execution of the use procedures.2) During the execution of a USE procedure, if a statement raises an exception condition that would cause the execution of a USE procedure that had previously been activated and had not yet returned control to the activating entity, the EC-FLOW-USE exception condition is set to exist.FORMATS 1, 3, AND 43) A declarative is selected for execution by analyzing the USE statements in the source element in the order in which they are specified. The first declarative that satisfies the selection criteria is executed and no other declaratives are executed. If an exception object was raised, the method specified in General rule 14 is applied. Otherwise, the following rules are applied in order:a) All format 1 USE statements in which file-name-1 is specified are examined using the criteria specified in General rule 6. If no qualifying USE statement is found, the USE statements in the source element are examined again.b) All format 1 USE statements in which file-name-1 is not specified are examined using the criteria specified in General rule 6. If no qualifying USE statement is found, the USE statements in the source element are examined again.c) All format 3 USE statements in which file-name-2 is specified and exception-name-2 is a level-3 exception-name are examined. If the exception condition that was raised matches exception-name-2 and the exception condition is associated with file-name-2, that declarative is executed. If no qualifying USE statement is found, the USE statements in the source element are examined again.d) All format 3 USE statements in which file-name-2 is specified and exception-name-2 is a level-2 exception-name are examined. If the exception condition that was raised matches exception-name-2 and the exception condition is associated with file-name-2, that declarative is executed. If no qualifying USE statement is found, the USE statements in the source element are examined again.e) All format 3 USE statements in which file-name-2 is not specified and exception-name-1 is a level-3 exception-name are examined. If the exception condition that was raised matches exception-name-1, that declarative is executed. If no qualifying USE statement is found, the USE statements in the source element are examined again.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 777

f) All format 3 USE statements in which file-name-2 is not specified and exception-name-1 is a level-2 exception-name are examined. If the exception condition that was raised matches exception-name-1, that declarative is executed. If no qualifying USE statement is found, the USE statements in the source element are examined again.g) Any format 3 USE statements in which file-name-2 is not specified and exception-name-1 is a level-1 exception-name are examined. If the exception condition that was raised matches exception-name-1, that declarative is executed. If no qualifying USE statement is found, and a containing source element contains a USE statement with the GLOBAL clause, the search is repeated as specified in General rule 4. If no declarative is identified, no declarative is executed.FORMATS 1 AND 24) For source elements contained within other source elements, multiple declaratives may be eligible for selection for a given exception condition. The declarative selected for execution is determined in the following order of precedence:a) the qualifying declarative in the source element that contains the statement that caused the condition to exist,b) a qualifying declarative with the GLOBAL attribute in the next inclusive directly containing source element. This step is repeated with the next higher directly containing source element until a declarative is selected or the outermost source element is reached.FORMAT 15) Within a given procedure division, a USE statement specifying file-name-1 takes precedence over any USE statements specifying an INPUT, OUTPUT, I-O, or EXTEND phrase.6) If the input-output statement that raised the exception was specified in imperative-statement-1 of an exception-checking PERFORM statement and the exception condition did not match the criteria in any WHEN phrases within that PERFORM statement, or the input-output statement was not specified within the scope of an exception-checking PERFORM statement, the procedures associated with a USE statement are executed after completion of the standard input-output exception routine upon the unsuccessful execution of an input-output operation unless an AT END or INVALID KEY phrase takes precedence. The rules concerning when the procedures are executed are as follows:a) If file-name-1 is specified, the associated procedure is executed when the condition described in the USE statement occurs.b) If INPUT is specified, the associated procedure is executed when the condition described in the USE statement occurs for any file open in the input mode or in the process of being opened in the input mode, except those files referenced by file-name-1 in another USE statement specifying the same condition.c) If OUTPUT is specified, the associated procedure is executed when the condition described in the USE statement occurs for any file open in the output mode or in the process of being opened in the output mode, except those files referenced by file-name-1 in another USE statement specifying the same condition.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

778 ©ISO/IEC 2023

d) If I-O is specified, the associated procedure is executed when the condition described in the USE statement occurs for any file open in the I-O mode or in the process of being opened in the I-O mode, except those files referenced by file-name-1 in another USE statement specifying the same condition.e) If EXTEND is specified, the associated procedure is executed when the condition described in the USE statement occurs for any file open in the extend mode or in the process of being opened in the extend mode, except those files referenced by file-name-1 in another USE statement specifying the same condition.7) After execution of the USE procedure, one of the following occurs:a) If the USE statement was invoked from a MERGE or a SORT statement, the rules for those statements are followedb) If the I-O status value does not indicate a fatal EC-I-O exception condition, control is returned to an implicit CONTINUE statement following the input-output statement whose execution caused the exception.c) If the I-O status value does indicate a fatal EC-I-O exception condition, the implementor determines what action is taken as described in 9.1.13, I-O status.FORMAT 28) The declarative is invoked just before the named report group is produced during the execution of the runtime element. The report group is named by identifier-1 in the USE BEFORE REPORTING statement that prefaces the declarative procedure.9) The declarative procedure associated with the USE BEFORE REPORTING statement is implicitly performed on each occasion that the named report group is processed at the following logical points:a) After any control break processing, if the associated report group is a detail and the associated report description has a CONTROL clause. (See 13.18.16, CONTROL clause.)b) After incrementing sum counters defined in the report group;c) Before any page fit processing, if the associated report group is a body group and the report is divided into pages.d) Before the processing of any LINE clauses defined for the report group and any printable items described in entries subordinate to them.10) If a GENERATE, INITIATE, or TERMINATE statement is executed within the range of a declarative procedure whose USE statement contains the BEFORE REPORTING phrase, the EC-FLOW-REPORT exception condition is set to exist, the result of the execution of the GENERATE, INITIATE, or TERMINATE statement is unsuccessful, and the state of the report is unchanged.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 779

FORMAT 311) The exception condition that is used to determine which USE statement to select is the first one that occurs in the order of evaluation of the statement that causes the exception to exist.12) When exception-name-1 or exception-name-2 begins with EC-I-O, after execution of the USE procedure, control is transferred to the invoking routine in the input-output control system. Then one of the following occurs:a) If the USE statement was invoked from a MERGE or a SORT statement, the rules for those statements are followed.b) If the I-O status value does not indicate a fatal EC-I-O exception condition, control is returned to an implicit CONTINUE statement following the input-output statement whose execution caused the exception.c) If the I-O status value does indicate a fatal EC-I-O exception condition, the implementor determines what action is taken as described in 9.1.13, I-O status.13) When exception-name-1 or exception-name-2 does not begin with EC-I-O, then one of the following occurs:a) If the exception condition is not fatal, control is returned to an implicit CONTINUE statement following the statement whose execution caused the exception.b) If the exception condition is fatal, execution continues as specified in 14.6.12, Abnormal run unit termination.FORMAT 414) A declarative is selected for execution by analyzing the USE statements in a source element in the order in which they are specified. Zero or one declarative is selected for execution by applying the following rules in order:a) If object-class-name-1 is specified and the exception object that was raised is a factory object or instance object of object-class-name-1 or of a subclass of object-class-name-1, the associated declarative is executed and no other declaratives are executed; otherwise, all of the USE statements in the source element are analyzed again and:b) If interface-name-1 is specified and the exception object that was raised is described with an IMPLEMENTS clause that references interface-name-1, the associated declarative is executed and no other declaratives are executed; otherwise execution proceeds as specified in 14.6.13.1.5, Exception objects.15) Upon entry to the associated declarative, the predefined object reference EXCEPTION-OBJECT references the exception object.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

780 ©ISO/IEC 2023

14.9.50 VALIDATE statement

14.9.50.1 GeneralThe VALIDATE statement invokes data validation, input distribution, and error indication for a data item.NOTE The VALIDATE facility is an obsolete feature.Unlike other obsolete features, it is intended that interest in this facility will be reevaluated during the next revision of standard COBOL and before any final decision is made on whether or not to remove it from the next revision.
14.9.50.2 General format

14.9.50.3 Syntax rules1) Identifier-1 shall reference a data item described in the file, linkage, local-storage, or working-storage section. Identifier-1 shall not be reference-modified.2) Identifier-1 shall not reference a data item of class index, message-tag, object, or pointer.3) The data description entry for the data item referenced by identifier-1 or any data item subordinate to identifier-1 shall not contain a VALIDATE-STATUS clause referencing identifier-1 or an item subordinate to identifier-1.4) Identifier-1 shall not reference a 66-level entry.5) Identifier-1 shall not be described with the ANY LENGTH clause.6) A VALIDATE statement that specifies more than one identifier shall not be specified in an exception-checking PERFORM statement.
14.9.50.4 General rules1) If identifier-1 or a group subordinate to identifier-1 is described with a GROUP-USAGE clause, format validation is performed on each elementary item within the bit group or national group. Any DEFAULT, DESTINATION, or VALUE clause specified, applies to the elementary item or group item on which it is specified, even when that item is explicitly or implicitly described with a GROUP-USAGE clause.2) The data item specified by identifier-1 and any data items subordinate to it, except for items of class index, object, or pointer, are referred to in the following general rules as 'the elements of the operand'.3) If more than one identifier-1 is specified in a VALIDATE statement, the result of executing this statement is the same as if a separate VALIDATE statement had been written for each identifier-1 in the same order as specified in the statement. If an implicit VALIDATE statement results in the

VALIDATE { identifier-1 } ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 781

execution of a declarative procedure that executes a RESUME statement with the NEXT STATEMENT phrase, processing resumes at the next implicit VALIDATE statement, if any.4) The VALIDATE statement is executed in five stages. Each stage is executed for all the elements of the operand before each next stage. Any given stage may be omitted because of the absence of any clause applying to that stage, or because all the elements of the operand failed an earlier stage. The five stages are listed below, together with the clauses that apply to each stage:a) Format validation: the DEFAULT clause, the DYNAMIC LENGTH clause, the PICTURE clause, the SIGN clause, and the USAGE clause.b) Input distribution: the DESTINATION clause.c) Content validation: the CLASS clause and the VALUE clause.d) Relation validation: the INVALID clause.e) Error indication: the VALIDATE-STATUS clause.At each stage, the execution of the VALIDATE statement will be affected also by any OCCURS clause, REDEFINES clause, or PRESENT WHEN clause that is specified in the data description entry for any of the elements of the operand.5) An internal indicator is assigned to each of the elements of the operand whose data description contains (or is associated with, in the case of 88-level entries) a clause that causes the data item to take part in either format validation, content validation, or relation validation. If any invalid status is detected in a data item as a result of any of these data description clauses, the execution of the VALIDATE statement does not terminate and the content of the invalid data item does not change. Instead, the invalid condition is recorded by setting the data item's internal indicator to one of three distinct values indicating invalid data — designated invalid on format, invalid on content, and invalid on relation.An elementary item that is invalid on format does not undergo a content check and a data item that is invalid on content does not undergo a relation check.NOTE Therefore, internal indicators do not change from invalid on format to invalid on content or relation, or from invalid on content to invalid on relation. An indicator is set to indicate an error only if it is in its initial valid state.If any data description contains an OCCURS clause, internal indicators are assigned independently to each occurrence of the data item, or up to the maximum number of occurrences if the TO phrase is present.The internal indicators for all of the elements of the operand are assigned the initial valid value at the start of the execution of the VALIDATE statement. For any data items that are subsequently not processed by the VALIDATE statement, the internal indicators are set to a unique value signifying not processed.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

782 ©ISO/IEC 2023

6) The validation process consists of five stages that are listed in the following paragraphs. If, during the execution of these stages a fatal exception condition other than EC-DATA-INCOMPATIBLE is set to exist, the execution of the VALIDATE statement ceases and control proceeds as defined for fatal exception conditions. The conditions under which the EC-DATA-INCOMPATIBLE exception condition is set to exist during execution of a VALIDATE statement are specified in 14.6.13.2, Incompatible data. If a nonfatal exception condition is raised, it is processed as defined for nonfatal exception conditions, and, upon completion of exception processing, if any, execution continues as if the exception condition had not been set to exist. The stages of validation are as follows:a) Stage one (format validation)Each elementary data item is checked for compatibility with the PICTURE, SIGN, and USAGEclauses, as applicable, in the item's data description.The integrity of each dynamic-capacity table is verified against the implementor's internal requirements.The integrity of each dynamic-length elementary item is verified.If any data item fails these checks, the data item's internal indicator is set to invalid on format.A default value is established for each data item to which the circumstances defined under 13.18.17, DEFAULT clause apply, even if there is no DEFAULT clause associated with the data item.b) Stage two (input distribution)DESTINATION clauses specified in the data description entries of any of the elements of the operand cause the values of the data items to be moved to the receiving data items according to the rules for the MOVE statement.c) Stage three (content validation)Each of the operand's data items whose description contains a CLASS clause or is followed by one or more 88-level entries with the VALID or INVALID phrase is now checked for compatibility with the corresponding CLASS definition in SPECIAL-NAMES or the 88-level entries, as described under the VALUE clause.If any data item fails any of these checks, its internal indicator is set to invalid on content.If both a group item and a subordinate data item are subject to content validation, content validation on the subordinate data item is applied before content validation on the group item.d) Stage Four (relation validation)Each of the operand's data items whose description contains an INVALID clause is now checked according to the rules for relation validation specified under this clause. If any data item fails a relation validation check, its internal indicator is set to invalid on relation.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 783

Any number of INVALID clauses may be present in the same data description entry. If several conditions have been specified, the effect is as though a single INVALID clause had been specified using a condition made by writing each of the original conditions in parentheses joined by the logical connector OR.If both a group item and a subordinate data item within that group are subject to relation validation, relation validation on the subordinate data item is applied before relation validation on the group item.e) Stage five (error indication)If the internal indicator of any of the operand's data items is set to other than its initial valid value, an EC-VALIDATE exception condition is set to exist. If any of these internal indicators is set to invalid on format, an EC-VALIDATE-FORMAT exception condition is set to exist, if any of these internal indicators is set to invalid on content, an EC-VALIDATE-CONTENT exception condition is set to exist, and if any of these internal indicators is set to invalid on relation, an EC-VALIDATE-RELATION exception condition is set to exist.Any elementary data item whose corresponding internal indicator is set to indicate invalid data is considered to be invalid on format, content, or relation, depending on the value of the internal indicator. A group data item is considered invalid on format if it has a subordinate item that is invalid on format. A group data item is considered invalid on content or relation if it has a subordinate item that is invalid for that reason, or if the group item's own internal indicator shows that it was rejected at that stage. The data items whose data description entries contain a VALIDATE-STATUS clause with a FOR phrase that references an element of the operand are updated, in accordance with the rules specified in 13.18.62, VALIDATE-STATUS clause, in the order in which their data description entries are specified in the data division.7) The effect of the OCCURS clause on the execution of the VALIDATE statement is as follows:a) If the data description entry of identifier-1 contains or is subordinate to an entry that contains an OCCURS clause, identifier-1 itself shall be subscripted and the value of the subscript or subscripts shall specify the particular occurrence of the data item to be processed by the VALIDATE statement.b) If the data item referenced by identifier-1 is a group data item and there are one or more OCCURS clauses subordinate to it, execution of the VALIDATE statement causes each occurrence of the data item to be processed independently of the other occurrences at all five stages of processing. If there is a VARYING clause associated with an OCCURS clause, any number of counters, defined as data-names in the VARYING clause, are initially set and implicitly incremented for each occurrence, whenever the repeating data item is processed.c) If any OCCURS clause subordinate to identifier-1 has a DEPENDING phrase, the value of the data item referenced by the DEPENDING phrase is evaluated as soon as the clause is encountered during the format validation stage of the VALIDATE statement. The value obtained establishes, for this and all subsequent stages of processing of the current VALIDATE statement, the number of occurrences of the data item to be processed.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

784 ©ISO/IEC 2023

8) If identifier-1 references, in whole or in part, a record in the file section whose FD entry contains a RECORD clause with the VARYING phrase, identifier-1 shall be processed by the VALIDATE statement as though filled or extended on the right, as applicable, by spaces.9) The data item referenced by identifier-1 shall not contain or overlap any data item specified in a DESTINATION clause contained in or subordinate to the description of identifier-1.10) The data item referenced by identifier-1 shall not contain or overlap any data item specified in a DEFAULT clause contained in or subordinate to the description of identifier-1 unless that DEFAULT clause follows, within the subordinate items of identifier-1, the description of the data item that the DEFAULT clause references.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 785

14.9.51 WRITE statement

14.9.51.1 GeneralThe WRITE statement releases a logical record for an output or input-output file. It also is used for vertical positioning of lines within a logical page.
14.9.51.2 General formatsFormat 1 (sequential):

WRITE record-name-1FILE file-name-1

 FROM identifier-1literal-1

BEFOREAFTER

 ADVANCING identifier-2integer-1

 LINELINESmnemonic-name-1PAGE

[retry-phrase]WITH LOCKWITH NO LOCK
AT END-OF-PAGEEOP

 imperative-statement-1

NOT AT END-OF-PAGEEOP

 imperative-statement-2

[END-WRITE]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

786 ©ISO/IEC 2023

Format 2 (random):

where retry-phrase is described in 14.7.9, RETRY phrase
14.9.51.3 Syntax rules1) The write file is the file referenced by file-name-1 or by the file-name associated with record-name-1.2) If the organization of the write file is sequential, format 1 shall be specified.3) If the organization of the write file is indexed or relative, format 2 shall be specified.4) If identifier-1 is a function-identifier, it shall reference an alphanumeric or national function.5) Record-name-1 is the name of a logical record in the file section of the data division and may be qualified.6) If record-name-1 is specified, identifier-1 or literal-1 shall be valid as a sending operand in a MOVE statement specifying record-name-1 as the receiving operand.7) If the FILE phrase is specified, the FROM phrase shall also be specified and:a) identifier-1 shall be valid as a sending operand in a MOVE statement;b) literal-1 shall be an alphanumeric, boolean, or national literal and shall not be a figurative constant.8) If the FILE phrase is specified, the description of identifier-1, including its subordinate data items, shall not contain a data item described with a USAGE OBJECT REFERENCE clause.9) If identifier-1 references a bit data item other than a function and the FILE phrase is specified, identifier-1 shall be described such that:

WRITE record-name-1FILE file-name-1

 FROM identifier-1literal-1

[retry-phrase]WITH LOCKWITH NO LOCKINVALID KEY imperative-statement-1NOT INVALID KEY imperative-statement-2[END-WRITE]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 787

a) subscripting and reference modification in identifier-1 consist of only fixed-point numeric literals or arithmetic expressions in which all operands are fixed-point numeric literals and the exponentiation operator is not specified; andb) it is aligned on a byte boundary.10) If identifier-1 references a function and the FILE phrase is specified, identifier-1 shall reference an alphanumeric or national function.11) If identifier-1 references a function and the FILE phrase is not specified, identifier-1 shall reference an alphanumeric, boolean, or national function.12) The file description entry associated with the write file shall not contain the REPORT clause and shall not be a sort-merge file description entry.13) If the file description entry associated with the write file contains the LINAGE clause, mnemonic-name-1 shall not be specified.14) Identifier-2 shall reference an integer data item.15) Integer-1 shall be positive or zero.16) When mnemonic-name-1 is specified, the name is associated with a feature-name specified by the implementor. Mnemonic-name-1 is defined in the SPECIAL-NAMES paragraph of the environment division.17) The BEFORE and AFTER phrases shall not both be specified if the PAGE phrase is specified.18) The phrases ADVANCING PAGE and END-OF-PAGE shall not both be specified in a single WRITE statement.19) If the END-OF-PAGE or the NOT END-OF-PAGE phrase is specified, the LINAGE clause shall be specified in the file description entry associated with the write file.20) The words END-OF-PAGE and EOP are equivalent.21) If record-name-1 is defined in a containing program and is referenced in a contained program, the file description entry for the file-name associated with record-name-1 shall contain a GLOBAL clause.22) If automatic locking has been specified for the write file, neither the WITH LOCK phrase nor the WITH NO LOCK phrase shall be specified.
14.9.51.4 General rulesALL FILES1) The execution of a WRITE statement causes the value of the I-O status of the write file connector to be updated to a value given in 9.1.13, I-O status.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

788 ©ISO/IEC 2023

2) The file position indicator is not affected by the execution of a WRITE statement.3) The write file connector is the file connector associated with the write file. If the access mode of the write file is sequential, the open mode of the write file connector shall be extend or output. Otherwise, the open mode of the write file connector shall be I-O or output. If the open mode is not as described, the execution of the WRITE statement is unsuccessful and the I-O status for the write file connector is set to '48'.4) The logical record released by the successful execution of the WRITE statement is no longer available in the record area unless the file-name associated with record-name-1 is specified in a SAME RECORD AREA clause. The logical record is also available as a record of other files referenced in the same SAME RECORD AREA clause as the associated output file, as well as the file associated with record-name-1.5) The result of the execution of a WRITE statement specifying record-name-1 and the FROM phrase is equivalent to the execution of the following statements in the order specified:a) The statement:
MOVE identifier-1 TO record-name-1or
MOVE literal-1 TO record-name-1according to the rules specified for the MOVE statement.b) The same WRITE statement without the FROM phrase.NOTE 1 14.6.10, Overlapping operands, and 14.9.25, MOVE statement, general rules, apply to any cases in which the storage area identified by identifier-1 and the record area associated with record-name-1 share any part of their storage areas. The result of execution of the WRITE statement is undefined if the result of execution of the implicit MOVE statement described in General rule 5a is undefined.6) The figurative constant SPACE when specified in the WRITE statement references one alphanumeric space character.7) For a WRITE statement with the FILE phrase in which identifier-1 references a record description entry that is associated with file-name-1, then the result of execution of the WRITE statement is equivalent to the result of execution of WRITE record-name-1, where record-name-1 is identified by identifier-1.8) For a WRITE statement with the FILE phrase in which identifier-1 does not reference a record description entry that is associated with file-name-1, the result of execution is equivalent to the execution of the following in the order specified:a) The statement:
MOVE identifier-1 TO implicit-record-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 789

or
MOVE literal-1 TO implicit-record-1b) The statement:
WRITE implicit-record-1where implicit-record-1 refers to the record area for file-name-1 and is treated:a) when identifier-1 references an intrinsic function, as though implicit-record-1 were a record description entry subordinate to the file description entry having the same class, category, usage, and length as the returned value of the intrinsic function, orb) when identifier-1 does not reference an intrinsic function, as though implicit-record-1 were a record description entry subordinate to the file description entry having the same description as identifier-1, orc) when literal-1 is specified, as though implicit-record-1 were a record description entry subordinate to the file description entry having the same class, category, usage, and length as literal-1.NOTE 2 14.6.10, Overlapping operands, and 14.9.25, MOVE statement, general rules, apply to any cases in which the storage area identified by identifier-1 and the record area associated with implicit-record-1 share any part of their storage areas. The result of execution of the WRITE statement is undefined if the result of execution of the implicit MOVE statement described in General rule 8 is undefined.9) After the successful execution of a WRITE statement, the information in the area referenced by identifier-1 is available, provided that identifier-1 is not one or part of one of the record descriptions subordinate to the file-description, even though the information in the area referenced by record-name-1 is not available except as specified by the SAME RECORD AREA clause as indicated in General rule 4.10) If the locking mode of the write file connector is single record locking, any record lock associated with that file connector is released by the execution of the WRITE statement.11) If record locks have an effect for the write file connector and the WITH LOCK phrase is specified or implied, the record lock associated with the record written is set when the execution of the WRITE statement is successful.12) The successful execution of a WRITE statement releases a logical record to the operating environment.NOTE 3 Logical records in relative and sequential files can have a length of zero. Logical records in an indexed file will always be long enough to contain the record keys.13) When record-name-1 is specified, if the number of bytes to be written to the file is greater than the number of bytes in record-name-1, the content of the bytes that extend outside the end of record-name-1 are undefined.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

790 ©ISO/IEC 2023

14) The number of bytes in the runtime representation of literal-1, the data item referenced by identifier-1, or the record referenced by record-name-1 after any changes made to the record length by the FORMAT clause shall not be larger than the largest or smaller than the smallest number of bytes allowed by the RECORD IS VARYING clause associated with file-name-1 or the file-name associated with record-name-1. If this rule is violated, the execution of the WRITE statement is unsuccessful and the I-O status of the write file connector is set to '44'.15) If the execution of a WRITE statement is unsuccessful, the write operation does not take place, the content of the record area is unaffected, and the I-O status of the write file connector is set to a value indicating the cause of the condition as specified in the following General rules. The transfer of control depends on other clauses and the value of the I-O status as described in 9.1.12, Input-output exception processing, 9.1.13, I-O status and 9.1.14, Invalid key condition.16) The RETRY phrase is used to control the behavior of the WRITE statement for files opened for file sharing for the case where resources needed to write a record are locked by another run unit. The I-O status is set in accordance with the rules in 14.7.9, RETRY phrase.SEQUENTIAL FILES17) The successor relationship of a sequential file is established by the order of execution of WRITE statements when the physical file is created. The relationship does not change except when records are added to the end of a physical file.18) When the organization of the write file connector is sequential and the open mode is extend, the execution of the WRITE statement will add records to the end of the physical file as though the open mode of the file connector were output. If there are records in the physical file, the first record written after the execution of the OPEN statement with the EXTEND phrase is the successor of the last record in the physical file.19) If two or more file connectors for a sequential file add records by sharing the physical file after opening it in extend mode, the added records follow the records present in the physical file when it was opened, but are otherwise in an undefined order.20) When an attempt is made to write beyond the externally-defined boundaries of the physical file, the execution of the WRITE statement is unsuccessful and the I-O status value of the write file connector is set to '34'.21) For a line sequential file with a file description entry not containing a RECORD clause with the DEPENDING phrase, any spaces to the right of the rightmost non-space character are not transferred to file-name-1. If record-name-1 is specified implicitly or explicitly as alphanumeric, a space is defined to be the alphanumeric space character. If record-name-1 is specified implicitly or explicitly as national, a space is defined to be the national space character.22) For a line sequential file with a file description entry containing a RECORD clause with the DEPENDING phrase, the record area is, if necessary, filled to the right of the rightmost non-space character with one or more space characters depending on the value of data-name-1. If record-name-1 is specified implicitly or explicitly as alphanumeric, a space is defined to be the alphanumeric space character. If record-name-1 is specified implicitly or explicitly as national, a space is defined to be the national space character.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 791

23) For a line sequential file, if the record area contains one or more characters that are not in the implementor-defined character set defined for a line sequential file, the execution of the WRITE statement is unsuccessful and the I-O status in the write file connector is set to ‘71’. (9.1.13, I-O status)24) If the end of reel/unit is recognized and the externally defined boundaries of the physical file have not been exceeded, a reel/unit swap occurs and the current volume pointer is updated to point to the next reel/unit existing for the physical file.25) Both the ADVANCING phrase and the END-OF-PAGE phrase allow control of the vertical positioning of each line on a representation of a printed page. If the ADVANCING phrase is not used, automatic advancing shall be provided by the implementor to act as if the user has specified AFTER ADVANCING 1 LINE. If the physical file does not support vertical positioning, the ADVANCING and END-OF-PAGE phrases are ignored. If the physical file does support vertical positioning and the ADVANCING phrase is specified, advancing is provided as follows:a) If integer-1 or the value of the data item referenced by identifier-2 is positive, the representation of the printed page is advanced the number of lines equal to that value.b) If the value of the data item referenced by identifier-2 is negative, the results are undefined.c) If integer-1 or the value of the data item referenced by identifier-2 is zero, no repositioning of the representation of the printed page is performed.d) If mnemonic-name-1 is specified, the representation of the printed page is advanced according to the rules specified by the implementor for that hardware device.e) If the BEFORE phrase is used, the line is presented before the representation of the printed page is advanced according to General rule 25a, 25b, 25c, and 25d above.f) If the AFTER phrase is used and the BEFORE phrase is not used, the line is presented after the representation of the printed page is advanced according to General rule 25a, 25b, 25c, and 25d above. If the AFTER phrase is used and the BEFORE phrase is also used, the printed page is advanced according to General rule 25a, 25b, 25c, and 25d above after the line was presented as specified in General rule 25e.g) If PAGE is specified and the LINAGE clause is specified in the associated file description entry, the record is presented on the logical page before or after (depending on the phrase used) the device is repositioned to the next logical page. The repositioning is to the first line that may be written on the next logical page as specified in the LINAGE clause.h) If PAGE is specified and the LINAGE clause is not specified in the associated file description entry, the record is presented on the physical page before or after (depending on the phrase used) the device is repositioned to the next physical page. If physical page has no meaning in conjunction with a specific device, advancing will be provided as if the user had specified BEFORE or AFTER (depending on the phrase used) ADVANCING 1 LINE.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

792 ©ISO/IEC 2023

26) If the LINAGE clause is specified in the file description entry of the associated file, an end-of-page condition occurs when the lines written by a WRITE statement do not fit within the current page body. This occurs when:a) The logical end of the representation of the printed page is reached. This occurs when the associated LINAGE-COUNTER is equal to or exceeds the page size. If the AFTER phrase is specified or implied, the device is repositioned to the first line that may be written on the next logical page and the logical record is presented on that line. If the BEFORE phrase is specified, the logical record is presented and the device is repositioned to the first line that may be written on the next logical page.b) The FOOTING phrase is specified in the LINAGE clause and the execution of the WRITE statement causes printing or spacing within the footing area of a page body. This occurs when the associated LINAGE-COUNTER is equal to or exceeds the current value of the footing start and is less than the page size.27) When an end-of-page condition occurs, the WRITE statement is successful and then the following actions take place:a) If the end-of-page condition was caused by the action in General rule 26a, the EC-I-O-EOP-OVERFLOW exception condition is set to exist. If the end-of-page condition was caused by the action in General rule 26b, the EC-I-O-EOP exception condition is set to exist.b) If the END-OF-PAGE phrase is specified, control is transferred to imperative-statement-1. If control is returned from imperative-statement-1, control is then transferred to the end of the WRITE statement.c) If the END-OF-PAGE phrase is not specified, and the WRITE statement is specified in a statement that is in imperative-statement-1 of an exception-checking PERFORM statement, and a WHEN phrase in that statement specifies the exception condition that occurred, control is transferred to that WHEN phrase. If control is returned from that WHEN phrase, control is then transferred to the end of the WRITE statement.d) If the END-OF-PAGE phrase is not specified, and there is an applicable USE declarative, control is transferred to that declarative. If control is returned from that declarative, control is then transferred to the end of the WRITE statement.e) If the END-OF-PAGE phrase is not specified and there are no applicable exception processing procedures, control is transferred to the end of the WRITE statement.28) If, during the successful execution of a WRITE statement with the NOT END-OF-PAGE phrase, the end-of-page condition does not occur, then after execution of the input-output operation, control is transferred to imperative-statement-2 of the NOT END-OF-PAGE phrase. If control is returned from imperative-statement-2, control is then transferred to the end of the WRITE statement.RELATIVE FILES29) The WRITE statement proceeds as follows:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 793

a) If the access mode of the write file connector is sequential, the successful execution of the WRITE statement causes a record to be released to the operating environment. If the open mode of the write file connector is output, the first record released after the OPEN is 1. If the open mode is extend, the first record released after the OPEN is assigned a record number that is one greater than the highest relative record number existing in the physical file. Subsequent records released have relative record numbers that are ascending ordinal numbers. If the physical file is shared and the open mode is extend, the record numbers are not necessarily consecutive. Otherwise, they are consecutive. If the RELATIVE KEY clause is specified for file-name-1 or the file-name associated with record-name-1, the relative record number of the record being released is moved into the relative key data item by the operating environment during execution of the WRITE statement according to the rules for the MOVE statement. If the maximum numeric value allowed for the relative key data item is exceeded by the relative record number that would be generated by a successful WRITE operation, the WRITE statement is unsuccessful, the invalid key condition exists, and the I-O status for the write file connector is set to '24'.b) If the access mode of the write file connector is random or dynamic, prior to the execution of the WRITE statement the value of the relative key data item shall be initialized by the runtime element with the relative record number to be associated with the record that is to be written. If there is no record in the physical file with a relative record number that matches the relative key value, the record is released to the operating environment. If a record in the file matches, the execution of the WRITE statement is unsuccessful, the invalid key condition exists, and the I-O status for the write file connector is set to '22'. If the relative key data item contains a value that is less than 1 or greater than the highest relative record number permitted for the file, the execution of the WRITE statement is unsuccessful, and the I O status for the write file connector is set to '34'.30) When a relative file is opened with the file connector in the extend mode, records are inserted into the file through that file connector. The first record released to the operating environment has a relative record number one greater than the highest relative record number existing in the file. Subsequent records released to the operating environment have consecutively higher relative record numbers. If the RELATIVE KEY clause is specified for file-name-1 or the file-name associated with record-name-1, the relative record number of the record being released is moved into the relative key data item by the operating environment during execution of the WRITE statement according to the rules for the MOVE statement.31) If two or more file connectors for a relative file add records by sharing the file after opening it in extend mode, the relative key values returned are ascending, but not necessarily consecutive.32) When a relative file is opened in the I-O mode and the access mode is random or dynamic, records are to be inserted in the associated file. Prior to the execution of the WRITE statement, the value of the relative key data item shall be initialized by the runtime element with the relative record number to be associated with the record that is to be written. That record is then released to the operating environment by the execution of the WRITE statement.33) The invalid key condition exists under the following circumstances, regardless of any locks that are associated with the record being accessed:a) When the value of the relative key data item specifies a record that already exists in the file, the I-O status associated with the write file connector is set to '22'.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

794 ©ISO/IEC 2023

b) When an attempt is made to write outside the externally defined boundaries of the file, the I-O status associated with the write file connector is set to '24'.c) When the number of significant digits in the relative record number is larger than the size of the relative key data item specified for the file, the I-O status associated with the write file connector is set to '24'.INDEXED FILES34) Successful execution of a WRITE statement causes the content of the record area to be released. The operating environment utilizes the contents of the record keys in such a way that subsequent access of the record may be made based upon any of these specified record keys.35) The comparison used for ensuring uniqueness, for ordering records, or for suppressing records in the physical file is based on the collating sequence for the file according to the rules for a relation condition.36) The value of the prime record key shall not be equal to the value of the prime record key of any record existing in the file.37) The data item specified as the prime record key shall be set by the runtime element to the desired value prior to the execution of the WRITE statement.38) If the access mode of the write file connector is sequential, records shall be released to the operating environment through that file connector in ascending order of prime record key values according to the collating sequence of the file. When the open mode is extend, the first record released to the operating environment shall have a prime record key whose value is greater than the highest prime record key value existing in the physical file when it was opened through that file connector and each subsequent record released to the operating environment through that file connector shall have a prime record key whose value is greater than the highest prime record key value written referencing this file connector. If the record is not in the sequence above, the execution of the WRITE statement is unsuccessful, the invalid key condition exists, and the I-O status for the write file connector is set to '21'.39) If the access mode of the write file connector is random or dynamic, WRITE statements may release records to the operating environment through that connector in any order.40) When the ALTERNATE RECORD KEY clause is specified in the file control entry associated with the write file connector, the value of the alternate record key may be non unique only if the DUPLICATES phrase is specified for that data item. In this case the operating environment provides storage of records such that when records are accessed sequentially, the order of retrieval of those records is the order in which the operating environment actually writes the record into the physical file. If the DUPLICATES phrase is not specified and the alternate key value is non unique, the execution of the WRITE statement is unsuccessful, the invalid key condition exists, and the I-O status of the write file connector is set to '22'.41) For each alternate record key for which alternate record key suppression is specified and for which the value of the ALTERNATE RECORD KEY phrase is equal to the literal specified in that phrase:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 795

a) the access path to the record using this alternate record key shall not be provided, andb) the record shall be logically positioned so that it will not be found when accessed using the alternate record key.Any number of records may have the same alternate key value equal to its key suppression value without requiring the DUPLICATES phrase to be specified for that key. Key entries that are suppressed shall not cause a duplicate key condition to exist.42) The invalid key condition exists under the following circumstances. The comparison for equality for record keys is based on the collating sequence for the file according to the rules for a relation condition. Any record locks associated with the record being accessed are ignored in detection of these exceptions.a) When the write file connector is open for output or extend in the sequential access mode and the value of the prime record key is not greater than the value of the prime record key of the last record written through that file connector, the I-O status associated with the write file connector is set to '21'.b) When the value of the prime record key of the record to be written is equal to the value of the prime record key of any record existing in the file, the I-O status associated with the write file connector is set to '22'.c) When an alternate record key of the record to be written does not allow duplicates and the value of that alternate record key is equal to the value of the corresponding alternate record key of a record in the file, the I-O status associated with the write file connector is set to '22'.d) When the record that is to be released to the operating environment would reside outside the externally defined boundaries of the physical file, the I-O status associated with the write file connector is set to '24'.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

796 ©ISO/IEC 2023

15 Intrinsic functions

15.1 GeneralEach intrinsic function definition specifies:1) the name and description of the function2) the type of the function3) the General format of the function4) the arguments, if any5) the returned value.See 8.4.3.2, Function-identifier, for rules and explanations on the referencing of functions.
15.2 Types of functionsThe type of a function is determined by the class and category of the unique data item that results from the evaluation of that function, and the function so described may be used anywhere a sending data item of that class and category may be specified.Types of intrinsic functions are:1) Alphanumeric functions. These are of the class and category alphanumeric. Alphanumeric functions have an implicit usage display. Unless stated otherwise in the definition of a function, the data item is represented in the alphanumeric coded character set in effect when the function is referenced at runtime.2) Boolean functions. These are of the class and category boolean. Boolean functions have an implicit usage bit. 3) National functions. These are of the class and category national. National functions have an implicit usage national. Unless stated otherwise in the definition of a function, the data item is represented in the national coded character set in effect when the function is referenced at runtime.4) Numeric functions. These are of the class and category numeric. A numeric function has an operational sign.5) Integer functions. These are of the class and category numeric. An integer function has an operational sign and no digits to the right of the decimal point.6) Index functions. These are of the class and category index.
15.3 ArgumentsArguments specify values used in the evaluation of a function. Arguments are specified in the function-identifier. The definition of a function specifies the number of arguments required, which may be zero, one, or more. For some functions, the number of arguments may be variable. The order in which arguments are specified in a function-identifier determines the interpretation given to each value in arriving at the function value.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 797

Arguments may be required to have a certain class or a subset of a certain class, to be a keyword, a type declaration, or a mnemonic-name. The types of argument are:1) Alphabetic. An elementary data item of the class alphabetic or an alphanumeric literal containing only alphabetic characters shall be specified. The size associated with the argument may be used in determining the value of the function.2) Alphanumeric. A data item of the class alphabetic or alphanumeric or an alphanumeric literal shall be specified. The size associated with the argument may be used in determining the value of the function. Strongly-typed group items are treated as though they were of class and category alphanumeric, unless they are prohibited as arguments of a function.3) Boolean. A bit group item, a boolean expression or literal, or an elementary boolean data item shall be specified. The size associated with the argument may be used in determining the value of the function. 4) File-name. The name of a file connector shall be specified.5) Index. An index data item shall be specified. The size associated with the argument may be used in determining the value of the function.6) Integer. An arithmetic expression that will always result in an integer value or an integer data item shall be specified. The value of the arithmetic expression, including operational sign, is used in determining the value of the function.7) Keyword. A keyword shall be specified in accordance with the function definition.8) Locale-name. A locale-name defined in the SPECIAL-NAMES paragraph shall be specified. The locale associated with the locale-name may be used in determining the value of the function.9) National. A national group item, a national literal, or an elementary data item of class national shall be specified. The size associated with the argument may be used in determining the value of the function.10) Numeric. An arithmetic expression or a numeric data item shall be specified. The value of the arithmetic expression is used in determining the value of the function.11) Object. An object reference shall be specified; the predefined object reference SUPER shall not be specified. The size associated with the argument may be used in determining the value of the function.12) Ordering-name. An ordering-name defined in the SPECIAL-NAMES paragraph shall be specified. The cultural ordering table associated with the ordering-name is used in determining the value of the function.13) Pointer. A data item of class pointer shall be specified. The size associated with the argument may be used in determining the value of the function.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

798 ©ISO/IEC 2023

14) Type declaration. A type-name shall be specified. The size associated with the type declaration may be used in determining the value of the function.A variable-length group shall be referenced as an argument to a function only when explicitly permitted in the function definition.If any function permits a type declaration as an argument, the type declaration shall not describe a variable-length group.The rules for a function may place constraints on the permissible values for arguments in order to permit meaningful determination of the function's value. If the evaluation of an argument results in an incorrect value for that argument or for the returned value according to the rules specified in the function definition and no exception condition was raised during item identification or expression evaluation, the EC-ARGUMENT-FUNCTION exception condition is set to exist. If an exception condition is raised during item identification or expression evaluation, that exception condition is raised, not EC-ARGUMENT-FUNCTION. If the EC-ARGUMENT-FUNCTION exception condition is set to exist and checking for EC-ARGUMENT-FUNCTION is not enabled, the implementor defines the result of the function reference.NOTE An example of another exception condition that might be raised is EC-SIZE-OVERFLOW during evaluation of a subscript or arithmetic expression.When the definition of a function permits an argument to be repeated a variable number of times, a table may be referenced by specifying the data-name and any qualifiers that identify the table, followed immediately by subscripting where one or more of the subscripts is the word ALL.If the subscript ALL is specified for a dynamic-capacity table, the range of values of the subscript is from 1 to the current capacity of the table.When ALL is specified as a subscript, the effect is as if each table element associated with that subscript position were specified. The order of the implicit specification of each occurrence is from left to right, with the first (or leftmost) specification being the identifier with each subscript specified by the word ALL replaced by one, the next specification being the same identifier with the rightmost subscript specified by the word ALL incremented by one. This process continues with the rightmost ALL subscript being incremented by one for each implicit specification until the rightmost ALL subscript has been incremented through its range of values. If there are any additional ALL subscripts, the ALL subscript immediately to the left of the rightmost ALL subscript is incremented by one, the rightmost ALL subscript is reset to one and the process of varying the rightmost ALL subscript is repeated. The ALL subscript to the left of the rightmost ALL subscript is incremented by one through its range of values. For each additional ALL subscript, this process is repeated in turn until the leftmost ALL subscript has been incremented by one through its range of values. If the ALL subscript is associated with a data item described with an OCCURS DEPENDING ON clause, the range of values is determined by the object of the OCCURS DEPENDING ON clause. The evaluation of an ALL subscript shall result in at least one argument, otherwise the result of the reference to the function-identifier is undefined.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 799

15.3.1 Format arguments to international date and time functions

15.3.1.1 GeneralThe date, time, and combined date and time formats described below are arguments to intrinsic functions that provide international date and time support in COBOL.NOTE 1 These date and time formats are representations of formats in ISO 8601-1.A single format describes a variety of information. The portions of the format are considered subfields of the format.NOTE 2 For example, a basic calendar date format includes a representation of the year, a representation of the month of that year, and a representation of the day of that month.NOTE 3 Examples of date, time, and combined date and time formats, along with sample values as represented in the formats supported by COBOL, are given in D.31.5, International date and time format handling.COBOL supports six date formats: basic and extended formats for calendar dates, basic and extended formats for ordinal dates, and basic and extended formats for week dates.
15.3.1.2 Calendar date formatsThe basic calendar date format contains eight characters: four uppercase 'Y' characters representing the year subfield; two uppercase 'M' characters representing the month subfield; and two uppercase 'D' characters representing the day subfield.The extended calendar date format contains ten characters: four uppercase 'Y' characters representing the year subfield; a hyphen; two uppercase 'M' characters representing the month subfield; a hyphen; and two uppercase 'D' characters representing the day-of-month subfield. The two hyphens appear in the data associated with the extended calendar date format.
15.3.1.3 Permissible values for data associated with calendar date formatsThe year subfield of the data (corresponding to 'YYYY' in the format) shall contain a value greater than 1600 and less than or equal to 9999.The month subfield of the data (corresponding to 'MM' in the format) shall contain a value from 01 through 12 inclusive.The day-of-month subfield of the data (corresponding to 'DD' in the format) shall contain a value from 01 through 28, 29, 30 or 31, depending on the contents of the month subfield and the year subfield of the data.
15.3.1.4 Ordinal date formatsThe basic ordinal date format contains seven characters: four uppercase 'Y' characters representing the year subfield and three uppercase 'D' characters representing the day-of-year subfield.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

800 ©ISO/IEC 2023

The extended ordinal date format contains eight characters: four uppercase 'Y' characters representing the year subfield; a hyphen; and three uppercase 'D' characters representing the day-of-year subfield. The hyphen appears in the data associated with the extended ordinal date format.
15.3.1.5 Permissible values for data associated with ordinal date formatsThe year subfield of the data (corresponding to 'YYYY' in the format) shall contain a value greater than 1600 and less than or equal to 9999.The day-of-year subfield of the data (corresponding to 'DDD' in the format) shall contain a value from 1 through either 365 when the contents of the year subfield represent a common year or 366 when the contents of the year subfield represent a leap year.
15.3.1.6 Week date formatsThe basic week date format contains eight characters: four uppercase 'Y' characters representing the year subfield; an uppercase 'W' character; two lowercase 'w' characters representing the week-of-year subfield; and a single uppercase 'D' character representing the day-of-week subfield. The uppercase 'W' character appears in the corresponding position of data associated with a basic week-date format.The extended week date format contains ten characters: four uppercase 'Y' characters representing the year subfield; a hyphen; an uppercase 'W' character; two lowercase 'w' characters representing the week-of-year subfield; a hyphen; and a single uppercase 'D' character representing the day-of-week subfield. The two hyphens and the uppercase 'W' character appear in the corresponding positions of data associated with an extended week-date format.
15.3.1.7 Permissible values for data associated with week date formatsThe year subfield of the data (corresponding to 'YYYY' in the format) shall contain a value greater than 1600 and less than or equal to 9999.The first week of a given year is the week that includes January 4 of that year. The last week of a given year is the week immediately preceding the first week of the following year.The week-of-year subfield of the data (corresponding to ww in the format) shall contain a value from 01 through 53 inclusive if the year subfield represents a common year and January 4 of that year falls on Sunday, or if the year subfield represents a leap year and January 4 of that year falls on a Saturday or Sunday. Otherwise, the week-of-year subfield shall contain a value from 01 through 52 inclusive.NOTE It is possible for dates at the beginning of January to be represented as occurring in the last week of the previous year, for example, if January 4 occurs on a Monday.The day-of-week subfield of the data (corresponding to 'D' in the format) shall contain a value from 1 through 7 inclusive, representing Monday through Sunday respectively.
15.3.2 Time formatsCOBOL supports four formats for local time of day (local time), four formats for UTC (Coordinated Universal Time) (UTC time), and four formats for local time with offset from UTC (offset time).

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 801

A portion of the specifications for these formats is common to all of them; the specifications that are shared by all of them are referred to as 'common time format'.
15.3.3 Common time formats

15.3.3.1 Common time formats with integer seconds representationThe basic common time format with integer seconds representation contains six characters: two lowercase 'h' characters representing the hours subfield; two lowercase 'm' characters representing the minutes subfield; and two lowercase 's' characters representing the seconds subfield.The extended common time format with integer seconds representation contains eight characters: two lowercase 'h' characters representing the hours subfield; a colon character; two lowercase 'm' characters representing the minutes subfield; a colon character; and two lowercase 's' characters representing the seconds subfield. The two colon characters appear in the data associated with an extended common time format.
15.3.3.2 Common time formats with fractional seconds representationThe basic common time format with fractional seconds contains a minimum of eight characters: two lowercase 'h' characters representing the hours subfield; two lowercase 'm' characters representing the minutes subfield; two lowercase 's' characters representing the integer portion of the seconds subfield; a decimal separator; and at least one lowercase 's' character representing a digit in the decimal fraction portion of the seconds subfield. The decimal separator does not appear in the data associated with a basic common time format with fractional seconds representation.The extended common time format with fractional seconds contains a minimum of ten characters: two lowercase 'h' characters representing the hours subfield; a colon character; two lowercase 'm' characters representing the minutes subfield; a colon character; two lowercase 's' characters representing the integer portion of the seconds subfield; a decimal separator; and at least one lowercase 's' character representing a digit in the decimal fraction portion of the seconds subfield. The two colon characters and the decimal separator appear in the data associated with an extended common time format with fractional seconds representation.NOTE 1 Representations of hours and minutes with digits to the right of the decimal point are not supported in COBOL time formats. The implementor defines the maximum number of digit positions that may be specified in the decimal fraction portion of the seconds subfield of a time format; that maximum shall be greater than or equal to nine.A comma is used as a decimal separator in a time format if the DECIMAL-POINT IS COMMA clause is specified.A period is used as a decimal separator in a time format if the DECIMAL-POINT IS COMMA clause is not specified.NOTE 2 ISO 8601-1 specifies that the preferred decimal separator is the comma, which is contrary to normal COBOL practice; the latter is followed here.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

802 ©ISO/IEC 2023

15.3.3.3 Permissible values for data associated with common time formatsThe hours subfield of the data (corresponding to hh in a common time format) shall contain a value from 00 to 23 inclusive.The minutes subfield of the data (corresponding to mm in a common time format) shall contain a value from 00 to 59 inclusive.The seconds subfield of the data shall contain a value that is greater than or equal to 00 and is less than 60 when the LEAP-SECOND directive with the OFF phrase is in effect.The seconds subfield of the data shall contain a value that is greater than or equal to 00 and less than 61 when the LEAP-SECOND directive with the ON phrase is in effect.
15.3.3.4 Local time formatsBasic and extended local time formats contain only that information which is common to all time formats, as described in 15.3.3, Common time formats.
15.3.3.5 UTC time formatsBasic and extended UTC time formats consist of basic and extended common time formats followed by a single uppercase 'Z' character.
15.3.3.6 Offset time formatsBasic and extended offset time formats consist of basic and extended common time formats followed by an offset subformat. Offset subformats are described separately below.Special considerations regarding the offset subformat of an extended offset time format are described in 15.3.3.6.1, Offset subformats.
15.3.3.6.1 Offset subformatsThe offset subformat of a basic offset time format contains five characters: a plus sign; two lowercase 'h' characters representing the hours portion of the offset from UTC (the offset-hours subfield) and two lowercase 'm' characters representing the minutes portion of the offset from UTC (the offset-minutes subfield).The offset subformat of an extended offset time format contains six characters: a plus sign; two lowercase 'h' characters representing the offset-hours subfield; a colon character; and two lowercase 'm' characters representing the offset-minutes subfield.In the data associated with an offset subformat, the character position that corresponds to the plus sign in the subformat shall contain one of the following values;1) A plus sign to indicate that the common time portion of the data is adjusted downward by the offset values to represent UTC;

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 803

2) A minus sign to indicate that the common time portion of the data is adjusted upward by the offset values to represent UTC; or3) A zero to indicate that offset from UTC was not available on the system on which the information was recorded.If the data contains a zero in that character position, the offset-hours and offset-minutes subfields of the data shall both contain zero.NOTE 1 The value "1014278124Z" interpreted according to the format 'hhmmss.ssssZ' and the value "0514278124-0500" interpreted according to the format 'hhmmss.ssss+hhmm' represent the same time, namely, 10:14:27.8124 Coordinated Universal Time.NOTE 2 The returned value rules for the CURRENT DATE and WHEN COMPILED functions describe cases in which a zero in the sign position of an offset subformat can occur.If the values contained in offset-hours and offset-minutes subfields of data in a receiving field associated with an offset subformat are both zero, the position corresponding to the plus sign in the format shall contain a plus sign. For offset-time values used as sending fields, the position corresponding to the plus sign in the format may contain a zero provided that the offset-hours and offset-minutes subfields of the data both contain zeroes.NOTE 3 When local time is UTC, the data corresponding to the offset subformat of a basic offset date format contains +0000, and the data corresponding to the offset subformat of an extended offset date format contains +00:00.The colon character in the offset subformat of an extended offset time format appears in the data associated with the format.
15.3.3.6.2 Permissible values for data associated with offset time formatsThe values that may be contained in the common time format portion of a basic or extended offset time format are described in 15.3.3.3, Permissible values for data associated with common time formats.The two colon characters in the common time portion of an extended offset time format, and the colon character in the offset subformat portion of an extended offset time format, appear in the data associated with that format.The offset-hours subfield of the data associated with a basic or extended offset time format shall contain a value from 00 to 23 inclusive.The offset-minutes subfield of the data associated with a basic or extended offset time format shall contain a value from 00 to 59 inclusive.
15.3.3.7 Combined date and time formatsA basic combined date and time format consists of a basic date format followed by an uppercase 'T' character followed by a basic time format (for example, YYYYMMDDThhmmss.sss+hhmm).

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

804 ©ISO/IEC 2023

An extended combined date and time format consists of an extended date format, followed by an uppercase 'T' character, followed by an extended time format (for example, YYYY-MM-DDThh:mm:ss.sssss+hh:mm).Combinations of basic date formats with extended time formats, or of extended date formats with basic time formats, are not allowed.The uppercase 'T' character that occurs in both basic and extended combined and time formats, which serves to separate the date format portion from the time format portion, appears in the data associated with the format.
15.4 Returned valuesThe evaluation of a function produces a returned value in a temporary elementary data item. If the length of the returned value exceeds the maximum length specified by the implementor for a returned value, an EC-ARGUMENT-FUNCTION exception condition is set to exist. The type of a function identifies the type of the returned value as specified in 15.2, Types of functions.
15.4.1 Numeric and integer functionsThe returned value rules for certain integer and numeric intrinsic functions contain one or more equivalent arithmetic expressions. An equivalent arithmetic expression is a formal definition that defines the relationship among a function, its arguments, and its returned value. In the presentation of the equivalent arithmetic expressions where there is a variable number of occurrences of an argument, the rules may contain an equivalent arithmetic expression for one, two, and n occurrences.The returned value of numeric and integer functions depends on the mode of arithmetic in effect, native, standard-binary, or standard-decimal, and on whether an equivalent arithmetic expression is specified for the function.When standard-decimal arithmetic or standard-binary arithmetic is in effect, the returned value for numeric and integer functions is contained in a temporary standard data item in the intermediate form defined for the arithmetic mode in effect. With the exception of the DATE-TO-YYYYMMDD function when argument-3 is not specified, the DAY-TO-YYYYDDD function when argument-3 is not specified, the RANDOM function when no argument is specified, and the YEAR-TO-YYYY function when argument-3 is not specified, the returned value is the same for all instances of a given function within a single execution of the runtime element so long as the value and order of the arguments, the collating sequence, and the locale are unchanged.When native arithmetic is in effect, the characteristics and representation of the returned value are defined by the implementor.When native arithmetic is in effect and an equivalent arithmetic expression is specified, the value returned is an implementor-defined approximation of the value of that expression. NOTE 1 The result of an equivalent arithmetic expression is implementor-defined if any one or more of the following applies:1) Native arithmetic is in effect.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 805

2) One or more of the arguments are implementor-defined.3) One or more of the arithmetic expressions that compose the equivalent arithmetic expression produces implementor-defined results.4) The result is explicitly implementor-defined.When standard-decimal arithmetic or standard-binary arithmetic is in effect and an equivalent arithmetic expression is specified:1) the returned value shall equal the value of the equivalent arithmetic expression.NOTE 2 As a result, the relation conditionfunction-identifier = equivalent-arithmetic-expressionwill evaluate to true.2) the result of an equivalent arithmetic expression is implementor-defined if one or more of the following apply:a) One or more of the arguments are implementor-defined.b) One or more of the arithmetic expressions that compose the equivalent arithmetic expression produce implementor-defined results.c) The returned value is explicitly implementor-defined.When a numeric or integer function does not have an equivalent arithmetic expression, its returned value is implementor-defined unless otherwise specified in the function definition.
15.5 Date and time conversion functions

15.5.1 GeneralThe date conversion functions shall use the Gregorian calendar as described in ISO 8601-1:2019, 4.2.1.Note A leap year is a year whose year number is divisible by four an integral number of times. However, a year divisible by one hundred an integral number of times is not a leap year unless its year number is divisible by four hundred an integral number of times.
15.5.2 Integer date formThe integer date form used by the date conversion functions is based on a starting date of Monday, January 1, 1601, which was chosen to establish a simple relationship between the integer date and DAY-OF-WEEK: integer date 1 was a Monday, DAY-OF-WEEK 1. A value in integer date form is a positive integer that represents a number of days succeeding December 31, 1600, in the Gregorian calendar. It shall be greater than zero and shall be less than or equal to the value of FUNCTION INTEGER-OF-DATE (99991231), which is 3,067,671.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

806 ©ISO/IEC 2023

15.5.3 Standard date formThe standard date form is YYYYMMDD, where YYYY represents the year, MM represents the month of that year, and DD represents the day of that month.
15.5.4 Julian date formThe Julian date form is YYYYDDD, where YYYY represents the year and DDD represents the ordinal date within that year.
15.5.5 Standard numeric time formA value in standard numeric time form is a numeric value representing seconds past midnight.If the LEAP-SECOND directive with the OFF phrase is in effect, the value shall be greater than or equal to zero and less than 86,400.If the LEAP-SECOND directive with the ON phrase is in effect, the value shall be greater than or equal to zero and less than 86,401.
15.6 Summary of functionsTable 21, Table of functions, summarizes the functions that are available.The 'arguments' column defines argument type and the 'type' column defines the type of the function, as follows:Alph means alphabeticAnum means alphanumericBool means booleanFile means a file connector nameInd means indexInt means integerKey means a keywordLoc means a localeNat means nationalNum means numericObj means objectOrd means an ordering tablePtr means pointerType means a type declarationNum in the arguments column includes Int. Both Int and Num are listed in the arguments column when the type of the argument determines the type of the function.Anum in the arguments column includes strongly-typed group items. When the type of the argument determines the type of the function, the function is an alphanumeric function when any of the arguments is strongly-typed, even when all the arguments of the function are of the same type.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 807

In the 'Arguments' column, the following conventions apply:1) A digit immediately following the argument type indicates the argument's position in the list of arguments.2) If more than one argument type may appear in a given position, they are separated by the word 'or'.3) If an argument in a given position in the list may consist of more than one component, the components are separated by the word 'and'.4) Commas are used only to separate an argument from the next argument in the argument list.NOTE For example, the sequence 'Alph1 or Anum1 or Nat1, Alph2 or Anum2 or Nat2 or Key2 or Key2 and Loc2, Key3' in the 'Arguments' column is to be interpreted as follows: a) The first argument is alphabetic, alphanumeric, or national.b) The second argument is alphabetic, alphanumeric, national, a keyword alone, or a keyword with a locale specification.c) The third argument is a keyword.The 'Value returned' column gives a synopsis of the value returned; additional details are specified in the definition of the function.
Table 21 — Table of functions

Intrinsic-function-
name

Arguments Type Value returned

ABS Int1 orNum1 Int or Num The absolute value of argument-1
ACOS Num1 Num Arccosine of argument-1ANNUITY Num1, Int2 Num Ratio of annuity paid for argument-2 periods at interest of argument-1 to initial investment of oneASIN Num1 Num Arcsine of argument-1ATAN Num1 Num Arctangent of argument-1BASECONVERT Anum1 or Nat1, Int2, Int3 Anum or Nat Alphanumeric or national item containing the same numeric value as argument-1, but in the new baseBOOLEAN-OF-INTEGER Int1, Int2 Bool A boolean item representing the binary value equivalent of the numeric value in argument-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

808 ©ISO/IEC 2023

BYTE-LENGTH Alph1 orAnum1 orBool1 orInd1 orNat1 orNum1 orObj 1 orPtr1 orType1, Key2

Int Length of argument-1 in number of bytes

CHAR Int1 Anum Character in position argument-1 of the alphanumeric program collating sequenceCHAR-NATIONAL Int1 Nat Character in position argument-1 of the national program collating sequenceCOMBINED-DATETIME Int1, Num2 Num Numeric representation of combined integer date and standard numeric timeCONCAT Alph1 or Anum1 or Nat1 or Int1 or Bool1, Alph2… or Anum2… or Nat2…or Int2…or Bool2...

Anum or Nat The type of a function is determined by class and category of the unique data item that results from the evaluation of that function, and the function so described may be used anywhere a sending data item of that class and category may be specified.
CONVERT Alph1 or Anum1 or Nat1 or Num1 or Type1, Key-2, Key-3 or Key3 and Key4

Anum or Nat The value of an argument expressed in the specified source format is returned as its value expressed in the destination format.

COS Num1 Num Cosine of argument-1CURRENT-DATE Anum Current date and time and local time differentialDATE-OF-INTEGER Int1 Int Standard date equivalent (YYYYMMDD) of integer date in argument-1DATE-TO-YYYYMMDD Int1, Int2, Int3 Int Argument-1 converted from YYMMDD to YYYYMMDD based on the values of argument-2 and argument-3

Table 21 — Table of functions (Continued)

Intrinsic-function-
name

Arguments Type Value returned

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 809

DAY-OF-INTEGER Int1 Int Julian date equivalent (YYYYDDD) of integer date in argument-1DAY-TO-YYYYDDD Int1, Int2, Int3 Int Argument-1 converted from YYDDD to YYYYDDD based on the values of argument-2 and argument-3DISPLAY-OF Nat1, Alph2 or Anum2 Anum Usage display representation of argument argument-1. Argument-2, if specified, is an alphanumeric character to be used when no alphanumeric character corresponds to a national character in argument-1E Num The value of e, the natural baseEXCEPTION-FILE File1 Anum Information about the file exception that raised an exception. If optional argument-1 is specified, the file connector name specified by argument-1 is used.EXCEPTION-FILE-N File1 Nat Information about the file exception that raised an exception. If optional argument-1 is specified, the file connector name specified by argument-1 is used.EXCEPTION-LOCATION Anum Implementor-defined location of statement causing an exceptionEXCEPTION-LOCATION-N Nat Implementor-defined location of statement causing an exceptionEXCEPTION-STATEMENT Anum Name of statement causing an exception
EXCEPTION-STATUS Anum Exception-name identifying last exception
EXP Num1 Num e raised to the power argument-1EXP10 Num1 Num 10 raised to the power argument-1FACTORIAL Int1 Int Factorial of argument-1FIND-STRING Alph1 or Anum1 or Nat1, Alph2 or Anum2 or Nat2, Key3, Key4 and Int4, Key5

Int An integer that is the character position of argument-2 within argument-1

Table 21 — Table of functions (Continued)

Intrinsic-function-
name

Arguments Type Value returned

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

810 ©ISO/IEC 2023

FORMATTED-CURRENT-DATE Anum1 or Nat1 Anum or Nat Formatted date equivalent of current date and time in the format specified in argument-1FORMATTED-DATE Anum1 orNat1, Int2 Anum or Nat Formatted date equivalent of integer date contained in argument-2 in the format specified in argument-1FORMATTED-DATETIME Anum1 orNat1, Int2, Num3, Int4 Anum or Nat Formatted date (from integer date in argument-2) and time (from standard numeric time in argument-3) in the format specified by argument-1. Offset from UTC, if the format requires it, is supplied by argument-4FORMATTED-TIME Anum1 orNat1, Num2, Int3 Anum or Nat Formatted time equivalent of standard numeric time contained in argument-2 in the format specified in argument-1. Offset from UTC, if the format requires it, is supplied by argument-3FRACTION-PART Num1 Num Fraction part of argument-1HIGHEST-ALGEBRAIC Anum1 orInt1 orNat1 orNum1
Int or Num Greatest algebraic value that may be represented in argument-1

INTEGER Num1 Int The greatest integer not greater than argument-1INTEGER-OF-BOOLEAN Bool1 Int The numeric value of a BINARY-DOUBLE item whose bit configuration is the same as argument-1, right-justified.INTEGER-OF-DATE Int1 Int Integer date equivalent of standard date (YYYYMMDD) in argument-1INTEGER-OF-DAY Int1 Int Integer date equivalent of Julian date (YYYYDDD) in argument-1INTEGER-OF-FORMATTED-DATE Anum1 orNat1, Anum2 or Nat2 Int Integer date equivalent of date contained in argument-2 whose format is described by argument-1INTEGER-PART Num1 Int Integer part of argument-1

Table 21 — Table of functions (Continued)

Intrinsic-function-
name

Arguments Type Value returned

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 811

LENGTH Alph1 orAnum1 orBool1 orInd1 orNat1 orNum1 orObj1 orPtr1 orType1, Key2

Int Length of argument-1 in number of character positions or number of boolean positions

LOCALE-COMPARE Alph1 or Anum1 orNat1,Alph2 or Anum2, orNat2, Loc3
Anum A character indicating the result of comparing argument-1 to argument-2 using an ordering defined by a locale specified in argument-3

LOCALE-DATE Anum1 or Nat1,Loc2 Anum A character string containing a date specified by argument-1 in a format specified by argument-2 and a locale identified by argument-2LOCALE-TIME Anum1 or Nat1,Loc2 Anum A character string containing a time specified by argument-1 in a format specified by a locale identified by argument-2LOCAL-TIME-FROM-SECONDS Num1, Loc2 Anum A character-string containing a time specified by argument-1, in a format specified by a locale identified by argument-2LOG Num1 Num Natural logarithm of argument-1LOG10 Num1 Num Logarithm to base 10 of argument-1LOWER-CASE Alph1 orAnum1 orNat1 Anum or Nat A character string with any uppercase letters in argument-1 set to lowercase
LOWEST-ALGEBRAIC Anum1 orInt1 orNat1 orNum1

Int or Num Lowest algebraic value that may be represented in argument-1.

Table 21 — Table of functions (Continued)

Intrinsic-function-
name

Arguments Type Value returned

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

812 ©ISO/IEC 2023

MAX Alph1 ... orAnum1 ... orInd1 ... orInt1 orNat1 ... orNum1 ...
Anum or Ind or Int or Num or Nat

Value of maximum argument

MEAN Num1 ... Num Arithmetic mean of argumentsMEDIAN Num1 ... Num Median of argumentsMIDRANGE Num1 ... Num Mean of minimum and maximum argumentsMIN Alph1 ... orAnum1 ... orInd1 ... orInt1 ... orNat1 ... orNum1 ...
Anum or Ind or Int or Num or Nat

Value of minimum argument

MOD Int1, Int2 Int argument-1 modulo argument-2MODULE-NAME Key1 Anum The module name of various entities in the COBOL runtime hierarchy, depending upon the keyword specifiedNATIONAL-OF Alph1 or Anum1, Nat2 Nat Usage national representation of argument-1. Argument-2, if specified, is a national character to be used when no national character corresponds to an alphanumeric character in argument-1NUMVAL Anum1 or Nat1 Num Numeric value of simple numeric string contained in argument-1
NUMVAL-C Anum1 or Nat1, Anum2 or Nat2 or Key2 and Loc2, Key3

Num Numeric value of numeric string with optional currency sign and commas contained in argument-1. If specified, argument-2 is either a specified currency sign or a locale specification, and argument-3 specifies case insensitivityNUMVAL-F Anum1 or Nat1 Num Numeric value of numeric string representing a floating-point number contained in argument-1ORD Alph1 orAnum1 orNat1 Int Ordinal position of argument-1 in collating sequence

Table 21 — Table of functions (Continued)

Intrinsic-function-
name

Arguments Type Value returned

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 813

ORD-MAX Alph1 ... orAnum1 ... orInd1 orNat1 ... orNum1 ...
Int Ordinal position of maximum argument

ORD-MIN Alph1 ... orAnum1 ... orInd1 ... orNat1 ... orNum1 ...
Int Ordinal position of minimum argument

PI Num The value of pPRESENT-VALUE Num1,Num2 ... Num Present value of a series of future period-end amounts, argument-2, at a discount rate of argument-1RANDOM Int1 Num Random number; optional argument-1 specifies seed valueRANGE Int1 ... orNum1 ... Int or Num Value of maximum argument minus value of minimum argumentREM Num1, Num2 Num Remainder of division of argument-1 by argument-2REVERSE Alph1 orAnum1 orNat1 Anum or Nat Reverse order of the characters of argument-1
SECONDS-FROM-FORMATTED-TIME Anum1 orNat1, Anum2 orNat2

Num Standard numeric time equivalent of the data contained in argument-2 as described by the format specified in argument-1
SECONDS-PAST-MIDNIGHT Num Seconds past midnight as provided by the systemSIGN Num1 Int The sign of argument-1SIN Num1 Num Sine of argument-1SMALLEST-ALGEBRAIC Anum1 or Nat1 or Num1 Int or Num An integer or number that is the smallest positive number that can be represented in argument-1SQRT Num1 Num Square root of argument-1

Table 21 — Table of functions (Continued)

Intrinsic-function-
name

Arguments Type Value returned

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

814 ©ISO/IEC 2023

STANDARD-COMPARE Alph1 or Anum1 or Nat1, Alph2 or Anum2 or Nat2, Ord3, Int4
Anum A character indicating the result of comparing argument-1 to argument-2 using the ordering specified by argument-3 at the comparison level specified by argument-4

STANDARD-DEVIATION Num1 ... Num Standard deviation of argumentsSUBSTITUTE Alph1 or Anum1 or Nat1, (Alph2 or Anum2 or Nat2 or Key2 Alph2 or Key2 Anum2 or Key2 Nat2, Alph3 or Anum3 or Nat3) …

Anum or Nat A string that consists of the characters in the first argument with all characters that match the second argument replaced by the string in the third argument

SUM Int1 ... orNum1 ... Int or Num Sum of arguments
TAN Num1 Num Tangent of argument-1TEST-DATE-YYYYMMDD Int1 Int 0 if argument-1 is a valid standard date;otherwise identifies the sub-field in error TEST-DAY-YYYYDDD Int1 Int 0 if argument-1 is a valid Julian date;otherwise identifies the sub-field in error TEST-FORMATTED-DATETIME Anum1 orNat1, Anum2 or Nat2 Int 0 if argument-2 conforms in form to the format specified in argument-1 and represents a valid date, time or combined representation according to that description; otherwise, identifies the character in errorTEST-NUMVAL Anum1 orNat1 Int 0 if argument-1 conforms to the requirements of the NUMVAL function;otherwise identifies the character in errorTEST-NUMVAL-C Anum1 or Nat1, Alph2 or Anum2 or Nat2 or Key2 or Key2 and Loc2, Key3

Int 0 if argument-1 conforms to the requirements of the NUMVAL-C function; otherwise, identifies the character position in error. Argument-2 specifies either a currency sign or a locale specification, and argument-3 specifies case insensitivity

Table 21 — Table of functions (Continued)

Intrinsic-function-
name

Arguments Type Value returned

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 815

TEST-NUMVAL-F Anum1 orNat1 Int 0 if argument-1 conforms to the requirements of the NUMVAL-F function;otherwise identifies the character in errorTRIM Alph1 or Anum1 orNat1, Alph2 ... or Anum2 ... or Nat2 ... or Key2 or Key2 and Alph2 ... or Key2 and Anum2 ... or Key2 and Nat2 ...

Anum or Nat The value of argument-1 with leading spaces or characters, trailing spaces or characters, or both, deleted.

UPPER-CASE Alph1 orAnum1 orNat1 Anum or Nat A character string with any lowercase letters in argument-1 set to uppercase
VARIANCE Num1 ... Num Variance of argument-1WHEN-COMPILED Anum Date and time compilation unit was compiledYEAR-TO-YYYY Int1, Int2, Int3 Int Argument-1 converted from YY to YYYY based on the values of argument-2 and argument-3

Table 21 — Table of functions (Continued)

Intrinsic-function-
name

Arguments Type Value returned

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

816 ©ISO/IEC 2023

15.7 ABS function

15.7.1 GeneralThe ABS function returns the absolute value of the argument.The type of this function depends on the argument type as follows:Argument type Function typeInteger IntegerNumeric Numeric
15.7.2 General format

15.7.3 Argument rule1) Argument-1 shall be of class numeric.
15.7.4 Returned value rule1) The equivalent arithmetic expression is as follows:a) When the value of argument-1 is zero or positive, (argument-1)b) When the value of argument-1 is negative, (– (argument-1))

FUNCTION ABS (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 817

15.8 ACOS function

15.8.1 GeneralThe ACOS function returns a numeric value in radians that approximates the arccosine of argument-1.The type of this function is numeric.
15.8.2 General format

15.8.3 Argument rules1) Argument-1 shall be of class numeric.2) The value of argument-1 shall be greater than or equal to –1 and less than or equal to +1.
15.8.4 Returned value rule1) The returned value is the approximation of the arccosine of argument-1 and is greater than or equal to zero and less than or equal to π.

FUNCTION ACOS (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

818 ©ISO/IEC 2023

15.9 ANNUITY function

15.9.1 GeneralThe ANNUITY function (annuity immediate) returns a numeric value that approximates the ratio of an annuity paid at the end of each period for the number of periods specified by argument-2 to an initial investment of one. Interest is earned at the rate specified by argument-1 and is applied at the end of the period, before the payment.The type of this function is numeric.
15.9.2 General format

15.9.3 Argument rules1) Argument-1 shall be of class numeric.2) The value of argument-1 shall be greater than or equal to zero.3) Argument-2 shall be a positive integer.
15.9.4 Returned value rule1) The equivalent arithmetic expression is as follows:a) When the value of argument-1 is zero,(1 / (argument-2))b) When the value of argument-1 is not zero,(argument-1 / (1 – (1 + argument-1)** (– (argument-2))))

FUNCTION ANNUITY (argument-1 argument-2)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 819

15.10 ASIN function

15.10.1 GeneralThe ASIN function returns a numeric value in radians that approximates the arcsine of argument-1.The type of this function is numeric.
15.10.2 General format

15.10.3 Arguments rules1) Argument-1 shall be of class numeric.2) The value of argument-1 shall be greater than or equal to –1 and less than or equal to +1.
15.10.4 Returned value rule1) The returned value is the approximation of the arcsine of argument-1 and is greater than or equal to –p/2 and less than or equal to +p/2.

FUNCTION ASIN (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

820 ©ISO/IEC 2023

15.11 ATAN function

15.11.1 GeneralThe ATAN function returns a numeric value in radians that approximates the arctangent of argument-1.The type of this function is numeric.
15.11.2 General format

15.11.3 Argument rule1) Argument-1 shall be of class numeric.
15.11.4 Returned value rule1) The returned value is the approximation of the arctangent of argument-1 and is greater than –π/2 and less than +π/2.

FUNCTION ATAN (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 821

15.12 BASECONVERT function

15.12.1 GeneralThe BASECONVERT function converts an unsigned integer value expressed as a string of characters in one base to the equivalent integer value expressed as a string of characters in another base.The type of this function depends upon the type of argument-1 as follows:Argument type Function type
 Alphanumeric Alphanumeric National National
15.12.2 General format

15.12.3 Argument rules1) Argument-1 is the input data item to be converted and shall be a usage display or national data item or literal, and, if the base specified in argument-2 is less than 11, shall also be an unsigned integer data item or literal. Argument-2 and argument-3 shall be positive nonzero numeric integer literals or data items with unequal values in the range 2 to 16.2) The characters used in argument-1 shall be digits in the range appropriate to the base indicated by argument-2, where the basic-letters A to F are used in sequence to indicate the corresponding decimal equivalents of the numbers 10 to 15 where appropriate.3) The maximum length of the input argument shall be such that neither it nor the returned value would exceed that defined by the implementor for a data item.
15.12.4 Returned value rule1) The value returned is an integer value expressed in the base specified by argument-3 that is equal to the value of the integer represented by the digits in argument-1 that are expressed in the base specified by argument-2. It is expressed as a string of characters containing digits in the range 0-9 and the upper-case letters A-F used in ascending sequence to represent the digits 10 to 15 as appropriate for the base specified in argument-3.

FUNCTION BASECONVERT (argument-1 argument-2 argument-3)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

822 ©ISO/IEC 2023

15.13 BOOLEAN-OF-INTEGER function

15.13.1 GeneralThe BOOLEAN-OF-INTEGER function returns a boolean item of usage bit representing the binary value of argument-1. Argument-2 specifies the length of the boolean data item that is returned.The function type is boolean.
15.13.2 General format

15.13.3 Arguments rules1) Argument-1 shall be a positive integer.2) Argument-2 shall be a positive nonzero integer.
15.13.4 Returned value rule1) The returned value is a boolean item of usage bit that has the same bit configuration as the binary representation of the value of argument-1, where the rightmost boolean position is the low-order binary digit. The boolean value is zero-filled or truncated on the left, if necessary, in order to return a boolean item whose length is specified by argument-2 in terms of boolean positions.NOTE Binary representation is a mathematical concept. It is not required that this representation be the same as a COBOL representation.

FUNCTION BOOLEAN-OF-INTEGER (argument-1 argument-2)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 823

15.14 BYTE-LENGTH function

15.14.1 GeneralThe BYTE-LENGTH function returns an integer equal to the length of the argument in bytes. The type of the function is integer.
15.14.2 General format

15.14.3 Argument rule1) Argument-1 shall be an alphanumeric or national literal, a based entry, a type-name, or a data item of any class or category.
15.14.4 Returned value rules1) The returned value is an integer that is the length of argument-1 in number of bytes. 2) If any data description entry subordinate to the data description entry of argument-1 is described with the DEPENDING phrase of the OCCURS clause, thena) if argument-1 is a based entry not associated with actual data or is a type declaration, the length of argument-1 is determined in accordance with the rules of the OCCURS clause for a receiving data item; otherwiseb) the length of argument-1 is determined in accordance with the rules of the OCCURS clause for a sending data item.3) The returned value shall include the number of implicit filler positions, if any, in argument-1.4) When argument-1 does not occupy an integral number of bytes, the returned value is rounded to the next larger integer value.5) If argument-1 is a dynamic-length elementary item, the current length of argument-1 in bytes is returned.NOTE Any prefixed fields or delimiter characters are not included in the current length.6) If argument-1 is a variable-length group and the PHYSICAL argument is not specified, the value returned is the sum of the following:a) the lengths of all subordinate non-variable-length data-items;b) the current lengths of all subordinate dynamic-length elementary items;

FUNCTION BYTE-LENGTH (argument-1 [PHYSICAL])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

824 ©ISO/IEC 2023

c) the lengths of all subordinate dynamic-capacity tables based on their current capacity. The length of a dynamic-capacity table is the same as the length of a matching fixed-capacity table defined with the same number of occurrences as the current capacity of the dynamic-capacity table, as specified in 8.5.1.12, Variable-length groups.7) If argument-1 is a variable-length group and the PHYSICAL argument is specified, the returned value is the length of argument-1 in number of bytes.If argument-1 is not physically located where it is defined, the returned value includes only the length of the implementor-defined pointer. If argument-1 is physically located where it is defined, BYTE-LENGTH returns the same value same value that would be returned had the PHYSICAL argument not been specified.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 825

15.15 CHAR function

15.15.1 GeneralThe CHAR function returns a one-character alphanumeric value that is a character in the alphanumeric program collating sequence having the ordinal position equal to the value of argument-1.The type of this function is alphanumeric.
15.15.2 General format

15.15.3 Argument rules1) Argument-1 shall be an integer.2) The value of argument-1 shall be greater than zero and less than or equal to the number of positions in the alphanumeric program collating sequence.
15.15.4 Returned value rule1) The returned value shall be the character in the alphanumeric program collating sequence having the ordinal position specified by argument-1.2) If more than one character has the same position in the alphanumeric program collating sequence, the character returned is the first character defined for that character position. If the order of multiple characters having the same position is undefined, the implementor shall define which of those multiple characters is returned; for a given implementation, collating sequence, and ordinal position, every invocation of the CHAR function shall return the same character.

FUNCTION CHAR (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

826 ©ISO/IEC 2023

15.16 CHAR-NATIONAL function

15.16.1 GeneralThe CHAR-NATIONAL (national character) function returns a one-character value that is a character in the national program collating sequence having the ordinal position equal to the value of the argument. The type of the function is national.
15.16.2 General format

15.16.3 Argument rules1) Argument-1 shall be an integer. 2) The value of argument-1 shall be greater than zero and less than or equal to the number of positions in the national program collating sequence.
15.16.4 Returned value rules1) The returned value is the character in the national program collating sequence having the ordinal position specified by argument-1. 2) If more than one character has the same position in the national program collating sequence, the character returned is the first character defined for that character position. If the order of multiple characters having the same position is undefined, the implementor shall define which of those multiple characters is returned; for a given implementation, collating sequence, and ordinal position, every invocation of the CHAR-NATIONAL function shall return the same character.

FUNCTION CHAR-NATIONAL (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 827

15.17 COMBINED-DATETIME function

15.17.1 GeneralThe COMBINED-DATETIME function combines a date in integer date form and a time in standard numeric time form into a single numeric item from which both date and time components can be derived.The type of this function is numeric.
15.17.2 General format

15.17.3 Argument rules1) Argument-1 shall be in integer date form.2) Argument-2 shall be in standard numeric time form.
15.17.4 Returned value rule1) The equivalent arithmetic expression is as follows: argument-1 + (argument-2 / 100000)

FUNCTION COMBINED-DATETIME (argument-1 argument-2)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

828 ©ISO/IEC 2023

15.18 CONCAT function

15.18.1 GeneralThe CONCAT function concatenates two character strings and returns the concatenated result.The type of this function depends upon the argument types as follows:Argument type Function typeAll alphabetic Alphabetic Alphanumeric Alphanumeric Boolean usage Display Alphanumeric Numeric usage Display Alphanumeric Boolean usage National National Numeric usage National National National
15.18.2 General format

15.18.3 Argument rules1) Argument-1 and argument-2 shall be data items or literals of class alphabetic, alphanumeric, boolean, numeric or national.2) If any argument is usage national, all arguments shall be usage national, otherwise all arguments shall be usage display.3) If argument-1 or argument-2 is numeric, it shall be usage display or national and shall be an unsigned integer.
15.18.4 Returned value rules1) The returned value of the function shall contain all of the characters in argument-1 followed by all of the characters in argument-2.2) If argument-1 is of class or usage national, the function will return a national value.3) if argument-1 is usage display, then if argument-1 and all argument-2 are of class alphabetic, the function will return an alphabetic value, otherwise the function will return an alphanumeric value.4) If more than one argument-2 is specified, execution proceeds as if the CONCAT function was performed on each argument 2 where the result of the concatenation as specified in Returned value rule 1 becomes argument-1 in the next iteration of the function.

FUNCTION CONCAT (argument-1, argument-2 ...)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 829

15.19 CONVERT function

15.19.1 GeneralThe CONVERT function enables conversion between data representations, such as to and from alphanumeric and national natural and hex representations, and the representation of most types of data item in hexadecimal. The function takes the value of an argument expressed in the specified source format and returns its value expressed in the destination format.The type of this function depends upon the keywords in the destination format list as follows:Destination keywords Function typeALPHANUMERIC alone AlphanumericALPHANUMERIC and HEX AlphanumericNATIONAL alone NationalNATIONAL and HEX NationalBYTE Alphanumeric
15.19.2 General format

where source-format isFUNCTION CONVERT (argument-1 source-format destination-format)
ANYALPHANUMERICANUM

HEXNATNATIONAL

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

830 ©ISO/IEC 2023

Where destination-format is

15.19.3 Argument rules1) Argument-1 shall not be of zero length.2) ALPHANUMERIC and ANUM are equivalent. NATIONAL and NAT are equivalent.3) The source-format shall be different from the destination-format.4) When the source-format is HEX, argument-1 shall be a valid string of hexadecimal digits of display or national usage representing complete bytes.5) When the source-format is ANUM, argument-1 shall be a valid string of characters from the program’s alphanumeric coded character set.NOTE This is distinct from simply requiring the string to be of class alphanumeric.6) When the source-format is NAT, argument-1 shall be a valid string of national characters.7) When the source-format is ANY, argument-1 shall be of any usage, except index, message-tag, object reference, pointer, function-pointer or program-pointer. It is not necessary for the contents to be valid according to the usage.8) When the source-format is ANY, the destination-format shall be ANUM HEX or NAT HEX.9) When the destination-format is BYTE, the source-format shall be HEX.
15.19.4 Returned value rules1) When the destination-format is ANUM, the returned value is a string of alphanumeric characters that represent the value expressed in argument-1.

ALPHANUMERICANUM

NATNATIONAL

HEX

BYTE

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 831

If the translated value does not correspond to a valid set of characters from the alphanumeric coded character set, an implementor-defined substitution character is used as a replacement for the invalid characters in the returned value and the EC-DATA-CONVERSION exception condition is set to exist.NOTE 1 The DISPLAY-OF function provides the same facility when the source format is NATIONAL and the destination format is ALPHANUMERIC.2) When the destination-format is ANUM HEX, the returned value is a string of hexadecimal digits in display format that represent the value expressed in argument-1.If the number of bits in argument-1 is not a multiple of those needed for a single alphanumeric character, the trailing portion needed to make up a complete multiple is padded with zero bits, then the result is converted to hexadecimal notation.3) When the destination-format is NAT, the returned value is a string of national characters that represent the value expressed in argument-1.If the translated value does not correspond to a valid set of national characters, an implementor-defined substitution character is used as a replacement for the invalid national characters in the returned value and the EC-DATA-CONVERSION exception condition is set to exist.NOTE 2 The NATIONAL-OF function provides the same facility when the source-format is ALPHANUMERIC and the destination-format is NATIONAL.4) When the destination-format is NAT HEX, the returned value is a string of hexadecimal digits in national format that represent the value expressed in argument-1.If the number of bits in argument-1 is not a multiple of those needed for a single national character, the trailing portion needed to make up a complete multiple is padded with zero bits, then the result is converted to hexadecimal notation.5) When the destination-format is BYTE, the returned value is a string of bytes that represents the value expressed in argument-1 as a string of bits.NOTE 3 The following examples illustrate the expected results for some arguments and combinations of keywords, where the first two examples assume that the alphanumeric character set is 8-bit ASCII IEC 646:a. item-a PIC X VALUE “A”FUNCTION CONVERT (item-a ANUM ANUM HEX)result: “41” expressed in alphanumeric charactersb. FUNCTION CONVERT (X“41” HEX ANUM)Result: “A” expressed in alphanumeric charactersc. Item-b PIC 111 VALUE B“101”FUNCTION CONVERT (item-b ANY NAT HEX)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

832 ©ISO/IEC 2023

Result: “E0” expressed in national characters

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 833

15.20 COS function

15.20.1 GeneralThe COS function returns a numeric value that approximates the cosine of an angle or arc, expressed in radians, that is specified by argument-1.The type of this function is numeric.
15.20.2 General format

15.20.3 Argument rule1) Argument-1 shall be of class numeric.
15.20.4 Returned value rule1) The returned value is the approximation of the cosine of argument-1 and is greater than or equal to –1 and less than or equal to +1.

FUNCTION COS (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

834 ©ISO/IEC 2023

15.21 CURRENT-DATE function

15.21.1 GeneralThe CURRENT-DATE function returns a 21-character alphanumeric value that represents the calendar date, time of day, and local time differential factor provided by the system on which the function is evaluated.The type of this function is alphanumeric.
15.21.2 General format

15.21.3 Returned value rule1) The character positions returned, numbered from left to right, are:
Character
Positions

Contents

1-4 Four numeric digits of the year in the Gregorian calendar.5-6 Two numeric digits of the month of the year, in the range 01 through 12.7-8 Two numeric digits of the day of the month, in the range 01 through 31.9-10 Two numeric digits of the hours past midnight, in the range 00 through 23.11-12 Two numeric digits of the minutes past the hour, in the range 00 through 59.13-14 Two numeric characters of the seconds past the minute in the range:— 00 through 59 when a LEAP-SECOND directive with the OFF phrase is in effect— 00 through nm, where nm is defined by the implementor, when a LEAP-SECOND directive with the ON phrase is in effect.15-16 Two numeric digits of the hundredths of a second past the second, in the range 00 through 99. The value 00 is returned if the system on which the function is evaluated does not have the facility to provide the fractional part of a second.17 Either the character '–', the character '+', or the character '0'. The character '–' is returned if the local time indicated in the previous character positions is behind Coordinated Universal Time. The character '+' is returned if the local time indicated is the same as or ahead of Coordinated Universal time. The character '0' is returned if the system on which this function is evaluated does not have the facility to provide the local time differential factor.18-19 If character position 17 is '–', two numeric digits are returned in the range 00 through 12 indicating the number of hours that the local time is behind Coordinated Universal Time. If character position 17 is '+', two numeric digits are returned in the range 00 through 13 indicating the number of hours that the local time is ahead of Coordinated Universal Time. If character position 17 is '0', the value 00 is returned.

FUNCTION CURRENT-DATE

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 835

20-21 Two numeric digits are returned in the range 00 through 59 indicating the number of additional minutes that the local time is ahead of or behind Coordinated Universal Time, depending on whether character position 17 is '+' or '–', respectively. If character position 17 is '0', the value 00 is returned.
Character
Positions

Contents

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

836 ©ISO/IEC 2023

15.22 DATE-OF-INTEGER function

15.22.1 GeneralThe DATE-OF-INTEGER function converts a date in the Gregorian calendar from integer date form to standard date form (YYYYMMDD).The type of this function is integer.
15.22.2 General format

15.22.3 Argument rule1) Argument-1 shall be a value in integer date form.
15.22.4 Returned value rules1) The returned value represents the standard date equivalent of the integer specified in argument-1.2) The returned value is in the form (YYYYMMDD) where YYYY represents a year in the Gregorian calendar; MM represents the month of that year; and DD represents the day of that month.

FUNCTION DATE-OF-INTEGER (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 837

15.23 DATE-TO-YYYYMMDD function

15.23.1 GeneralThe DATE-TO-YYYYMMDD function converts argument-1 from the form YYmmdd to the form YYYYmmdd. Argument-2, when added to the year at the time of execution, defines the ending year of a 100-year interval, or sliding window, into which the year of argument-1 falls. Argument-3 specifies the year at the time of execution.The type of the function is integer.
15.23.2 General format

15.23.3 Argument rules1) Argument-1 shall be a positive integer less than 1000000.NOTE This function does not check argument -1 to ensure that it is a valid date. The returned value can be an argument to the TEST-DATE-YYYYMMDD function to check its validity.2) Argument-2 shall be an integer.3) If argument-2 is omitted, the function shall be evaluated as though 50 were specified for argument-2.4) Argument-3 shall be an integer greater than 1600 and less than 10000.5) If argument-3 is omitted, the function shall be evaluated as though the following were specified for argument-3:(FUNCTION NUMVAL (FUNCTION CURRENT-DATE (1:4)))6) The sum of the year at the time of execution and the value of argument-2 shall be less than 10000 and greater than 1699.
15.23.4 Returned value rule1) The equivalent arithmetic expression is as follows:(FUNCTION YEAR-TO-YYYY (YY, argument-2, argument-3) * 10000 + mmdd)whereYY = FUNCTION INTEGER (argument-1/10000)mmdd = FUNCTION MOD (argument-1, 10000)

FUNCTION DATE-TO-YYYYMMDD (argument-1 [argument-2 [argument-3]])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

838 ©ISO/IEC 2023

and where argument-1, argument-2 and argument-3 are the same as argument-1, argument-2, and argument-3 of the DATE-TO-YYYYMMDD function reference itself.NOTE 1 In the year 2002 the returned value for FUNCTION DATE-TO-YYYYMMDD (851003, 10) is 19851003. In the year 1994 the returned value for FUNCTION DATE-TO-YYYYMMDD (981002, (–10)) is 18981002.NOTE 2 See the notes for the YEAR-TO-YYYY function for a discussion of how to specify a fixed window or a sliding window algorithm.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 839

15.24 DAY-OF-INTEGER function

15.24.1 GeneralThe DAY-OF-INTEGER function converts a date in the Gregorian calendar from integer date form to Julian date form (YYYYDDD).The type of this function is integer.
15.24.2 General format

15.24.3 Argument rule1) Argument-1 shall be a value in integer date form.
15.24.4 Returned value rules1) The returned value represents the Julian equivalent of the integer specified in argument-1.2) The returned value is an integer of the form (YYYYDDD) where YYYY represents a year in the Gregorian calendar and DDD represents the day of that year.

FUNCTION DAY-OF-INTEGER (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

840 ©ISO/IEC 2023

15.25 DAY-TO-YYYYDDD function

15.25.1 GeneralThe DAY-TO-YYYYDDD function converts argument-1 from the form YYnnn to the form YYYYnnn. Argument-2, when added to the year at the time of execution, defines the ending year of a 100-year interval, or sliding window, into which the year of argument-1 falls. Argument-3 specifies the year at the time of execution.The type of the function is integer.
15.25.2 General format

15.25.3 Argument rules1) Argument-1 shall be a positive integer less than 100000.NOTE This function does not check argument -1 to ensure that it is a valid date. The returned value can be an argument to the TEST-DAY-YYYYDDD function to check its validity.2) Argument-2 shall be an integer.3) If argument-2 is omitted, the function shall be evaluated as though 50 were specified for argument-2.4) Argument-3 shall be an integer greater than 1600 and less than 10000.5) If argument-3 is omitted, the function shall be evaluated as though the following were specified for argument-3:(FUNCTION NUMVAL (FUNCTION CURRENT-DATE (1:4)))6) The sum of the values of argument-2 and argument-3 shall be less than 10000 and greater than 1699.
15.25.4 Returned value rule1) The equivalent arithmetic expression is as follows:(FUNCTION YEAR-TO-YYYY (YY, argument-2, argument-3) * 1000 + nnn)whereYY = FUNCTION INTEGER (argument-1/1000)nnn = FUNCTION MOD (argument-1, 1000)and where argument-1, argument-2 and argument-3 are the same as argument-1, argument-2, and argument-3 of the DAY-TO-YYYYDDD function reference itself.

FUNCTION DAY-TO-YYYYDDD (argument-1 [argument-2 [argument-3]])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 841

NOTE 1 In the year 2002 the returned value for FUNCTION DAY-TO-YYYYDDD (10004, 20) is 2010004. In the year 2013 the returned value for FUNCTION DAY-TO-YYYYDDD (95005, (–10)) is 1995005.NOTE 2 See the notes for the YEAR-TO-YYYY function for a discussion of how to specify a fixed window or a sliding window algorithm.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

842 ©ISO/IEC 2023

15.26 DISPLAY-OF function

15.26.1 GeneralThe DISPLAY-OF function returns a character string containing the alphanumeric coded character set representation of the national characters in the argument.The type of the function is alphanumeric.
15.26.2 General format

15.26.3 Argument rules1) Argument-1 shall be of class national. 2) Argument-2 shall be of class alphabetic or alphanumeric and shall be one character position in length. Argument-2 specifies an alphanumeric substitution character for use in conversion of national characters for which there is no corresponding alphanumeric character.
15.26.4 Returned value rules1) A character string is returned with each national character of argument-1 converted to its corresponding alphanumeric character representation, if any. The implementor shall define the correspondence of characters between the alphanumeric character set and the national character set for purposes of conversion with the DISPLAY-OF function. 2) If argument-2 is specified, the alphanumeric substitution character is returned for each national character in argument-1 that has no corresponding alphanumeric character representation.3) If argument-2 is unspecified and argument-1 contains a national character for which there is no corresponding alphanumeric character representation, an implementor-defined substitution character is used as the corresponding alphanumeric character and the EC-DATA-CONVERSION exception condition is set to exist.4) The length of the returned value is the number of character positions of usage display required to hold the converted argument and depends on the number of characters contained in argument-1.

FUNCTION DISPLAY-OF (argument-1 [argument-2])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 843

15.27 E function

15.27.1 GeneralThe E function returns an approximation of e, the base of natural logarithms.The type of the function is numeric.
15.27.2 General format

15.27.3 Returned value rules1) If native arithmetic is in effect, the returned value is an implementor-defined approximation of the arithmetic expression(2 + 0.7182818284590452353602874713526).2) If standard-binary arithmetic is in effect, the returned value is the exact value of the arithmetic expression(14,114,126,198,520,207,781,233,383,725,636,853 / (2 ** 112)).3) If standard-decimal arithmetic is in effect, the equivalent arithmetic expression is the exact value of the arithmetic expression(2.718281828459045235360287471352662).

FUNCTION E

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

844 ©ISO/IEC 2023

15.28 EXCEPTION-FILE function

15.28.1 GeneralThe EXCEPTION-FILE function with no argument specified returns an alphanumeric character string that is the I-O status value and file-name of the file connector, if any, associated with the last exception status.When an argument is specified for the file-name, the alphanumeric character string returned is the I-O status value and file-name of the file connector specified by file-name associated with the last exception status for that file-name.The type of the function is alphanumeric.
15.28.2 General format

15.28.3 Argument rule1) Argument-1 is optional and when specified shall be the name of a file connector that is specified in an FD statement.
15.28.4 Returned value rules1) When argument-1 is not specified, the returned value is an alphanumeric character string that has a length that is based on its contents and the contents are as follows:a) If the last exception status is not an EC-I-O exception condition, the returned value is two alphanumeric zeros.b) The returned value is two alphanumeric spaces when the last exception status indicates an EC-I-O exception condition that originates from one of the following statements:— a RAISE statement— an EXIT statement with a RAISING phrase that specifies an EC-I-O exception-name— a GOBACK statement with a RAISING phrase that specifies an EC-I-O exception-name.c) Otherwise, the returned value is a character string that is as long as is needed to contain the I-O status value and the file-name. The first two characters are the I-O status value in alphanumeric characters. The succeeding characters contain the file-name exactly as specified in the SELECT clause converted at runtime to the runtime alphanumeric character set.2) When argument-1 is specified, the returned value is an alphanumeric character string that has a length that is based on its contents and the contents are as follows:

FUNCTION EXCEPTION-FILE argument-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 845

a) If the file connector has never been opened, attempted to be opened, or otherwise attempted to be accessed, the returned value is two alphanumeric spacesb) Otherwise, the returned value is a character string that is as long as is needed to contain the I-O status value and the file-name. The first two characters are the I-O status value in alphanumeric characters. The succeeding characters contain the file-name exactly as specified in the SELECT clause converted at runtime to the runtime alphanumeric character set.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

846 ©ISO/IEC 2023

15.29 EXCEPTION-FILE-N function

15.29.1 GeneralThe EXCEPTION-FILE-N function with no argument specified returns a national character string that is the I-O status value and file-name of the file connector, if any, associated with the last exception status.When an argument is specified for the file-name, the national character string returned is the I-O status value and file-name of the file connector specified by file-name associated with the last exception status for that file-name.The type of the function is national.
15.29.2 General format

15.29.3 Argument rule1) Argument-1 is optional and when specified shall be the name of a file connector that is specified in an FD statement.
15.29.4 Returned value rules1) When argument-1 is not specified, the returned value is a national character string that has a length that is based on its contents and the contents are as follows:a) If the last exception status is not an EC-I-O exception condition, the returned value is two national zeros.b) The returned value is two national spaces when the last exception status indicates an EC-I-O exception condition that originates from one of the following statements:— a RAISE statement— an EXIT statement with a RAISING phrase that specifies an EC-I-O exception-name— a GOBACK statement with a RAISING phrase that specifies an EC-I-O exception-name.c) Otherwise, the returned value is a character string that is as long as is needed to contain the I-O status value and the file-name. The first two characters are the I-O status value in national characters. The succeeding characters contain the file-name exactly as specified in the SELECT clause converted at runtime to the runtime national character set.2) When argument-1 is specified, the returned value is a national character string that has a length that is based on its contents and the contents are as follows:

FUNCTION EXCEPTION-FILE-N argument-1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 847

a) If the file connector has never been opened, attempted to be opened, or otherwise attempted to be accessed, the returned value is two national spacesb) Otherwise, the returned value is a character string that is as long as is needed to contain the I-O status value and the file-name. The first two characters are the I-O status value in national characters. The succeeding characters contain the file-name exactly as specified in the SELECT clause converted at runtime to the runtime national character set.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

848 ©ISO/IEC 2023

15.30 EXCEPTION-LOCATION function

15.30.1 GeneralThe EXCEPTION-LOCATION function returns an alphanumeric character string, part of which is the implementor-defined location of the statement associated with the last exception status.The type of the function is alphanumeric.
15.30.2 General format

15.30.3 Returned value rules1) If the LOCATION option of the TURN directive or PERFORM statement that enabled checking for the exception condition associated with the last exception status is not specified and the implementor does not save the location information, the returned value is one alphanumeric space character.2) If the LOCATION option of the associated TURN directive or PERFORM statement was specified, the returned value is an alphanumeric character string that has a length that is based on its contents and the contents are as follows:a) If the last exception status indicates that no exception condition was raised, the returned value is one alphanumeric space character.b) Otherwise, the returned value is a character string that is as long as is needed to contain the location information. All of the names are exactly as specified in the source element containing the statement and they are converted at runtime to the runtime alphanumeric character set. The character string is composed of three parts as follows:1. The name of the runtime element as specified in the FUNCTION-ID, METHOD-ID, or PROGRAM-ID paragraph of the function, method, or program containing the statement. In the case of a propagated exception condition, the name is that of the function, method, or program in which the exception condition that was propagated actually occurred. The name is immediately followed by a semicolon and a space character.2. The procedure-name of the procedure that contains the statement as follows:a. If there is no paragraph-name or section-name in the source element, a semicolon and a space character are appended.b. If there is a paragraph-name, the paragraph-name is appended and, if the paragraph is within a section, the section-name of the section containing the paragraph is appended prefixed by the alphanumeric characters ' OF '. This is followed by a semicolon and a space character.

FUNCTION EXCEPTION-LOCATION

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 849

c. If there is a section-name and no paragraph-name, the section-name is appended followed by a semicolon and a space character.3. An implementor-defined identifier of the source line that contains the beginning of the statement is then appended.NOTE The user cannot rely on the value returned being consistent from one compilation of the same compilation unit to the next.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

850 ©ISO/IEC 2023

15.31 EXCEPTION-LOCATION-N function

15.31.1 GeneralThe EXCEPTION-LOCATION-N function returns a national character string, part of which is implementor-defined, that is the location of the statement associated with the last exception status.The type of the function is national.
15.31.2 General format

15.31.3 Returned value rules1) If the LOCATION option of the TURN directive or PERFORM statement that enabled checking for the exception condition associated with the last exception status is not specified and the implementor does not save the location information, the returned value is one national space character.2) If the LOCATION option of the associated TURN directive or PERFORM statement was specified, the returned value is a national character string that has a length that is based on its contents and the contents are as follows:a) If the last exception status indicates that no exception condition was raised, the returned value is one national space character.b) Otherwise, the returned value is a character string that is as long as is needed to contain the location information. All of the names are exactly as specified in the source element containing the statement and they are converted at runtime to the runtime national character set. The character string is composed of three parts as follows:1. The name of the runtime element as specified in the FUNCTION-ID, METHOD-ID, or PROGRAM-ID paragraph of the function, method, or program containing the statement. In the case of a propagated exception condition, the name is that of the function, method, or program in which the exception condition that was propagated actually occurred. The name is immediately followed by a semicolon and a national space character.2. The procedure-name of the procedure that contains the statement as follows:a. If there is no paragraph-name or section-name in the source element, a semicolon and a space character are appended.b. If there is a paragraph-name, the paragraph-name is appended and, if the paragraph is within a section, the section-name of the section containing the paragraph is appended prefixed by the national characters ' OF '. This is followed by a semicolon and a space character.

FUNCTION EXCEPTION-LOCATION-N

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 851

c. If there is a section-name and no paragraph-name, the section-name is appended followed by a semicolon and a space character.3. An implementor-defined identifier of the source line that contains the beginning of the statement is then appended.NOTE The user cannot rely on the value returned being consistent from one compilation of the same compilation unit to the next.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

852 ©ISO/IEC 2023

15.32 EXCEPTION-STATEMENT function

15.32.1 GeneralThe EXCEPTION-STATEMENT function returns an alphanumeric value that is the name of the statement that caused the associated exception condition.The type of the function is alphanumeric.
15.32.2 General format

15.32.3 Returned value rules1) If the LOCATION option of the TURN directive or PERFORM statement that enabled checking for the exception condition associated with the last exception status is not specified and the implementor does not save the location information, the returned value is 63 spaces.2) If the LOCATION option of the associated TURN directive or PERFORM statement was specified, the returned value is a 63-character alphanumeric character-string that is the name of the statement that caused the exception condition to be raised in uppercase letters, left-justified and space-filled on the right.3) The names of the statements are given in Table 12, Procedural statements, in the column labeled 'Statement name'.

FUNCTION EXCEPTION-STATEMENT

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 853

15.33 EXCEPTION-STATUS function

15.33.1 GeneralThe EXCEPTION-STATUS function returns an alphanumeric value that is the exception-name associated with the last exception status.The type of the function is alphanumeric.
15.33.2 General format

15.33.3 Returned value rule1) A 31-character, left-justified, alphanumeric character string that is the exception-name or the value 'EXCEPTION-OBJECT', as applicable, associated with the last exception status. All letters in the exception-name are returned as uppercase letters and all unused characters are alphanumeric spaces. If the last exception status indicates no exception, alphanumeric spaces are returned.

FUNCTION EXCEPTION-STATUS

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

854 ©ISO/IEC 2023

15.34 EXP function

15.34.1 GeneralThe EXP function returns an approximation of the value of e raised to the power of the argument.The type of the function is numeric.
15.34.2 General format

15.34.3 Argument rules1) Argument-1 shall be of class numeric.
15.34.4 Returned value rules1) The equivalent arithmetic expression is:(FUNCTION E ** (argument-1))

FUNCTION EXP (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 855

15.35 EXP10 function

15.35.1 GeneralThe EXP10 function returns an approximation of the value of 10 raised to the power of the argument.The type of the function is numeric.
15.35.2 General format

15.35.3 Argument rule1) Argument-1 shall be of class numeric.
15.35.4 Returned value rule1) The equivalent arithmetic expression is:(10 ** (argument-1))

FUNCTION EXP10 (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

856 ©ISO/IEC 2023

15.36 FACTORIAL function

15.36.1 GeneralThe FACTORIAL function returns an integer that is the factorial of argument-1.The type of this function is integer.
15.36.2 General format

15.36.3 Argument rule1) Argument-1 shall be an integer greater than or equal to zero.
15.36.4 Returned value rule1) The equivalent arithmetic expression is as follows:a) When the value of argument-1 is 0 or 1, (1)b) When the value of argument-1 is 2,(2)c) When the value of argument-1 is n,(n * (n – 1) * (n – 2) * ... * 1)

FUNCTION FACTORIAL (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 857

15.37 FIND-STRING function

15.37.1 GeneralThe FIND-STRING function returns an integer that represents the position of a character string within another character string.The type of this function is integer.
15.37.2 General format

15.37.3 Argument rules1) Argument-1 shall be a data item or literal of class alphabetic, alphanumeric, or national.2) If argument-1 is of class alphabetic or alphanumeric, argument-2 shall be a data item or literal of either class alphabetic or alphanumeric. If argument-1 is of class national, argument-2 shall be of class national.3) argument-3 shall be an integer data item or integer literal.
15.37.4 Returned value rules1) If argument-3 is not specified, the function will return the character position of the first occurrence where the string represented by argument-2 matches a substring within argument-1 or, if the keyword LAST is specified, the last occurrence where string represented by argument-2 matches a substring within argument-1.2) If argument-3 is specified, argument-3 represents the number of matches to ignore before determining the character position that shall be returned.3) If no match is found, the function shall return zero.4) If the ANYCASE keyword is specified, the matching rules for detecting argument-2 in argument-1 are as if all uppercase letters in both argument-1 and argument-2 were replaced by their corresponding lowercase letters as specified in the rules for the LOWER-CASE function without the LOCALE argument. 5) If argument-1 or argument-2 is of zero length, the function shall return zero.

FUNCTION FIND-STRING argument-1 argument-2 [LAST] [[START AFTER] argument-3] [ANYCASE]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

858 ©ISO/IEC 2023

15.38 FORMATTED-CURRENT-DATE function

15.38.1 GeneralThe FORMATTED-CURRENT-DATE function returns a character string representing the current date and time provided by the system on which the function is evaluated. The content of the returned value is formatted according to the format in the argument.The type of this function depends on the argument type as follows:Argument type Function typeAlphanumeric AlphanumericNational National
15.38.2 General format

15.38.3 Argument rules1) Argument-1 shall be a national or alphanumeric literal. 2) The content of argument-1 shall be a combined date and time format.
15.38.4 Returned value rules1) The returned value is a representation of the current date and time provided by the system on which the function is evaluated. The returned value is formatted according to the format in argument-1.2) The implementor shall define the accuracy of the portion of the returned value that corresponds to the time format portion of the argument.

FUNCTION FORMATTED-CURRENT-DATE (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 859

15.39 FORMATTED-DATE function

15.39.1 GeneralThe FORMATTED-DATE function uses a format to convert a date in integer date form to a date in the requested format.The type of this function depends on the type of argument-1 as follows:Argument type Function typeAlphanumeric AlphanumericNational National
15.39.2 General format

15.39.3 Argument rules1) Argument-1 shall be a national or alphanumeric literal. 2) The content of argument-1 shall be a date format.3) Argument-2 shall be a value in integer date form.
15.39.4 Returned value rule1) The returned value is a representation of the date contained in argument-2 according to the format in argument-1.

FUNCTION FORMATTED-DATE (argument-1 argument-2)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

860 ©ISO/IEC 2023

15.40 FORMATTED-DATETIME function

15.40.1 GeneralThe FORMATTED-DATETIME function uses a combined time and date format to convert and combine a date in integer date form and a numeric time expressed as seconds past midnight to a produce a formatted date and time representation according to that combined date and time format.The type of this function depends on the type of argument-1 as follows:Argument type Function typeAlphanumeric AlphanumericNational National
15.40.2 General format

15.40.3 Argument rules1) Argument-1 shall be a national or alphanumeric literal. 2) The content of argument-1 shall be a combined date and time format.3) Argument-2 shall be a value in integer date form.4) Argument-3 shall be a value in standard numeric time form.NOTE The offset value 1439 represents 23 hours 59 minutes, which is one minute less than a day.5) Argument-4 is an integer specifying the offset from UTC expressed in minutes. If argument-4 is specified, the magnitude of the value shall be less than or equal to 1439.6) Argument-4 shall not be specified if the time portion of the format in argument-1 is neither a UTC format nor an offset format.7) If argument-4 is omitted and the time portion of the format in argument-1 is a UTC format or an offset format, the function shall be evaluated as though 0 were specified for argument-4.
15.40.4 Returned value rules1) The returned value is a representation of the date contained in argument-2 combined with the time contained in argument-3 according to the format in argument-1. 2) If the format in argument-1 indicates that the returned value is to be expressed in UTC, the time portion of the returned value reflects the adjustment of the value in argument-3 by the offset in argument-4.

FUNCTION FORMATTED-DATETIME (argument-1 argument-2 argument-3 [argument-4])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 861

3) If the format in argument-1 indicates that the time is to be returned as an offset from UTC, the value in argument-3 is reflected directly in the time portion of the returned value, and the offset in argument-4 is reflected directly in the offset portion of the returned value.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

862 ©ISO/IEC 2023

15.41 FORMATTED-TIME function

15.41.1 GeneralThe FORMATTED-TIME function uses a format to convert a value representing seconds past midnight to a formatted time of day in the requested format.The type of this function depends on the type of argument-1 as follows:Argument type Function typeAlphanumeric AlphanumericNational National
15.41.2 General format

15.41.3 Argument rules1) Argument-1 shall be a national or alphanumeric literal. 2) The content of argument-1 shall be a time format.3) Argument-2 shall be a value in standard numeric time form.4) Argument-3 is an integer representation of offset from UTC expressed in minutes. If argument-3 is specified, the magnitude of the value shall be less than or equal to 1439.NOTE The offset value 1439 represents 23 hours 59 minutes, which is one minute less than a day.5) Argument-3 shall not be specified if the time portion of the format in argument-1 is neither a UTC format nor an offset format.6) If argument-3 is omitted and the time portion of the format in argument-1 is a UTC format or an offset format, the function shall be evaluated as though 0 were specified for argument-3.
15.41.4 Returned value rules1) The returned value is a representation of the standard numeric time contained in argument-2 according to the format in argument-1.2) If the format in argument-1 indicates that the returned value is to be expressed in UTC, the time portion of the returned value reflects the adjustment of the value in argument-2 by the offset in argument-3.

FUNCTION FORMATTED-TIME (argument-1 argument-2 [argument-3])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 863

3) If the format in argument-1 indicates that the time is to be returned as an offset from UTC, the value in argument-2 is reflected directly in the time portion of the returned value, and the offset in argument-3 is reflected directly in the offset portion of the returned value.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

864 ©ISO/IEC 2023

15.42 FRACTION-PART function

15.42.1 GeneralThe FRACTION-PART function returns a numeric value that is the fraction portion of the argument.The type of the function is numeric.
15.42.2 General format

15.42.3 Argument rule1) Argument-1 shall be of the class numeric.
15.42.4 Returned value rule1) The equivalent arithmetic expression is:(argument-1 – FUNCTION INTEGER-PART (argument-1))where the argument for the INTEGER-PART function is the same as for the FRACTION-PART function itself.NOTE If the value of argument-1 is +1.5, +0.5 is returned. If the value of argument-1 is –1.5, –0.5 is returned.

FUNCTION FRACTION-PART (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 865

15.43 HIGHEST-ALGEBRAIC function

15.43.1 GeneralThe HIGHEST-ALGEBRAIC function returns a value that is equal to the greatest algebraic value that may be represented in argument-1.The type of this function depends upon the argument types as follows:Argument type Function typeAlphanumeric NumericInteger IntegerNational NumericNumeric Numeric
NOTE The types of arguments that are permitted for this function are limited because of the rules that specify the form of the returned value that are associated with the mode of arithmetic that is in effect.The content of any numeric data item can be set exactly to the highest algebraic value permitted for it using the SET statement, regardless of the mode of arithmetic that is in effect.
15.43.2 General format

15.43.3 Argument rules1) Argument-1 shall be a data item of category numeric or numeric-edited and shall not be an integer function or numeric function.2) If standard-decimal arithmetic is in effect, argument-1 shall not be a data item whose data description entry specifies a standard binary floating-point usage.3) If standard-binary arithmetic is in effect, argument-1 shall not be a data item whose data description entry specifies a standard decimal floating-point usage.
15.43.4 Returned value rules1) When argument-1 is a floating-point numeric-edited item, the data description entry with which argument-1 is described shall be such that, if argument-1 contained the positive value farthest from zero that is permitted according to that data description entry, an IN-ARITHMETIC-RANGE test of argument-1 would return a true value.2) The value returned is equal to the positive algebraic value of greatest finite magnitude that may be represented in argument-1.NOTE The following illustrates the expected results for some values of argument-1.

FUNCTION HIGHEST-ALGEBRAIC (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

866 ©ISO/IEC 2023

Argument-1characteristics Value returnedS999 +999S9(4) BINARY +999999V9(3) +99.999$**,**9.99BCR +99999.99$**,**9.99 +99999.99BINARY-CHAR SIGNED +127 (assuming an 8-bit representation)BINARY-CHAR UNSIGNED +255 (assuming an 8-bit representation)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 867

15.44 INTEGER function

15.44.1 GeneralThe INTEGER function returns the greatest integer value that is less than or equal to the argument.The type of this function is integer.
15.44.2 General format

15.44.3 Argument rule1) Argument-1 shall be of class numeric.
15.44.4 Returned value rule1) The returned value is the greatest integer less than or equal to the value of argument-1.NOTE For example:– If the value of argument-1 is -1.5, the value -2 is returned.– If the value of argument-1 is +1.5, the value +1 is returned.– If the value of argument-1 is zero, the value zero is returned.A statement of the form COMPUTE X ROUNDED MODE IS TRUNCATION = INTEGER (Y)produces results analogous to those produced by a statement of the form COMP[UTE X ROUNDED MODE IS TOWARD-LESSER = Y. presuming that X is an integer data item.The INTEGER-PART function is similar but returns different values for negative numbers.

FUNCTION INTEGER (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

868 ©ISO/IEC 2023

15.45 INTEGER-OF-BOOLEAN function

15.45.1 GeneralThe INTEGER-OF-BOOLEAN function returns the numeric value of the boolean string in argument-1.The function type is integer.
15.45.2 General format

15.45.3 Argument rule1) Argument-1 shall be of class boolean.
15.45.4 Returned value rule1) The returned value is determined as follows:a) Argument-1 is assigned to a temporary boolean data item of usage bit described with the same number of boolean positions as argument-1.b) The unsigned binary value represented by the same bit configuration as the bit configuration of that temporary boolean data item is determined.NOTE Binary representation is a mathematical concept. It is not required that this representation be the same as a COBOL representation.c) The numeric value determined in subrule 1b is the returned value.

FUNCTION INTEGER-OF-BOOLEAN (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 869

15.46 INTEGER-OF-DATE function

15.46.1 GeneralThe INTEGER-OF-DATE function converts a date in the Gregorian calendar from standard date form (YYYYMMDD) to integer date form.The type of this function is integer.
15.46.2 General format

15.46.3 Argument rule1) Argument-1 shall be an integer of the form YYYYMMDD, whose value is obtained from the calculation (YYYY * 10,000) + (MM * 100) + DD.a) YYYY represents the year in the Gregorian calendar. It shall be an integer greater than 1600 and less than 10000.b) MM represents a month and shall be a positive integer less than 13.c) DD represents a day and shall be a positive integer less than 32 provided that it is valid for the specified month and year combination.
15.46.4 Returned value rule1) The returned value is in integer date form.

FUNCTION INTEGER-OF-DATE (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

870 ©ISO/IEC 2023

15.47 INTEGER-OF-DAY function

15.47.1 GeneralThe INTEGER-OF-DAY function converts a date in the Gregorian calendar from Julian date form (YYYYDDD) to integer date form.The type of this function is integer.
15.47.2 General format

15.47.3 Argument rule1) Argument-1 shall be an integer of the form YYYYDDD, whose value is obtained from the calculation (YYYY * 1000) + DDD.a) YYYY represents the year in the Gregorian calendar. It shall be an integer greater than 1600 and less than 10000.b) DDD represents the day of the year. It shall be a positive integer less than 367 provided that it is valid for the year specified.
15.47.4 Returned value rule1) The returned value is in integer date form.

FUNCTION INTEGER-OF-DAY (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 871

15.48 INTEGER-OF-FORMATTED-DATE function

15.48.1 GeneralThe INTEGER-OF-FORMATTED-DATE function converts a date that is in a specified format to integer date form.The type of this function is integer.
15.48.2 General format

15.48.3 Argument rules1) Argument-1 shall be a national or alphanumeric literal.2) The content of argument-1 shall be either a date format or a combined date and time format.3) Argument-2 shall be a data item of the same type as argument-1.4) If argument-1 is a date format, the contents of argument-2 shall be a valid date in that format. 5) If argument-1 is a combined date and time format, the contents of argument-2 shall be a valid combined date and time in that format.
15.48.4 Returned value rule1) The returned value is the integer date form equivalent of the date represented by argument-2 when analyzed according to argument-1.NOTE If argument-1 contains a combined date and time format, the time portion of argument-2 is validated against the format in argument-1, but if valid does not impact the returned value.

FUNCTION INTEGER-OF-FORMATTED-DATE (argument-1 argument-2)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

872 ©ISO/IEC 2023

15.49 INTEGER-PART function

15.49.1 GeneralThe INTEGER-PART function returns an integer that is the integer portion of argument-1.The type of this function is integer.
15.49.2 General format

15.49.3 Argument rule1) Argument-1 shall be of class numeric.
15.49.4 Returned value rule1) The equivalent arithmetic expression is:(FUNCTION SIGN (argument-1) * FUNCTION INTEGER (FUNCTION ABS (argument-1)))where the arguments for the SIGN and ABS functions are the same as for the INTEGER-PART function itself.NOTE For example:– If the value of argument-1 is -1.5, the value -1 is returned.– If the value of argument-1 is +1.5, the value +1 is returned.– If the value of argument-1 is zero, the value zero is returned.– If the value of argument-1 is -1.0, the value -1 is returned.– If the value of argument-1 is +1.0, the value +1 is returned.The INTEGER function is similar but returns different values for negative numbers.

FUNCTION INTEGER-PART (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 873

15.50 LENGTH function

15.50.1 GeneralThe LENGTH function returns an integer equal to the length of the argument in alphanumeric character positions, national character positions, or boolean positions, depending on the class of the argument.The type of this function is integer.
15.50.2 General format

15.50.3 Argument rule1) Argument-1 shall be an alphanumeric, national, or boolean literal; a data item of any class or category; a based entry; or a type-name.
15.50.4 Returned value rules1) If argument-1 is a bit group item, an elementary boolean data item, a boolean literal, or a type declaration for a boolean item, the returned value is an integer equal to the length of argument-1 in boolean positions. 2) If argument-1 is a national group item, an elementary data item of usage national other than a boolean data item, a national literal, or a type declaration for a data item of usage national, the returned value is an integer equal to the length of argument-1 in national character positions. 3) If argument-1 is other than category boolean or usage national, the returned value is an integer equal to the length of argument-1 in alphanumeric character positions. 4) If any data description entry subordinate to the data description entry of argument-1 is described with the DEPENDING phrase of the OCCURS clause, thena) If argument-1 is a based item not associated with actual data or is a type declaration, the length of argument-1 is determined in accordance with the rules of the OCCURS clause for a receiving data item, otherwiseb) the length of argument-1 is determined in accordance with the rules of the OCCURS clause for a sending data item.5) The returned length shall include the number of implicit FILLER positions, if any, in argument-1.6) If argument-1 is a dynamic-length elementary item, the current length of argument-1 in bytes is returned.NOTE Any prefixed fields or delimiter characters are not included in the current length.

FUNCTION LENGTH (argument-1 [PHYSICAL])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

874 ©ISO/IEC 2023

7) If argument-1 is a variable-length group and the PHYSICAL argument is not specified, the value returned is the sum of the following:a) the lengths of all subordinate non-variable-length data-items;b) the current lengths of all subordinate dynamic-length elementary items;c) the lengths of all subordinate dynamic-capacity tables based on their current capacity. The length of a dynamic-capacity table is the same as the length of a matching fixed-capacity table defined with the same number of occurrences as the current capacity of the dynamic-capacity table, as specified in 8.5.1.12.3, Matching.8) If argument-1 is a variable-length group and the PHYSICAL argument is specified, the returned value is the length of argument-1 in number of character positions.If argument-1 is not physically located where it is defined, the returned value includes only the length of the implementor-defined pointer. If argument-1 is physically located where it is defined, LENGTH returns the same value that would be returned had the PHYSICAL argument not been specified.9) When the returned value is expressed as a number of alphanumeric character positions and argument-1 does not occupy an integral number of positions, the returned value is rounded to the next larger integer value.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 875

15.51 LOCALE-COMPARE function

15.51.1 GeneralThe LOCALE-COMPARE function returns a character indicating the result of comparing argument-1 and argument-2 using a culturally-preferred ordering defined by a locale.The function type is alphanumeric.
15.51.2 General format

15.51.3 Argument rules1) Argument-1 shall be of class alphabetic, alphanumeric, or national.2) Argument-2 shall be of class alphabetic, alphanumeric, or national.3) Arguments may be of different classes.4) Locale-name-1 shall be associated with a locale in the SPECIAL-NAMES paragraph.
15.51.4 Returned value rules1) If the arguments are of different classes, and one is national, the other argument is converted to class national for purposes of comparison.2) For purposes of comparison, trailing spaces are truncated from the operands except that an operand consisting of all spaces is truncated to a single space.3) If locale-name-1 is specified, the locale used for comparison is the one associated with locale-name-1; otherwise, the current locale is used. If the locale associated with locale-name-1 is not available, the EC-LOCALE-MISSING exception condition is set to exist.4) Argument-1 and argument-2 are compared using the cultural ordering defined by the locale being used.NOTE Locale-based ordering is not necessarily a character-by-character comparison.5) The returned value is: '=' if the arguments compare equal, '<' if argument-1 is less than argument-2, '>' if argument-1 is greater than argument-2. 6) The length of the returned value is 1.

FUNCTION LOCALE-COMPARE (argument-1 argument-2 [locale-name-1])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

876 ©ISO/IEC 2023

15.52 LOCALE-DATE function

15.52.1 GeneralThe LOCALE-DATE function returns a character string containing a date in a culturally-appropriate format specified by a locale.The function type is alphanumeric.
15.52.2 General format

15.52.3 Argument rules1) Argument-1 shall be of class alphanumeric or national and shall be 8 character positions in length.2) The content of argument-1 shall be a date in the same format as the year, month, and day returned in character positions 1 through 8 by the CURRENT-DATE function and shall be valid according to the definition of a returned value from that function.3) Locale-name-1 shall be associated with a locale in the SPECIAL-NAMES paragraph.
15.52.4 Returned value rules1) If locale-name-1 is specified, the locale used for formatting the date is the one associated with locale-name-1; otherwise, the current locale is used. If the locale associated with locale-name-1 is not available, the EC-LOCALE-MISSING exception condition is set to exist.2) The returned value is a character-string containing the date specified by argument-1 in the appropriate date format as indicated in the locale by locale field d_fmt.3) The length of the returned value depends on the format indicated in the locale.

FUNCTION LOCALE-DATE (argument-1 [locale-name-1])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 877

15.53 LOCALE-TIME function

15.53.1 GeneralThe LOCALE-TIME function returns a character string containing a time in a culturally-appropriate format specified by a locale.The function type is alphanumeric.
15.53.2 General format

15.53.3 Argument rules1) Argument-1 shall be of class alphanumeric or national and shall be 6 character positions in length.2) The content of argument-1 shall be in the same format as the hours, minutes, and seconds returned in character positions 9 through 14 of the CURRENT-DATE function and shall be valid according to the definition of a returned value from that function.3) The content of argument-1 shall be valid according to the definition of a returned value from the CURRENT-DATE function, with the following exceptions:a) The hours past midnight shall be 00 through 24.b) The seconds past the minutes shall be 00 through 99.NOTE The value of seconds is not precisely specified because the maximum number of leap seconds that can appear in user data is not constrained. A LEAP-SECOND directive with the ON phrase need not be in effect in order for user data to contain leap seconds.4) Locale-name-1 shall be associated with a locale in the SPECIAL-NAMES paragraph.
15.53.4 Returned value rules1) If locale-name-1 is specified, the locale used for formatting the time is the one associated with locale-name-1; otherwise, the current locale is used. If the locale associated with locale-name-1 is not available, the EC-LOCALE-MISSING exception condition is set to exist.2) The returned value is a character-string containing hours, minutes, and seconds of the time specified by argument-1 in the culturally-appropriate format indicated in the locale by locale field t_fmt.3) The length of the returned value depends on the format indicated in the locale.

FUNCTION LOCALE-TIME (argument-1 [locale-name-1])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

878 ©ISO/IEC 2023

15.54 LOCALE-TIME-FROM-SECONDS function

15.54.1 GeneralThe LOCALE-TIME-FROM-SECONDS function accepts a value in standard numeric time form and returns a character-string containing a time in a culturally-appropriate format specified by a locale.The function type is alphanumeric.
15.54.2 General format

15.54.3 Argument rules1) Argument-1 shall be a numeric value in standard numeric time form.2) Locale-name-1 shall be associated with a locale in the SPECIAL-NAMES paragraph.
15.54.4 Returned value rules1) If locale-name-1 is specified, the locale used for formatting the time is the one associated with locale-name-1; otherwise, the current locale is used. If the locale associated with locale-name-1 is not available, the EC-LOCALE-MISSING exception condition is set to exist.2) The returned value is a character-string containing hours, minutes, and seconds of the time specified by argument-1 in the culturally-appropriate format indicated in the locale by locale field t_fmt.3) The length of the returned value depends on the format indicated in the locale.

FUNCTION LOCALE-TIME-FROM-SECONDS (argument-1 [locale-name-1])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 879

15.55 LOG function

15.55.1 GeneralThe LOG function returns a numeric value that approximates the logarithm to the base e (natural log) of argument-1.The type of this function is numeric.
15.55.2 General format

15.55.3 Argument rules1) Argument-1 shall be of class numeric.2) The value of argument-1 shall be greater than zero.
15.55.4 Returned value rule1) The returned value is the approximation of the logarithm to the base e of argument-1.

FUNCTION LOG (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

880 ©ISO/IEC 2023

15.56 LOG10 function

15.56.1 GeneralThe LOG10 function returns a numeric value that approximates the logarithm to the base 10 of argument-1.The type of this function is numeric.
15.56.2 General format

15.56.3 Argument rules1) Argument-1 shall be of class numeric.2) The value of argument-1 shall be greater than zero.
15.56.4 Returned value rule1) The returned value is the approximation of the logarithm to the base 10 of argument-1.

FUNCTION LOG10 (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 881

15.57 LOWER-CASE function

15.57.1 GeneralThe LOWER-CASE function returns a character string that contains the value of argument-1 with any uppercase letters replaced by their corresponding lowercase letters.The type of this function depends on the type of argument-1 as follows:Argument-1 type Function typeAlphabetic AlphanumericAlphanumeric AlphanumericNational National
15.57.2 General format

15.57.3 Argument rule1) Argument-1 shall be of class alphabetic, alphanumeric, or national and shall be at least one character position in length.
15.57.4 Returned value rules1) A character string with the content of argument-1 is returned, with any uppercase letters replaced by their corresponding lowercase letters.2) When locale-name-1 is specified, the correspondence of uppercase to lowercase letters is determined from locale category LC_CTYPE in the locale associated with locale-name-1.3) When locale-name-1 is not specified and a locale is in effect for character classification, as described in 12.3.6, OBJECT-COMPUTER paragraph, the correspondence of uppercase to lowercase letters is determined from locale category LC_CTYPE.4) When a locale is not in effect, the implementor defines the correspondence of uppercase letters to lowercase letters.5) The character string returned has the same length as argument-1 when there is a one-to-one correspondence between uppercase and lowercase letters. When the correspondence of uppercase and lowercase letters is not one-to-one, the character string returned may be longer or shorter than argument-1 and depends on the content of argument-1 and the correspondence rules that are in effect.6) If there is no corresponding lowercase letter for a given uppercase letter, that letter is unchanged in the returned value; when a locale is in effect for character classification and there is no lowercase correspondence specified in the locale, the letter or letters are unchanged in the returned value.

FUNCTION LOWER-CASE (argument-1 [LOCALE locale-name-1])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

882 ©ISO/IEC 2023

15.58 LOWEST-ALGEBRAIC function

15.58.1 GeneralThe LOWEST-ALGEBRAIC function returns a value that is equal to the lowest algebraic value that may be represented in argument-1.The type of this function depends upon the argument types as follows:Argument type Function typeAlphanumeric NumericInteger IntegerNational NumericNumeric NumericNOTE The types of arguments that are permitted for this function are limited because of the rules that specify the form of the returned value that is associated with the mode of arithmetic that is in effect.The content of any signed numeric data item can be set exactly to the lowest algebraic value permitted for it using the SET statement, regardless of the mode of arithmetic that is in effect.The content of any unsigned numeric data item can be set by any number of constructs to the exact lowest algebraic value permitted for unsigned items, precisely because that value is always zero.
15.58.2 General format

15.58.3 Argument rules1) Argument-1 shall be a data item of category numeric or numeric-edited and shall not be an integer function or numeric function.2) If standard-decimal arithmetic is in effect, argument-1 shall not be a data item whose data description entry specifies a standard binary floating-point usage.3) If standard-binary arithmetic is in effect, argument-1 shall not be a data item whose data description entry specifies a standard decimal floating-point usage.
15.58.4 Returned value rules1) When argument-1 is a signed floating-point numeric-edited item, the data description entry with which argument-1 is described shall be such that, if argument-1 contained the negative value farthest from zero that is permitted according to that data description entry, an IN-ARITHMETIC-RANGE test of argument-1 would return a true value.2) The value returned is equal to the lowest finite algebraic value that may be represented in argument-1.

FUNCTION LOWEST-ALGEBRAIC (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 883

NOTE The following illustrates the expected results for some values of argument-1.Argument-1characteristics Value returnedS999 –999S9(4) BINARY –999999V9(3) 0$**,**9.99BCR –99999.99$**,**9.99 0BINARY-CHAR SIGNED -128 (assuming an 8-bit twos-complement representation)BINARY-CHAR UNSIGNED 0 (assuming an 8-bit twos-compliment representation)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

884 ©ISO/IEC 2023

15.59 MAX function

15.59.1 GeneralThe MAX function returns the content of the argument-1 that contains the maximum value.The type of this function depends upon the argument types as follows:
Argument type Function typeAlphabetic AlphanumericAlphanumeric AlphanumericIndex IndexAll arguments integer IntegerNational NationalNumeric (some arguments may be integer) Numeric

15.59.2 General format

15.59.3 Argument rules1) Argument-1 shall not be of class boolean, message-tag, object, or pointer, nor shall it be a strongly-typed group item.2) All arguments shall be of the same class with the exception that mixing of arguments of alphabetic and alphanumeric classes is allowed.3) Argument-1 shall not be a zero-length literal.
15.59.4 Returned value rules1) The returned value is the content of the argument-1 having the greatest value. The comparisons used to determine the greatest value are made according to the rules for simple conditions. (See 8.8.4.2, Simple relation conditions.)2) If the value of more than one argument-1 is equal to the greatest value, the content of the argument-1 returned is the leftmost argument-1 having that value.3) If the type of the function is alphanumeric or national, the size of the returned value is the same as the size of the selected argument-1.

FUNCTION MAX ({ argument-1 } ...)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 885

15.60 MEAN function

15.60.1 GeneralThe MEAN function returns a numeric value that is the arithmetic mean (average) of its arguments.The type of this function is numeric.
15.60.2 General format

15.60.3 Argument rule1) Argument-1 shall be of class numeric.
15.60.4 Returned value rule1) The equivalent arithmetic expression is as follows:a) For one occurrence of argument-1,(argument-1)b) For two occurrences of argument-1,((argument-11 + argument-12) / 2)c) For n occurrences of argument-1,((argument-11 + argument-12 +... + argument-1n) / n)

FUNCTION MEAN ({ argument-1 } ...)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

886 ©ISO/IEC 2023

15.61 MEDIAN function

15.61.1 GeneralThe MEDIAN function returns the content of the argument whose value is the middle value in the list formed by arranging the arguments in sorted order.The type of this function is numeric.
15.61.2 General format

15.61.3 Argument rule1) Argument-1 shall be of class numeric.
15.61.4 Returned value rules1) When the number of occurrences of argument-1 is odd, the returned value is such that at least half of the occurrences referenced by argument-1 are greater than or equal to the returned value and at least half are less than or equal. For the purposes of the equivalent arithmetic expression, the middle value is referred to as argument-a. The equivalent arithmetic expression is(argument-a)2) When the number of occurrences of argument-1 is even, the returned value is the arithmetic mean of the two middle values. For the purposes of the equivalent arithmetic expression, the two middle values are referred to as argument-b and argument-c. The equivalent arithmetic expression is((argument-b + argument-c) / 2)3) The comparisons used to arrange the argument-1 values in sorted order are made according to the rules for simple conditions. (See 8.8.4.2, Simple relation conditions.)

FUNCTION MEDIAN ({ argument-1 } ...)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 887

15.62 MIDRANGE function

15.62.1 GeneralThe MIDRANGE (middle range) function returns a numeric value that is the arithmetic mean (average) of the values of the minimum argument and the maximum argument.The type of this function is numeric.
15.62.2 General format

15.62.3 Argument rule1) Argument-1 shall be of class numeric.
15.62.4 Returned value rule1) The equivalent arithmetic expression is((FUNCTION MAX (argument-list) + FUNCTION MIN (argument-list)) / 2)where argument-list is the argument-1 list for the MIDRANGE function itself.

FUNCTION MIDRANGE ({ argument-1 } ...)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

888 ©ISO/IEC 2023

15.63 MIN function

15.63.1 GeneralThe MIN function returns the content of the argument-1 that contains the minimum value.The type of this function depends upon the argument types as follows:Argument Type Function typeAlphabetic AlphanumericAlphanumeric AlphanumericIndex IndexAll arguments integer IntegerNational NationalNumeric (some arguments may be integer) Numeric
15.63.2 General format

15.63.3 Argument rules1) Argument-1 shall not be of class boolean, message-tag, object, or pointer, nor shall it be a strongly-typed group item.2) All arguments shall be of the same class with the exception that mixing of arguments of alphabetic and alphanumeric classes is allowed.3) Argument-1 shall not be a zero-length literal.
15.63.4 Returned value rules1) The returned value is the content of the argument-1 having the least value. The comparisons used to determine the least value are made according to the rules for simple conditions. (See 8.8.4.2, Simple relation conditions.)2) If the value of more than one argument-1 is equal to the least value, the content of the argument-1 returned is the leftmost argument-1 having that value.3) If the type of the function is alphanumeric or national, the size of the returned value is the same as the size of the selected argument-1.

FUNCTION MIN ({ argument-1 } ...)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 889

15.64 MOD function

15.64.1 GeneralThe MOD function returns an integer value that is argument-1 modulo argument-2.The type of this function is integer.
15.64.2 General format

15.64.3 Argument rules1) Argument-1 and argument-2 shall be integers.2) The value of argument-2 shall not be zero.
15.64.4 Returned value rule1) The equivalent arithmetic expression is((argument-1) – ((argument-2) * FUNCTION INTEGER ((argument-1) / (argument-2))))where argument-1 and argument-2 for the INTEGER function are the same as the arguments for the MOD function itself.NOTE The following illustrates the expected results for some values of argument-1 and argument-2.Argument-1 Argument-2 Return 11 5 1–11 5 4 11 –5 –4–11 –5 –1

FUNCTION MOD (argument-1 argument-2)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

890 ©ISO/IEC 2023

15.65 MODULE-NAME function

15.65.1 GeneralThe MODULE-NAME function returns the name of one or more of the runtime elements in the currently running COBOL hierarchy. This may be the activating, current, nested, or top-level runtime element depending on the keyword argument specified or a list of all the module names in the hierarchy of the application.The type of this function is alphanumeric.
15.65.2 General format

15.65.3 Argument rule1) The NESTED keyword shall be specified only if the function is specified within a nested program.
15.65.4 Returned value rules1) If the implementation supports dynamic length elementary items, then the returned value is an alphanumeric dynamic length elementary item with no trailing spaces, except that if the function is specified in a COBOL main program and the ACTIVATING keyword is specified, then a single space is returned. If the implementation supports more than one type of dynamic length elementary items, then the implementor shall document which type is used. If the implementation does not support dynamic length elementary items, the implementor shall document how long the fixed length alphanumeric returned item is and whether or not it may include trailing spaces.2) If the information to be returned does not fit into the temporary returned item, then as much information as fits is placed in the temporary returned item and the nonfatal EC-BOUND-FUNC-RET-VALUE exception condition is set to exist.3) If the runtime element that is specified by the keyword argument is not a COBOL runtime element, then the implementor shall document what value is returned.NOTE It is recommended, but not required, that the implementor follow the same rules for non-COBOL runtime elements as they do for COBOL runtime elements.4) Unless otherwise specified, it is implementor defined what form of the module name is returned. The implementor may return the name as specified in the program-id, function-id, or method-id

FUNCTION MODULE-NAME
ACTIVATINGCURRENTNESTEDSTACKTOP-LEVEL

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 891

paragraph. They may also return the name as specified in the AS clause of the Identification Division if used, or they may return the name as known to the operating environment or COBOL runtime.5) If the ACTIVATING keyword is specified and the function is in a COBOL main program, then the returned value shall be a single space. The implementor shall document how a main program is identified. If the function is not specified in a main program, then the returned value is the name of the runtime element that activated the currently running runtime element. This may be by a CALL statement, an INVOKE statement, a function reference, or an inline invocation.6) If the ACTIVATING keyword is specified and the activating statement is within a nested program, then it is implementor defined what value is returned. This may be the name of the nested program or the name of the outermost program containing the nested program.7) If the CURRENT keyword is specified then the returned value is the name of the runtime element of the outermost program of the compilation unit’s code that is currently running.8) If the NESTED keyword is specified, then the returned value is the name, as specified in the PROGRAM-ID, of the currently running, most recently nested program.9) If the STACK keyword is specified, then the returned value is a list of module names separated by semi-colons. The first entry is the name of the runtime element that would be returned if the CURRENT keyword were specified. The penultimate entry is the runtime element name that would be returned if the TOP-LEVEL keyword were specified. The final entry is a single space indicating the operating environment. The series of module names following the first one are the names of the runtime elements that would have been returned if the ACTIVATING keyword were specified within the previous module in the list.10) If the TOP-LEVEL keyword is specified, then the returned value is the name of the runtime element that was activated by the operating environment to initiate the currently running run unit or application.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

892 ©ISO/IEC 2023

15.66 NATIONAL-OF function

15.66.1 GeneralThe NATIONAL-OF function returns a character string containing the national character representation of the characters in the argument.The type of the function is national.
15.66.2 General format

15.66.3 Argument rules1) Argument-1 shall be of class alphabetic or class alphanumeric.2) Argument-2 shall be of category national and shall be one character in length. Argument-2 specifies a national substitution character for use in conversion of alphanumeric characters for which there is no corresponding national character.3) Argument-1 shall not be a zero-length literal.
15.66.4 Returned value rules1) A character string is returned with each alphanumeric character in argument-1 converted to its corresponding national coded character set representation. The implementor defines the correspondence of characters.2) If argument-2 is specified, each character in argument-1 that has no corresponding national representation is converted to the substitution character specified by argument-2.3) If argument-2 is unspecified and argument-1 contains an alphanumeric character for which there is no corresponding national character representation, an implementor-defined substitution character is used as the corresponding national character and the EC-DATA-CONVERSION exception condition is set to exist.4) The length of the returned value is the number of character positions of usage national required to hold the converted argument and depends on the number of characters contained in argument-1.

FUNCTION NATIONAL-OF (argument-1 [argument-2])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 893

15.67 NUMVAL function

15.67.1 GeneralThe NUMVAL function returns the numeric value represented by the character string specified by argument-1. Leading and trailing spaces are ignored.The type of this function is numeric.NOTE Locale-based functionality equivalent to NUMVAL can be obtained by using the NUMVAL-C function with the LOCALE keyword. A currency sign is optional in NUMVAL-C. The locale category LC_MONETARY will be used because there is no sign convention specified in locale category LC_NUMERIC.
15.67.2 General format

15.67.3 Argument rules1) Argument-1 shall be an alphanumeric or national literal or an alphanumeric or national data item whose content has one of the following two formats:

or

where — digit is a string of one or more of the digits 0 through 9, and— space-string is a string of one or more space characters.— If argument-1 is alphanumeric, CR or DB, if specified, shall be the letters 'CR' or 'DB' in uppercase or lowercase, or a combination of uppercase and lowercase, in the computer's alphanumeric character set.— If argument-1 is national, CR or DB, if specified, shall be the letters 'CR' or 'DB' in uppercase or lowercase, or a combination of uppercase and lowercase, in the computer's national character set.2) Leading and trailing spaces in argument-1 are ignored. Embedded spaces in argument-1 are ignored only if they appear before the first digit.

FUNCTION NUMVAL (argument-1)

 [space-string] +– [space-string] digit [. [digit]]. digit

 [space-string]

 [space-string] digit [. [digit]]. digit

 [space-string] +–CRDB [space-string]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

894 ©ISO/IEC 2023

3) If native arithmetic is in effect, the total number of digits in argument-1 shall not exceed 31.4) If standard-binary arithmetic is in effect, the total number of digits in argument-1 shall not exceed 35. If standard-decimal arithmetic is in effect, the total number of digits in argument-1 shall not exceed 34.5) The character period in argument-1 represents the decimal separator. When the DECIMAL-POINT IS COMMA clause is specified, the character comma shall be used in argument-1 instead of the character period to represent the decimal separator
15.67.4 Returned value rules1) The returned value is the numeric value represented by argument-1.2) If argument-1 contains CR, DB, or the minus sign, the returned value is negative.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 895

15.68 NUMVAL-C function

15.68.1 GeneralThe NUMVAL-C function returns the numeric value represented by the character string specified by argument-1. Optionally, the currency string, the sign convention, the grouping separator, and the decimal separator permitted in the character string may be specified by locale category LC_MONETARY, or the currency string may be specified by argument-2.The type of this function is numeric.
15.68.2 General format

15.68.3 Argument rules1) Argument-1 shall be of category alphanumeric or national.2) Argument-2, if specified, shall be of the same class as argument-1. Argument-2 shall contain at least one non-space character. Any leading or trailing spaces in argument-2 are ignored. Argument-2 shall not contain any of the digits 0 through 9; the characters '*', '+', '–', ',', or '.'; or the two consecutive letters 'CR' or 'DB', whether in uppercase or lowercase or a combination of uppercase and lowercase. Argument-2 specifies a currency string that may appear in argument-1.NOTE The currency string specified by argument-2 can contain spaces, in addition to the leading and trailing spaces.3) If neither argument-2 nor the LOCALE keyword is specified, there shall be only one currency string for the compilation unit, either the default currency sign or a currency string specified in the SPECIAL-NAMES paragraph.4) If the LOCALE keyword is not specified, the following rules apply:a) Argument-1 shall have one of the following two formats:

or

FUNCTION NUMVAL-C (argument-1 LOCALE [locale-name-1]argument-2 [ANYCASE])

 [space-string] +– [space-string] [currency] [space-string] digit [, digit] ... [. [digit]]. digit

 [space-string]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

896 ©ISO/IEC 2023

where— digit is a string of one or more of the digits 0 through 9;— space-string is a string of one or more space characters— currency is a string of one or more characters matching character for character the currency string in argument-2, if specified, or matching character for character the default currency sign if argument-2 is not specified.b) If argument-1 is alphanumeric, CR or DB, if specified, shall be the letters 'CR' or 'DB' in uppercase or lowercase, or a combination of uppercase and lowercase, in the computer's alphanumeric character set.c) If argument-1 is national, CR or DB, if specified, shall be the letters 'CR' or 'DB' in uppercase or lowercase, or a combination of uppercase and lowercase, in the computer's national character set.d) The character period in argument-1 represents the decimal separator. The character comma in argument-1 represents the grouping separator. When the DECIMAL-POINT IS COMMA clause is specified, the character comma shall be used in argument-1 to represent the decimal separator and the character period shall be used to represent the grouping separator.e) Leading and trailing spaces in argument-1 are ignored.f) If the ANYCASE keyword is specified, the matching rules for detecting a currency string in argument-1 are as if all uppercase letters in argument-1 and in the currency string were replaced by their corresponding lowercase letters as specified in the rules for the LOWER-CASE function without the LOCALE argument.5) If the LOCALE keyword is specified, the following rules apply:a) Locale-name-1, if specified, shall be associated with a locale in the SPECIAL-NAMES paragraph; locale category LC_MONETARY in the referenced locale is used in evaluating the monetary format in argument-1. If locale-name-1 is not specified, category LC_MONETARY in the current locale is used. If the required locale is not available, the EC-LOCALE-MISSING exception condition is set to exist.b) The content of argument-1 shall be a string of digits and characters in a format consistent with the specifications of locale category LC_MONETARY in the locale in use. The following rules apply:

 [space-string] [currency] [space-string] digit [, digit] ... [. [digit]]. digit

 [space-string] +–CRDB

[space-string]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 897

1. If the ANYCASE keyword is specified, the matching rules for detecting a currency string in argument-1 are case-insensitive. If the ANYCASE keyword is not specified, the matching rules for detecting a currency string are case-sensitive.2. Usage national representation of locale fields is used for purposes of matching argument-1. If argument-1 is of category alphanumeric, usage national representation of argument-1 is used for purposes of matching locale fields.3. Argument-1 may contain a currency string that matches either locale field currency_symbol or the first three characters of locale field int_curr_symbol, in accordance with locale fields p_cs_precedes and n_cs_precedes.If the ANYCASE keyword is specified, the matching rules for detecting a currency string in argument-1 are as if all uppercase letters in argument-1 and the locale field currency_symbol and the first three characters of local field int_curr_symbol were replaced by their corresponding lowercase letters as specified in the rules for the LOWER-CASE function with LOCALE locale-name-1 specified.4. Argument-1 may contain a positive sign in accordance with locale fields positive_sign and p_sign_posn or a negative sign in accordance with locale fields negative_sign and n_sign_posn.5. Argument-1 may contain a decimal separator in accordance with locale fields mon_decimal_point, int_frac_digits, and frac_digits.6. Argument-1 may contain one or more grouping separators in accordance with locale fields mon_thousands_sep and mon_grouping.7. Argument-1 shall contain at least one digit and may contain leading or trailing spaces.6) If native arithmetic is in effect, the total number of digits in argument-1 shall not exceed 31.7) If standard-binary arithmetic is in effect, the total number of digits in argument-1 shall not exceed 35. If standard-decimal arithmetic is in effect, the total number of digits in argument-1 shall not exceed 34.
15.68.4 Returned value rules1) The returned value is the numeric value represented by argument-1.2) The currency string, if any, and any grouping separators preceding the decimal separator are ignored.3) When the LOCALE keyword is specified, the returned value is negative if argument-1 contains a negative sign convention as specified by locale fields negative_sign and n_sign_posn. When the LOCALE keyword is not specified, the returned value is negative if argument-1 contains CR, DB, or a minus sign.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

898 ©ISO/IEC 2023

15.69 NUMVAL-F function

15.69.1 GeneralThe NUMVAL-F function returns the value or an approximation of the value represented by the character string specified by argument-1.The type of this function is numeric.
15.69.2 General format

15.69.3 Argument rules1) Argument-1 shall be an alphanumeric or national literal or data item whose content has the following format:

where— digit is a string of one or more of the digits 0 through 9;— space-string is a string of one or more space characters;— n is one, two, three, or four digits representing the exponent.— If argument-1 is alphanumeric, E shall be either an uppercase or lowercase E in the computer's alphanumeric character set.— If argument-1 is national, E shall be either an uppercase or lowercase E in the computer's national character set.2) If native arithmetic is in effect, the total number of digits in the significand shall not exceed 31.3) If standard-binary arithmetic is in effect, the total number of digits in the significand of argument-1 shall not exceed 35. If standard-decimal arithmetic is in effect, the total number of digits in the significand of argument-1 shall not exceed 34.4) The character period in argument-1 represents the decimal separator. When the DECIMAL-POINT IS COMMA clause is specified, the character comma shall be used in argument-1 instead of the character period to represent the decimal separator.5) Leading and trailing spaces in argument-1 are ignored. Embedded spaces in argument-1 are ignored except between the first numeric digit and the last digit that precedes a letter 'E'.

FUNCTION NUMVAL-F (argument-1)

[space-string] + - [space-string] digit [. [digit]]. digit

 [space-string]

 E [space-string] +–

 [space-string] n [space-string]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 899

15.69.4 Returned values rules1) Leading, trailing, and embedded spaces are ignored.2) If native arithmetic or standard-binary arithmetic is in effect, the returned value is an approximation of the numeric value represented by argument-1.3) If standard-decimal arithmetic is in effect, the returned value is the numeric value represented by argument-1.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

900 ©ISO/IEC 2023

15.70 ORD function

15.70.1 GeneralThe ORD function returns an integer value that is the ordinal position of argument-1 in the program collating sequence. The lowest ordinal position is 1.The type of this function is integer.
15.70.2 General format

15.70.3 Argument rule1) Argument-1 shall be one character position in length and shall be of category alphabetic, alphanumeric, or national.
15.70.4 Returned value rules1) If the class of argument-1 is alphabetic or alphanumeric, the returned value is the ordinal position of argument-1 in the current alphanumeric program collating sequence. 2) If the class of argument-1 is national, the returned value is the ordinal position of argument-1 in the current national program collating sequence.

FUNCTION ORD (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 901

15.71 ORD-MAX function

15.71.1 GeneralThe ORD-MAX function returns a value that is the ordinal number of the argument-1 that contains the maximum value.The type of this function is integer.
15.71.2 General format

15.71.3 Argument rules1) Argument-1 shall not be of class boolean, message-tag, object, or pointer, nor shall it be a strongly-typed group item.2) Argument-1 shall not be a zero-length literal.3) All arguments shall be of the same class with the exception that mixing of arguments of alphabetic and alphanumeric classes is allowed.
15.71.4 Returned value rules1) The returned value is the ordinal number that corresponds to the position of the argument-1 having the greatest value in the argument-1 series.2) The comparisons used to determine the greatest valued argument are made according to the rules for simple conditions. (See 8.8.4.2, Simple relation conditions.)3) If the value of more than one argument-1 is equal to the greatest value, the number returned corresponds to the position of the leftmost argument-1 having that value.

FUNCTION ORD-MAX ({ argument-1 } ...)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

902 ©ISO/IEC 2023

15.72 ORD-MIN function

15.72.1 GeneralThe ORD-MIN function returns a value that is the ordinal number of the argument that contains the minimum value.The type of this function is integer.
15.72.2 General format

15.72.3 Argument rules1) Argument-1 shall not be of class boolean, message-tag, object, or pointer, nor shall it be a strongly-typed group item.2) Argument-1 shall not be a zero-length literal.3) All arguments shall be of the same class with the exception that mixing of arguments of alphabetic and alphanumeric classes is allowed.
15.72.4 Returned value rules1) The returned value is the ordinal number that corresponds to the position of the argument-1 having the least value in the argument-1 series.2) The comparisons used to determine the least valued argument-1 are made according to the rules for simple conditions. (See 8.8.4.2, Simple relation conditions.)3) If the value of more than one argument-1 is equal to the least value, the number returned corresponds to the position of the leftmost argument-1 having that value.

FUNCTION ORD-MIN ({ argument-1 } ...)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 903

15.73 PI function

15.73.1 GeneralThe PI function returns a value that is an approximation of π, the ratio of the circumference of a circle to its diameter.The type of this function is numeric.
15.73.2 General format

15.73.3 Returned value rules1) If native arithmetic is in effect, the returned value is an implementor-defined approximation of the arithmetic expression(3 + 0.1415926535897932384626433832795)2) If standard-binary arithmetic is in effect, the returned value is the exact value of the arithmetic expression (16,312,081,666,030,376,401,667,486,162,748,272 / (2 ** 112)).3) If standard-decimal arithmetic is in effect, the returned value is exactly3.141592653589793238462643383279503.

FUNCTION PI

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

904 ©ISO/IEC 2023

15.74 PRESENT-VALUE function

15.74.1 GeneralThe PRESENT-VALUE function returns a value that approximates the present value of a series of future period-end amounts specified by argument-2 at a discount rate specified by argument-1.The type of this function is numeric.
15.74.2 General format

15.74.3 Argument rules1) Argument-1 and argument-2 shall be of the class numeric.2) The value of argument-1 shall be greater than –1.
15.74.4 Returned value rule1) The equivalent arithmetic expression is as follows:a) For one occurrence of argument-2,(argument-2 / (1 + argument-1))b) For two occurrences of argument-2,(argument-21 / (1 + argument-1) + argument-22 / (1 + argument-1) ** 2)c) For n occurrences of argument-2, the equivalent arithmetic expression is(FUNCTION SUM ((argument-21 / (1 + argument-1) ** 1) ... (argument-2n / (1 + argument-1) ** n)))where argument-1 and argument-2i in the terms of the SUM function are the same as the arguments for the PRESENT-VALUE function itself.

FUNCTION PRESENT-VALUE (argument-1 { argument-2 } ...)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 905

15.75 RANDOM function

15.75.1 GeneralThe RANDOM function returns a numeric value that is a pseudo-random number from a rectangular distribution.The type of this function is numeric.
15.75.2 General format

15.75.3 Argument rules1) Argument-1 shall be of class numeric.2) If argument-1 is specified, it shall be zero or a positive integer. It is used as the seed value to generate a sequence of pseudo-random numbers.3) If a subsequent reference specifies argument-1, a new sequence of pseudo-random numbers is started.4) If the first reference to this function in the run unit does not specify argument-1, the seed value is defined by the implementor.5) In each case, subsequent references without specifying argument-1 return the next number in the current sequence.
15.75.4 Returned value rules1) The returned value is greater than or equal to zero and less than one.2) For a given seed value on a given implementation, the sequence of pseudo-random numbers will always be the same.3) The implementor shall specify the subset of the domain of argument-1 values that will yield distinct sequences of pseudo-random numbers. This subset shall include the values from 0 through at least 32767.

FUNCTION RANDOM [([argument-1])]

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

906 ©ISO/IEC 2023

15.76 RANGE function

15.76.1 GeneralThe RANGE function returns a value that is equal to the value of the maximum argument minus the value of the minimum argument.The type of this function depends upon the argument types as follows:Argument type Function typeAll arguments integer IntegerNumeric (some arguments may be integer) Numeric
15.76.2 General format

15.76.3 Argument rule1) Argument-1 shall be of class numeric.
15.76.4 Returned value rule1) The equivalent arithmetic expression is(FUNCTION MAX (argument-list) – FUNCTION MIN (argument-list))where argument-list is the argument-1 list for the RANGE function itself.

FUNCTION RANGE ({ argument-1 } ...)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 907

15.77 REM function

15.77.1 GeneralThe REM function returns a numeric value that is the remainder of argument-1 divided by argument-2.The type of this function is numeric.
15.77.2 General format

15.77.3 Argument rules1) Argument-1 and argument-2 shall be of class numeric.2) The value of argument-2 shall not be zero.
15.77.4 Returned value rule1) The equivalent arithmetic expression is((argument-1) – ((argument-2) * FUNCTION INTEGER-PART ((argument-1) / (argument-2))))where argument-1 and argument-2 of the INTEGER-PART function are the same as the arguments for the REM function itself.

FUNCTION REM (argument-1 argument-2)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

908 ©ISO/IEC 2023

15.78 REVERSE function

15.78.1 GeneralThe REVERSE function returns a character string of exactly the same length as argument-1 and whose characters are exactly the same as those of argument-1, except that they are in reverse order.The type of the function depends on the argument type as follows:Argument type Function typeAlphabetic AlphanumericAlphanumeric AlphanumericNational National
15.78.2 General format

15.78.3 Argument rule1) Argument-1 shall be of class alphabetic, alphanumeric, or national and shall be at least one character position in length.
15.78.4 Returned value rule1) If argument-1 is a character string of length n, the returned value is a character string of length n such that for 1 <= j <= n, the character in position j of the returned value is the character from position n – j + 1 of argument-1.

FUNCTION REVERSE (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 909

15.79 SECONDS-FROM-FORMATTED-TIME function

15.79.1 GeneralThe SECONDS-FROM-FORMATTED-TIME function converts a time that is in a specified format to a numeric value representing the number of seconds after midnight.The type of the function is numeric.
15.79.2 General format

15.79.3 Argument rules1) Argument-1 shall be a national or alphanumeric literal.2) The content of argument-1 shall be either a time format or a combined date and time format.3) Argument-2 shall have the same type as argument-1.4) If argument-1 is a time format, the contents of argument-2 shall be a time in that format.5) If argument-1 is a combined date and time format, the contents of argument-2 shall be a valid date and time in that format.
15.79.4 Returned Value rule1) The equivalent arithmetic expression is as follows:((H * 3600) + (M * 60) + S)where H is the portion of argument-2 corresponding to the hours subfield of the format in argument-1, M is the portion of argument-2 corresponding to the minutes subfield of argument-1, and S is the portion of argument-2 corresponding to the seconds subfield of argument-1.

FUNCTION SECONDS-FROM-FORMATTED-TIME (argument-1 argument-2)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

910 ©ISO/IEC 2023

15.80 SECONDS-PAST-MIDNIGHT function

15.80.1 GeneralThe SECONDS-PAST-MIDNIGHT function returns a value in standard numeric time form that represents the current local time of day provided by the system on which the function is evaluated.The type of this function is numeric.
15.80.2 General format

15.80.3 Returned value rules1) The returned value is in standard numeric time form.2) The returned value is the current local time of day provided by the system on which the function is evaluated, expressed in seconds past midnight.3) The implementor shall specify the precision to which this value is returned.4) The implementor shall specify whether the returned value may be greater than or equal to 86,400 when the LEAP-SECOND directive with the ON phrase is in effect.

FUNCTION SECONDS-PAST-MIDNIGHT

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 911

15.81 SIGN function

15.81.1 GeneralThe SIGN function returns +1, 0, or –1 depending on the sign of the argument.The type of the function is integer.
15.81.2 General format

15.81.3 Argument rule1) Argument-1 shall be of class numeric.
15.81.4 Returned value rule1) The equivalent arithmetic expression is as follows:a) When the value of argument-1 is greater than zero,(1)b) When the value of argument-1 is zero,(0)c) When the value of argument-1 is less than zero,(–1)

FUNCTION SIGN (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

912 ©ISO/IEC 2023

15.82 SIN function

15.82.1 GeneralThe SIN function returns a numeric value that approximates the sine of an angle or arc, expressed in radians, that is specified by argument-1.The type of this function is numeric.
15.82.2 General format

15.82.3 Argument rule1) Argument-1 shall be of class numeric.
15.82.4 Returned value rule1) The returned value is the approximation of the sine of argument-1 and is greater than or equal to –1 and less than or equal to +1.

FUNCTION SIN (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 913

15.83 SMALLEST-ALGEBRAIC function

15.83.1 GeneralThe SMALLEST-ALGEBRAIC function returns a value that is equal to the smallest algebraic value that may represent the difference between two values represented in argument-1.The type of this function depends upon the argument types as follows:Argument type Function typeInteger IntegerNumeric NumericNOTE The types of arguments that are permitted for this function are limited because of the rules that specify the form of the returned value that are associated with the mode of arithmetic that is in effect.
15.83.2 General format

15.83.3 Argument rules1) Argument-1 shall be a data item of category numeric and shall not be an integer function or numeric function.2) If standard-decimal arithmetic is in effect, argument-1 shall not be a data item whose data description entry specifies a standard-binary floating-point usage.3) If standard-binary arithmetic is in effect, argument-1 shall not be a data item whose data description entry specifies a standard-decimal floating-point usage.4) If native arithmetic is in effect, the usage restrictions for argument-1 shall be implementor-defined.
15.83.4 Returned value rules1) When argument-1 is a floating-point numeric item, the data description entry with which argument-1 is described shall be such that, if argument-1 contained any value that is permitted according to that data description entry, an IN-ARITHMETIC-RANGE test of argument 1 would return a true value.2) The value returned is equal to the positive algebraic value of smallest finite magnitude that may be used to increment argument-1.NOTE The following illustrates the expected results for some values of argument-1.

Argument-1
Characteristics Value returned S999 +1 S9PP +100

FUNCTION SMALLEST-ALGEBRAIC (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

914 ©ISO/IEC 2023

S9(4) BINARY +1 99V9(3) +.001 BINARY-CHAR SIGNED +1 BINARY-CHAR UNSIGNED +1

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 915

15.84 SQRT function

15.84.1 GeneralThe SQRT function returns a numeric value that approximates the square root of argument-1.The type of this function is numeric.
15.84.2 General format

15.84.3 Argument rules1) Argument-1 shall be of class numeric.2) The value of argument-1 shall be zero or positive.
15.84.4 Returned value rules1) When standard-binary arithmetic, or standard-decimal arithmetic is in effect, argument-1 is not rounded.2) When standard-decimal arithmetic is in effect, the returned value is the absolute value of the exact square root of argument-1 rounded to 34 digits according to the rules for standard-decimal arithmetic.3) When standard-binary arithmetic is in effect, the returned value is the absolute value of the exact square root of argument-1 rounded to 113 significant bits in the significand according to the rules for standard-binary arithmetic.4) When native arithmetic is in effect, the returned value is the absolute value of the approximation of the square root of argument-1.

FUNCTION SQRT (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

916 ©ISO/IEC 2023

15.85 STANDARD-COMPARE function

15.85.1 GeneralThe STANDARD-COMPARE function returns a character indicating the result of comparing argument-1 and argument-2 using a cultural ordering table.The function type is alphanumeric.
15.85.2 General format

15.85.3 Argument rules1) Argument-1 shall be of class alphabetic, alphanumeric, or national.2) Argument-2 shall be of class alphabetic, alphanumeric, or national.3) Argument-1 and argument-2 may be of different classes.4) Neither argument-1 nor argument-2 shall be a zero-length literal.5) Ordering-name-1, if specified, shall be associated with a cultural ordering table in the ORDER TABLE clause of the SPECIAL-NAMES paragraph. Ordering-name-1 identifies the ordering table to be used for the comparison. If ordering-name-1 is not specified, the default ordering table 'ISO 14651_2020_TABLE1' described in Annex A of ISO/IEC 14651:2020 shall be used.6) Argument-4, if specified, shall be a positive nonzero integer.
15.85.4 Returned value rules1) If argument-4 is unspecified, the highest level defined in the ordering table is used for the comparison.2) If the cultural ordering table is not available on the processor, or the specified ordering level is not available, or the level number specified by argument-4 is not defined in the ordering table, the EC-ORDER-NOT-SUPPORTED exception condition is set to exist.3) If the arguments are of different classes, and one is national, the other argument is converted to class national for purposes of comparison.4) For purposes of comparison, trailing spaces are truncated from the operands except that an operand consisting of all spaces is truncated to a single space.5) Argument-1 and argument-2 are compared in accordance with the ordering table and ordering level being used.

FUNCTION STANDARD-COMPARE (argument-1 argument-2 [ordering-name-1] [argument-4])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 917

NOTE This comparison is culturally sensitive and the default ordering table is acceptable for most cultures. It is not necessarily a character-by-character comparison and not necessarily a case-sensitive comparison. In order to use this function, users can understand the types of comparisons specified by ISO/IEC 14651:2020 and the ordering tables in use for their installation.6) The returned value is: "=" if the arguments compare equal,"<" if argument-1 is less than argument-2,">" if argument-1 is greater than argument-2.7) The length of the returned value is 1.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

918 ©ISO/IEC 2023

15.86 STANDARD-DEVIATION function

15.86.1 GeneralThe STANDARD-DEVIATION function returns a numeric value that approximates the standard deviation of its arguments.The type of this function is numeric.
15.86.2 General format

15.86.3 Argument rule1) Argument-1 shall be of class numeric.
15.86.4 Returned value rule1) The equivalent arithmetic expression is as follows:(FUNCTION SQRT (FUNCTION VARIANCE (argument-list)))where argument-list is the argument-1 list for the STANDARD-DEVIATION function itself.

FUNCTION STANDARD-DEVIATION ({ argument-1 } ...)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 919

15.87 SUBSTITUTE function

15.87.1 GeneralThe SUBSTITUTE function returns a character string that contains the characters in the first argument replacing any occurrences of the character string in the second argument with the character string in the third argument.The type of the function depends on the argument type of argument-1 as follows:Argument type Function typeAlphabetic AlphanumericAlphanumeric AlphanumericNational National
15.87.2 General format

15.87.3 Argument rules1) Argument-1 shall be an identifier that references a data item or identifier that is class alphabetic, alphanumeric, or national, or an alphanumeric or national literal.2) When argument-1 is an identifier that is class alphabetic or alphanumeric, argument-2 and argument-3 shall be identifiers that are either class alphabetic or class alphanumeric or alphanumeric literals. When argument-1 is an identifier that is class national, argument-2 and argument-3 shall be identifiers or literals that are class national.3) Neither argument-1 nor argument-2 shall be of zero length.
15.87.4 Returned value rules1) If argument-1 or any argument-2 is of zero length, an EC-ARGUMENT-FUNCTION exception condition is set to exist, the returned value is of zero length, and function execution is terminated.2) The returned value is all of the characters in argument-1 excepting those characters that match argument-2, that are replaced by the characters in argument-3.3) The returned value is populated as follows: The characters in argument-1 are copied into the returned value from left to right until there is a match with the substring beginning at the current character position in argument-1 for the length of argument-2. The characters in argument-3 are then copied to the return value, and execution of the function proceeds from the character position that is equal to the current character position of argument-1 plus the length of argument-2. All

FUNCTION SUBSTITUTE argument-1 [ANYCASE] FIRST LAST argument-2 argument-3

 ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

920 ©ISO/IEC 2023

occurrences of argument-2 within argument-1 shall be substituted in argument-1 when copied to the return value except:a) If FIRST is specified, only the first occurrence of argument-2 shall be substituted in argument-1 when copied to the return value, elseb) If LAST is specified, only the last occurrence of argument-2 shall be substituted in argument-1 when copied to the return value.4) For each subsequent occurrence of an argument-2 and argument-3 pair, if any, the execution starts from the first character position following the previous substitution.5) If the ANYCASE keyword is specified, the matching rules for detecting argument-2 in argument-1 are as if all uppercase letters in both argument-1 and argument-2 were replaced by their corresponding lowercase letters as specified in the rules for the LOWER-CASE function without the LOCALE argument.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 921

15.88 SUM function

15.88.1 GeneralThe SUM function returns a value that is the sum of the arguments.The type of this function depends upon the argument types as follows:Argument type Function typeAll arguments integer IntegerNumeric (some arguments may be integer) Numeric
15.88.2 General format

15.88.3 Argument rule1) Argument-1 shall be of class numeric.
15.88.4 Returned value rule1) The equivalent arithmetic expression is as follows:a) For one occurrence of argument-1,(argument-1)b) For two occurrences of argument-1,(argument-11 + argument-12)c) For n occurrences of argument-1,(argument-11 + argument-12 + ... + argument-1n)

FUNCTION SUM ({ argument-1 } ...)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

922 ©ISO/IEC 2023

15.89 TAN function

15.89.1 GeneralThe TAN function returns a numeric value that approximates the tangent of an angle or arc, expressed in radians, that is specified by argument-1.The type of this function is numeric.
15.89.2 General format

15.89.3 Argument rule1) Argument-1 shall be of class numeric.
15.89.4 Returned value rule1) The returned value is the approximation of the tangent of argument-1.

FUNCTION TAN (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 923

15.90 TEST-DATE-YYYYMMDD function

15.90.1 GeneralThe TEST-DATE-YYYYMMDD function tests whether a date in standard date form (YYYYMMDD) is a valid date in the Gregorian calendar. Argument-1 of the INTEGER-OF-DATE function is required to be in standard date form.The type of this function is integer.
15.90.2 General format

15.90.3 Argument rule1) Argument-1 shall be an integer.
15.90.4 Returned value rule1) The returned value is:a) If the value of argument-1 is less than 16 010 000 or greater than 99 999 999,(1)NOTE 1 The year is not within the range 1601 to 9999.b) Otherwise, if the value of FUNCTION MOD (argument-1 10000) is less than 100 or greater than 1299, (2)NOTE 2 The month is not within the range 1 through 12.c) Otherwise, if the value of FUNCTION MOD (argument-1 100) is less than 1 or greater than the number of days in the month determined by FUNCTION INTEGER (FUNCTION MOD (argument-1 10000) / 100) of the year determined by FUNCTION INTEGER (argument-1 / 10000),(3)NOTE 3 The day is not valid for the given year and month.d) Otherwise,(0) NOTE 4 The date is valid.

FUNCTION TEST-DATE-YYYYMMDD (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

924 ©ISO/IEC 2023

15.91 TEST-DAY-YYYYDDD function

15.91.1 GeneralThe TEST-DAY-YYYYDDD function tests whether a date in Julian date form (YYYYDDD) is a valid date in the Gregorian calendar. Argument-1 of the INTEGER-OF-DAY function is required to be in Julian date form.The type of this function is integer.
15.91.2 General format

15.91.3 Argument rule1) Argument-1 shall be an integer.
15.91.4 Returned value rule1) The returned value is:a) If the value of argument-1 is less than 1 601 000 or greater than 9 999 999,(1)NOTE 1 The year is not within the range 1601 to 9999.b) Otherwise, if the value of FUNCTION MOD (argument-1 1000) is less than 1 or greater than the number of days in the year determined by FUNCTION INTEGER (argument-1 / 1000),(2)NOTE 2 The day is not valid in the given year.c) Otherwise,(0) NOTE 3 The date is valid.

FUNCTION TEST-DAY-YYYYDDD (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 925

15.92 TEST-FORMATTED-DATETIME function

15.92.1 GeneralThe TEST-FORMATTED-DATETIME function tests whether a data item representing a date, a time, or a combined date and time is valid according to the specified format.The type of this function is integer.
15.92.2 General format

15.92.3 Argument rules1) Argument-1 shall be a national or alphanumeric literal. 2) The content of argument-1 shall be either a date format, a time format, or a combined date and time format. Argument-2 shall be of the same type as argument-1.NOTE The permitted values associated with date and time formats are specified in 15.3.1, Format arguments to international date and time functions.
15.92.4 Returned value rules1) If no format problems or range problems occur during the evaluation of argument-2 according to the format in argument-1, the value returned is zero. Otherwise, the value returned is the ordinal character position at which the first error in argument-2 was detected.NOTE Given FUNCTION TEST-FORMATTED-DATETIME ("yyyymmdd", A-DATE), where A-DATE is an 8-character data item, if A-DATE contained the value "20051314", the returned value would be 6, indicating that the "3" is in error, because the month portion of A-DATE (character positions 5 and 6) contains "13". The character "3" occupies the first position in which it can be determined that an error has occurred. If A-DATE instead contained the value "15990316", the returned value would be "2" indicating that the second character, "5", is in error. The character "5" occupies the first position in which it can be determined that the year is less than 1600.

FUNCTION TEST-FORMATTED-DATETIME (argument-1 argument-2)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

926 ©ISO/IEC 2023

15.93 TEST-NUMVAL function

15.93.1 GeneralThe TEST-NUMVAL function verifies that the contents of argument-1 conform to the specification for argument-1 of the NUMVAL function.The type of this function is integer.
15.93.2 General format

15.93.3 Argument rule1) Argument-1 shall be an alphanumeric or national literal or a data item of class alphanumeric or national.
15.93.4 Returned value rule1) The returned value is:a) If the content of argument-1 conforms to the argument rules for the NUMVAL function,(0)b) Otherwise, if one or more characters are in error, the position of the first character in error,1. Because one or more spaces following one or more digits is valid, if one or more spaces are embedded within a string of numeric characters, the returned value is the position of the first non-space character following the spaces. If argument-1 is '0 1', the returned value will be 3.2. If native arithmetic is in effect, because the character in error for an argument that is greater than 31 digits is the 32nd digit, the returned value is the position of the 32nd digit if no prior error is found.3. If standard-binary arithmetic is in effect, and the argument has more than 35 digits, the returned value is the position of the 36th digit if no prior error has been found. 4. If standard-decimal arithmetic is in effect, and the argument has more than 34 digits, the returned value is the position of the 35th digit if no prior error has been found.c) Otherwise,(FUNCTION LENGTH (argument-1) + 1). NOTE These errors include, but are not limited to:– argument-1 is zero-length,

FUNCTION TEST-NUMVAL (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 927

– argument-1 contains only spaces,– argument-1 contains valid characters but is incomplete, such as the string ' +.'.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

928 ©ISO/IEC 2023

15.94 TEST-NUMVAL-C function

15.94.1 GeneralThe TEST-NUMVAL-C function verifies that the contents of argument-1 conform to the specification for argument-1 of the NUMVAL-C function. The purpose of this function is to allow the user to verify that the NUMVAL-C function will produce a valid numeric result for a given set of arguments.The type of this function is integer.
15.94.2 General format

15.94.3 Argument rule1) The argument rules for the TEST-NUMVAL-C function are the same as those specified in 15.68, NUMVAL-C function, Arguments.
15.94.4 Returned value rule1) The returned value is:a) If the content of argument-1 conforms to the argument rules for the NUMVAL-C function,(0)b) Otherwise, if one or more characters are in error, the position of the first character in error,1. Because one or more spaces following one or more digits is valid, if one or more spaces are embedded within a string of numeric characters, the returned value is the position of the first non-space character following the spaces. If argument-1 is '0 1', the returned value will be 3.2. If native arithmetic is in effect, because the character in error for an argument that is greater than 31 digits is the 32nd digit, the returned value is the position of the 32nd digit if no prior error is found.3. If standard-binary arithmetic is in effect, and the argument has more than 35 digits, the returned value is the position of the 36th digit if no prior error has been found. 4. If standard-decimal arithmetic is in effect, and the argument has more than 34 digits, the returned value is the position of the 35th digit if no prior error has been found.c) Otherwise,(FUNCTION LENGTH (argument-1) + 1).

FUNCTION TEST-NUMVAL-C (argument-1 LOCALE [locale-name-1]argument-2 [ANYCASE])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 929

NOTE These errors include, but are not limited to:– argument-1 is zero-length,– argument-1 contains only spaces,– argument-1 contains valid characters but is incomplete, such as the string ' +.'.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

930 ©ISO/IEC 2023

15.95 TEST-NUMVAL-F function

15.95.1 GeneralThe TEST-NUMVAL-F function verifies that the contents of argument-1 conform to the specification for argument-1 of the NUMVAL-F function.The type of this function is integer.
15.95.2 General format

15.95.3 Argument rule1) Argument-1 shall be an alphanumeric or national literal or a data item of class alphanumeric or national.
15.95.4 Returned value rule1) The returned value is: a) If the content of argument-1 conforms to the argument rules for the NUMVAL-F function,(0)b) Otherwise, if one or more characters are in error, the position of the first character in error,1. Because one or more spaces following one or more digits is valid, if one or more spaces are embedded within a string of numeric characters, the returned value is the position of the first non-space character following the spaces. If argument-1 is '0 1E+2', the returned value will be 3.2. If native arithmetic is in effect, the argument contains a significand longer than 31 digits, and no prior error in the argument has been found, the returned value is the position of the 32nd digit of the significand because the character in error for the significand of an argument that is greater than 31 digits is the 32nd digit.3. If standard-binary arithmetic is in effect, the argument contains a significand longer than 35 digits, and no prior error in the argument has been found, the returned value is the position of the 36th digit of the significand because the character in error for a significand longer than 35 digits is the 36th digit.4. If standard-decimal arithmetic is in effect, the argument contains a significand longer than 34 digits, and no prior error in the argument has been found, the returned value is the position of the 35th digit of the significand because the character in error for a significand longer than 34 digits is the 35th digit.

FUNCTION TEST-NUMVAL-F (argument-1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 931

5. If standard-decimal arithmetic, or standard-binary arithmetic is in effect, and the exponent in the argument contains more than four significant digits, the returned value is the position of the fifth digit of the exponent.6. If standard-decimal arithmetic, or standard-binary arithmetic is in effect, and the magnitude of the numeric value in the argument exceeds the capacity of the standard intermediate data item used for that mode of arithmetic, the returned value is the position of the first digit of the exponent.c) Otherwise,(FUNCTION LENGTH (argument-1) + 1). NOTE These errors include, but are not limited to:– argument-1 is zero-length,– argument-1 contains only spaces,– argument-1 contains valid characters but is incomplete, such as the string ' +.'.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

932 ©ISO/IEC 2023

15.96 TRIM function

15.96.1 GeneralThe TRIM function returns a character string that contains the characters in the argument with either leading spaces, trailing spaces, or both leading and trailing spaces, deleted; or by specifying one or more specific characters, with either leading, trailing, or both leading and trailing characters that match those specified characters, deleted.The type of this function depends on the type of argument-1 as follows:Argument-1 type Function typeAlphabetic AlphanumericAlphanumeric AlphanumericNational National
15.96.2 General format

15.96.3 Argument rules1) Argument-1 shall be a data item of class alphabetic, alphanumeric, or national.2) When argument-1 is class alphabetic or alphanumeric, argument-2 shall be a single character that is either class alphabetic or class alphanumeric. When argument-1 is class national, argument-2 shall be a single character of class national.3) When no argument-2 is specified, thena) if argument-1 is class alphabetic or alphanumeric, argument-2 is as though an alphanumeric space had been specified, elseb) if argument-1 is class national, argument-2 is as though a national space had been specified.
15.96.4 Returned value rules1) If LEADING is specified, the returned value is a character string that consists of the characters in argument-1 beginning from the leftmost character position that does not contain any argument-2.2) If TRAILING is specified, the returned value is a character string that consists of the characters in argument-1 beginning from the leftmost character position through the rightmost character position after which all characters contain argument-2.

FUNCTION TRIM argument-1 LEADING TRAILING argument-2 ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 933

3) If neither LEADING nor TRAILING is specified, the returned value is a character string that consists of the characters in argument-1 beginning from the leftmost character position that does not contain argument-2 through the rightmost character position after which all characters contain argument-2.4) If argument-1 contains only characters that are argument-2, spaces if argument-2 is not specified, or argument-1 is of length zero, the returned value is of length zero.5) If multiple argument-2s are specified, each argument-2 is processed completely in the order that they are specified prior to processing the next argument-2.NOTE The processing of TRIM (arg-1 arg-2-1 arg-2-2) is the same as TRIM (TRIM (arg-1 arg-2-1) arg-2-2). If the TRIM (“aabbcc” “c” “b”) is specified, the result would be “aa”, not “aab” or “aabb”.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

934 ©ISO/IEC 2023

15.97 UPPER-CASE function

15.97.1 GeneralThe UPPER-CASE function returns a character string that contains the value of argument-1 with any lowercase letters in the argument replaced by their corresponding uppercase letters.The type of this function depends on the type of argument-1 as follows:Argument-1 type Function typeAlphabetic AlphanumericAlphanumeric AlphanumericNational National
15.97.2 General format

15.97.3 Argument rule1) Argument-1 shall be of class alphabetic, alphanumeric, or national and shall be at least one character position in length.
15.97.4 Returned value rules1) A character string with the content of argument-1 is returned, with any lowercase letters replaced by their corresponding uppercase letters.2) When locale-name-1 is specified, the correspondence of lowercase to uppercase letters is determined from locale category LC_CTYPE in the locale associated with locale-name-1.3) When a locale is in effect for character classification, as described in 12.3.6, OBJECT-COMPUTER paragraph, and locale-name-1 is not specified, the correspondence of lowercase to uppercase letters is determined from locale category LC_CTYPE.4) When a locale is not in effect, the implementor defines the correspondence of lowercase letters to uppercase letters.5) The character string returned has the same length as argument-1 when there is a one-to-one correspondence between lowercase and uppercase letters. When the correspondence of lowercase and uppercase letters is not one-to-one, the character string returned may be longer or shorter than argument-1 and depends on the content of argument-1 and the correspondence rules that are in effect.6) If there is no corresponding uppercase letter for a given lowercase letter, that letter is unchanged in the returned value; when a locale is in effect for character classification and there is no uppercase

FUNCTION UPPER-CASE (argument-1 [LOCALE locale-name-1])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 935

correspondence specified in the locale for a given letter or letters, the letter or letters are unchanged in the returned value.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

936 ©ISO/IEC 2023

15.98 VARIANCE function

15.98.1 GeneralThe VARIANCE function returns a numeric value that approximates the variance of its arguments.The type of this function is numeric.
15.98.2 General format

15.98.3 Argument rule1) Argument-1 shall be of class numeric.
15.98.4 Returned value rules1) The equivalent arithmetic expression is as follows:a) For one occurrence of argument-1,(0)b) For two occurrences of argument-1,(((argument-11 – FUNCTION MEAN (argument-list)) ** 2 + (argument-12– FUNCTION MEAN (argument-list)) ** 2) / 2)c) For n occurrences of argument-1,(FUNCTION SUM (((argument-11 – FUNCTION MEAN (argument-list)) ** 2) ... ((argument-1n – FUNCTION MEAN (argument-list)) ** 2)) / n)where argument-list is the argument-1 list for the VARIANCE function itself and argument-1i is the ith argument of the argument-1 list for the VARIANCE function itself.

FUNCTION VARIANCE ({ argument-1 } ...)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 937

15.99 WHEN-COMPILED function

15.99.1 GeneralThe WHEN-COMPILED function returns the date and time the compilation unit was compiled as provided by the system on which the compilation unit was compiled.The type of this function is alphanumeric.
15.99.2 General format

15.99.3 Returned value rules1) The character positions returned, numbered from left to right, are:
Character
Positions Contents1-4 Four numeric digits of the year in the Gregorian calendar.5-6 Two numeric digits of the month of the year, in the range 01 through 12.7-8 Two numeric digits of the day of the month, in the range 01 through 31.9-10 Two numeric digits of the hours past midnight, in the range 00 through 23.11-12 Two numeric digits of the minutes past the hour, in the range 00 through 59.13-14 Two numeric characters of the seconds past the minute in the range:- 00 through 59 when a LEAP-SECOND directive with the OFF phrase is in effect- 00 through nn, where nn is defined by the implementor, when a LEAP-SECOND directive with the ON phrase is in effect.15-16 Two numeric digits of the hundredths of a second past the second, in the range 00 through 99. The value 00 is returned if the system on which the compilation was done does not have the facility to provide the fractional part of a second.17 Either the character '–', the character '+', or the character '0'. The character '–' is returned if the local time indicated in the previous character positions is behind Coordinated Universal Time. The character '+' is returned if the local time indicated is the same as or ahead of Coordinated Universal Time. The character '0' is returned if the system on which the compilation was done does not have the facility to provide the local time differential factor.18-19 If character position 17 is '–', two numeric digits are returned in the range 00 through 12 indicating the number of hours that the local time is behind Coordinated Universal Time. If character position 17 is '+', two numeric digits are returned in the range 00 through 13 indicating the number of hours that the local time is ahead of Coordinated Universal Time. If character position 17 is '0', the value 00 is returned.

FUNCTION WHEN-COMPILED

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

938 ©ISO/IEC 2023

2) The returned value is the date and time of compilation of the compilation unit that contains this function. The returned value in a contained source unit is the compilation date and time associated with the compilation unit in which it is contained.3) The returned value shall denote the same time as the compilation date and time if provided in the listing and in the generated object code, although their representations and precision may differ.

20-21 Two numeric digits are returned in the range 00 through 59 indicating the number of additional minutes that the local time is ahead of or behind Coordinated Universal Time, depending on whether character position 17 is '+' or '–', respectively. If character position 17 is '0', the value 00 is returned.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 939

15.100 YEAR-TO-YYYY function

15.100.1 GeneralThe YEAR-TO-YYYY function converts argument-1, the two low-order digits of a year, to a four-digit year. Argument-2, when added to the year at the time of execution, defines the ending year of a 100-year interval, or sliding window, into which the year of argument-1 falls. Argument-3 specifies the year at the time of execution.The type of the function is integer.
15.100.2 General format

15.100.3 Arguments rule1) Argument-1 shall be a nonnegative integer that is less than 100.2) Argument-2 shall be an integer.3) If argument-2 is omitted, the function shall be evaluated as though 50 were specified for argument-2.4) Argument-3 shall be an integer greater than 1600 and less than 10000.5) If argument-3 is omitted, the function shall be evaluated as though the following were specified for argument-3:FUNCTION NUMVAL (FUNCTION CURRENT-DATE (1:4)))6) The sum of the values of argument-2 and argument-3 shall be less than 10000 and greater than 1699.
15.100.4 Returned value rules1) Maximum-year is calculated as follows:(argument-2 + argument-3)2) The equivalent arithmetic expression is as follows:a) When the following condition is trueFUNCTION MOD (maximum-year, 100) >= argument-1The equivalent arithmetic expression is(argument-1 + 100 * (FUNCTION INTEGER (maximum-year/100)))

FUNCTION YEAR-TO-YYYY (argument-1 [argument-2 [argument-3]])

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

940 ©ISO/IEC 2023

b) Otherwise, the equivalent arithmetic expression is(argument-1 + 100 * (FUNCTION INTEGER (maximum-year/100) – 1))NOTE 1 In the year 1995, the returned value for FUNCTION YEAR-TO-YYYY (4, 23) is 2004. In the year 2008 the returned value for FUNCTION YEAR-TO-YYYY (98, (–15)) is 1898.NOTE 2 If argument-3 is omitted, the YEAR-TO-YYYY function implements a sliding window algorithm, based on the year at the time of execution, as returned by the CURRENT-DATE function. A fixed window algorithm can be achieved by specifying suitable values for argument-2 and argument-3, such that the sum of argument-2 and argument-3 defines the ending year of the desired 100-year interval.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 941

16 Standard classes

16.1 GeneralA standard class BASE shall be provided by the implementation. It may be used as the root of a class hierarchy to provide standard object life-cycle function. This use is not required — an implementation may provide alternative root classes that use other mechanisms for supporting the object life-cycle, particularly for creating COBOL objects that interoperate with other non-COBOL object systems.
16.2 BASE classThe following is the specification of the formal interfaces that are supported by the standard BASE class. The interface BaseFactoryInterface specifies the factory interface of the BASE class, and the interface BaseInterface specifies the object interface of the BASE class. The implementation of the BASE class shall be described with an IMPLEMENTS clause that references the interface defined here, and shall provide the semantics specified below.NOTE The standard class BASE need not be implemented in COBOL.

Interface-id. BaseFactoryInterface.
Procedure division.

Method-id. New.
Data division.
Linkage section.
01 outObject usage object reference active-class.
Procedure division returning outObject.
End method New.

End Interface BaseFactoryInterface.

Interface-id. Interface.
Procedure division.

Method-id. FactoryObject.
Data division.
Linkage section.
01 outFactory usage object reference factory of active-class.
Procedure division returning outFactory.
End method FactoryObject.

End Interface BaseInterface.

16.2.1 New method

16.2.1.1 GeneralThe New method is a factory method that provides a standard mechanism for creating instance objects of a class.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

942 ©ISO/IEC 2023

16.2.1.2 General rules1) The New method allocates storage for an object, initializes its instance data in accordance with 14.6.2.4, Initial state of object data, and returns a reference to the created object.2) If resources needed to create a new object are not available, the returned object reference is set to NULL, and the EC-OO-RESOURCE exception condition is set to exist and is propagated back to the runtime element that invoked the New method.
16.2.2 FactoryObject method

16.2.2.1 GeneralThe FactoryObject method is an instance method that provides a standard mechanism for acquiring access to the factory object associated with the class of a given instance.
16.2.2.2 General rule1) When invoked on an instance object, the FactoryObject method determines the class of the object and returns a reference to the factory object associated with that class.NOTE This method is useful when one does not know the class of an object. If the class is known, one can access the methods of a factory object trivially, using statements such as: Invoke classname "someFactoryMethodName". If the class of the object referenced by identifier anObject is unknown, then the coding below may be used to invoke one of its factory methods: Invoke anObject "FactoryObject" returning aFactoryObject Invoke aFactoryObject "someFactoryMethodName".

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 943

 Annex A (normative)
 Language element lists

A.1 Implementor-defined language element listThe following is a list of the language elements within this Working Draft International Standard that depend on implementor definition to complete the specification of the elements. Each element is defined as required, optional, or conditionally required. Furthermore, each element is defined as requiring (or not requiring) user documentation. These terms have the following meaning:— Required: The element shall be provided by the implementor. When the element is part of a feature that is optional or processor-dependent, the item is not required if the optional or processor-dependent feature is not implemented.— Optional: The element may be provided at the implementor's option.— Conditionally required: If the associated feature or language element is implemented then this element is also required.— Documentation required: If the element is provided by the implementor, the implementor's user documentation shall document the element or shall reference other documentation that fulfills this requirement.A short header and informative optional parenthetical text provide a paraphrase of the normative detailed specification located in the body of this Working Draft International Standard and direct the reader to that detail. A cross-reference is provided for all items.1) ACCEPT statement (conversion of data). This item is required. This item shall be documented in the implementor's user documentation. (14.9.1, ACCEPT statement, General rules 1 and 14)2) ACCEPT statement (device used when FROM is unspecified). This item is required. This item shall be documented in the implementor's user documentation. (14.9.1, ACCEPT statement, General rule 5)3) ACCEPT statement, screen format (result when screen items overlap). This item is required. This item shall be documented in the implementor’s user documentation. (14.9.1, ACCEPT statement, General rule 22) 4) ACCEPT statement, screen format (when data is verified, behavior for inconsistent data). This item is required. This item shall be documented in the implementor's user documentation. (14.9.1, ACCEPT statement, General rule 20)5) ACCEPT statement (size of data transfer). This item is required. This item shall be documented in the implementor's user documentation. (14.9.1, ACCEPT statement, General rule 2)6) Alignment of alphanumeric group items (relative to first elementary item). This item is required. This item shall be documented in the implementor's user documentation. (8.5.1.6.1, Alignment of

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

944 ©ISO/IEC 2023

alphanumeric groups and of data items of usage display and 8.5.1.6.5, Alignment of strongly-typed group items)7) Alignment of data for increased efficiency (special or automatic alignment: interpretation, implicit filler, semantics of statements). This item is optional. This item, if provided by the implementor, shall be documented in the implementor’s user documentation. (8.5.1.6.4, Item alignment for increased object-code efficiency; 13.18.55, SYNCHRONIZED clause, General rule 10)8) ALPHABET clause (ordinal number of characters in the native coded character sets). This item is required. This item shall be documented in the implementor's user documentation. (12.3.7, SPECIAL-NAMES paragraph, General rule 6)9) Alphanumeric literals (number of hexadecimal digits that map to an alphanumeric character). This item is required. This item shall be documented in the implementor's user documentation. (8.3.3.2, Alphanumeric literals, Syntax rule 6)10) ASSIGN clause, USING phrase (meaning and rules for operands; consistency rules). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (12.4.5, File control entry, General rule 4)11) BACKGROUND-COLOR clause (the background color when the clause is not specified or the value specified is not in the range 0 to 7). This item is required. This item shall be documented in the implementor's user documentation. (13.18.4, BACKGROUND-COLOR clause, General rule 4)12) Byte (number of bits in). This item is required. This item shall be documented in the implementor’s user documentation. (8.1.2, Computer's coded character set)13) CALL statement (rules for program-name formation for a non-COBOL program). This item is conditionally required because it is conditioned upon support for calling non-COBOL programs. This item shall be documented in the implementor's user documentation. (14.9.4, CALL statement, General rule 3b)14) CALL statement (runtime resources that are checked). This item is required. This item shall be documented in the implementor's user documentation. (14.9.4, CALL statement, General rule 3c)15) CALL statement (rules for locating a non-COBOL program). This item is conditionally required because it is conditioned upon support for calling non-COBOL programs. This item shall be documented in the implementor's user documentation. (14.9.4, CALL statement, General rule 3b)16) CALL statement (calling a non-COBOL program). This item is required. This item shall be documented in the implementor's user documentation. (14.9.4, CALL statement, General rule 3g)17) CALL statement (other effects of the CALL statement). This item is required. This item shall be documented in the implementor's user documentation. (14.9.4, CALL statement, General rule 3h2)18) CANCEL statement (result of canceling an active program when EC-PROGRAM-CANCEL-ACTIVE is not enabled). This item is required. This item shall be documented in the implementor's user documentation. (14.9.5, CANCEL statement, General rule 5)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 945

19) CANCEL statement (result of canceling a non-COBOL program). This item is required. This item shall be documented in the implementor's user documentation. (14.9.5, CANCEL statement, General rule 10)20) Case mapping. This item is required. This item shall be documented in the implementor's user documentation. (8.1.3, COBOL character repertoire, General rule 1)NOTE Implementors are strongly encouraged to define the case mapping according to the case mapping defined by the Unicode Consortium in the database UnicodeData.txt.21) CHAR function (which one of the multiple characters is returned). This item is required. This item shall be documented in the implementor's user documentation. (15.15, CHAR function, Returned value, rule 2)22) CHAR-NATIONAL function (which one of the multiple characters is returned). This item is required. This item shall be documented in the implementor's user documentation. (15.16, CHAR-NATIONAL function, Returned value, rule 2)23) Characters prohibited from use in text-words in COPY … REPLACING and REPLACE statements. This item is required. This item shall be documented in the implementor's user documentation. (7.2.2.5, Text-words, rule 3).24) CLOSE statement (closing operations). This item is required. This item shall be documented in the implementor's user documentation. (14.9.6, CLOSE statement, General rule 3c)25) COBOL character repertoire (encoding of, mapping of, substitute graphics). This item is required. This item shall be documented in the implementor’s user documentation. (8.1.3, COBOL character repertoire; 8.1.3, COBOL character repertoire, General rules 1 and 5)26) COBOL character repertoire (if more than one encoding in a compilation group, control functions if any). Multiple encodings are optional and control functions are optional. This item is conditionally required because it is conditioned upon support of multiple encodings in a compilation group where control functions are defined for switching between encodings. This item, if provided by the implementor, shall be documented in the implementor’s user documentation. (8.1.3, COBOL character repertoire)27) Color number (for a monochrome terminal, the mapping of the color attributes onto other attributes). This item is required. This item shall be documented in the implementor's user documentation. (9.2.7, Color number)28) Commit and rollback (interaction with other facilities and languages). The commit and rollback feature is optional. Its implementation is not dependent on the adoption of the file sharing and record locking features or implementor defined equivalent defaults, but these features are needed for the concurrent use of files with other run units and other file connectors within the same run unit. If provided by the implementor, it shall be documented in the implementor's user documentation. (9.1.18, Commit and Rollback)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

946 ©ISO/IEC 2023

29) Compile-Time Arithmetic (Mode of arithmetic used and rules for intermediate data handling). This item is required. This item shall be documented in the implementor's user documentation. (7.3.6, Compile-time arithmetic expressions, Syntax rule 2, General rule 2)30) Compiler directives, compiler directive IMP (syntax rules and general rules). This item is conditionally required because it is conditioned upon support for an IMP directive. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (7.3, Compiler directives, Syntax rule 9 and General rule 4)31) Computer's coded character set (characters in and encoding of computer’s alphanumeric coded character set and computer’s national coded character set, encoding for usage DISPLAY and usage NATIONAL). This item is required. This item shall be documented in the implementor's user documentation. (8.1.2, Computer's coded character set; 8.3.3.2, Alphanumeric literals, Syntax rule 2; 8.3.3.5, National literals, Syntax rule 2) 32) Computer's coded character set (coded character values for certain COBOL items). This item is required. This item shall be documented in the implementor's user documentation. If values are determined at runtime, documentation shall specify the manner in which values are determined. (8.1.2, Computer's coded character set)33) Computer's coded character set (correspondence between alphanumeric and national characters). This item is required. This item shall be documented in the implementor's user documentation. (14.9.25, MOVE statement, General rule 6; 8.8.4.2.11, Locale-based comparison; 15.26, DISPLAY-OF function, Returned value rules 1 and 3; 15.66, NATIONAL-OF function, Returned value rules 1 and 3)34) Computer’s coded character set (for literals, correspondence between compile-time and runtime character sets, when conversion takes place). This item is conditionally required because it is conditioned upon there being a difference between the compile-time and runtime computer’s coded character sets. This item, if provided by the implementor, shall be documented in the implementor’s user documentation. (8.1.2, Computer's coded character set)35) Computer's coded character set (correspondence between lowercase and uppercase letters when a locale is not in effect). This item is required. This item need not be documented in the implementor's user documentation. (15.57, LOWER-CASE function; 15.97, UPPER-CASE function)36) Computer's coded character set (when composite alphanumeric and national, mapping of characters to each). This item is conditionally required because it is conditioned upon support for a composite alphanumeric and national computer character set. This item, if provided by the implementor, shall be documented in the implementor’s user documentation. (8.1.2, Computer's coded character set) 37) Computer's coded character set (when more than one encoding, the mechanism for selecting encoding for runtime). This item is conditionally required because it is conditioned upon support for more than one encoding of a computer’s coded character set. This item, if provided by the implementor, shall be documented in the implementor’s user documentation. (8.1.2, Computer's coded character set)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 947

38) Computer's coded character set (whether UTF-8 or mixed alphanumeric and national characters recognized in class alphanumeric; applicable syntax and general rules). This item is conditionally required because it is conditioned upon support for UTF-8 or mixing alphanumeric and national characters in literals and data items of class alphanumeric. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (8.1.2, Computer's coded character set; 8.3.3.2, Alphanumeric literals, Syntax rule 2 and General rule 3)39) CONTINUE statement (precision and maximum size of the arithmetic expression specifying the number of seconds to pause execution) This item is required. This item shall be documented in the implementor’s user documentation (14.9.9, CONTINUE statement, General rule 1).40) COPY statement (rules for identifying and locating default library text). This item is required. This item shall be documented in the implementor's user documentation. (7.2.3, COPY statement, Syntax rule 5 and General rule 3)41) CRT status 9xxx (the value of xxx for unsuccessful completion with implementor-defined conditions). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (9.2.3, CRT status)42) Cultural ordering table (allowable content of literal defines a cultural ordering table). This item is conditionally required because it is conditioned upon support of a cultural ordering table constructed in accordance with ISO/IEC 14651:2011. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (12.3.7, SPECIAL-NAMES paragraph, General rule 17)43) Currency symbol (equivalence of non-COBOL characters). This item is required. This item shall be documented in the implementor's user documentation. (12.3.7, SPECIAL-NAMES paragraph, Syntax rule 21)44) Currency symbol (implementor-defined prohibition of non-COBOL characters). This item is required. This item shall be documented in the implementor's user documentation. (8.1.2, Computer's coded character set)45) Cursor (the cursor movement if keys are defined that change the cursor position). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (9.2.4, Cursor)46) Data storage (possible representations when implementation provides multiple ways of storing data). This item is conditionally required because it is conditioned on whether the implementation provides multiple ways of storing data. This item, if provided by the implementor, shall be documented in the implementor’s user documentation. (8.5.1, Computer independent data description)47) Default encoding specifications (for standard decimal floating-point usages). This item is required. This item shall be documented in the implementor's user documentation. (11.9.9, FLOAT-DECIMAL clause, General rule 3)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

948 ©ISO/IEC 2023

48) Default endianness specifications (for standard floating-point usages). This item is required. This item shall be documented in the implementor's user documentation. (11.9.8, FLOAT-BINARY clause, General rule 3, and 11.9.9, FLOAT-DECIMAL clause, General rule 6)49) DEFINE directive (mechanism for providing value of a compilation-variable-name from the operating environment). This item is required. This item shall be documented in the implementor's user documentation. (7.3.11, DEFINE directive, General rule 4)50) DELETE FILE statement (validation of fixed file attributes). This item is required. This item shall be documented in the implementor's user documentation. (14.9.10, DELETE statement, General rule 19)51) DELETE FILE statement (effects of the DELETE file statement). This item is required. This item shall be documented in the implementor’s user documentation. (14.9.10, DELETE statement, General rule 20)52) Devices that allow concurrent access. This item is required. This item shall be documented in the implementor's user documentation. (9.1.15, Sharing mode)53) DISPLAY directive (conversion of data transferred). This item is required. This item shall be documented in the implementor's user documentation. (7.3.12, DISPLAY directive, General rule 1).54) DISPLAY directive (meaning of compile-time-device-1). This item is required. This item shall be documented in the implementor's user documentation. (7.3.12, DISPLAY directive, General rule 5)55) DISPLAY directive (mechanism for providing the value of a compilation-variable-name from the operating environment). This item is required. This item shall be documented in the implementor's user documentation. (7.3.12, DISPLAY directive, General rule 3)56) DISPLAY statement (data conversion). This item is required. This item shall be documented in the implementor's user documentation. (14.9.11, DISPLAY statement, General rule 1)57) DISPLAY statement (format for display of a variable-length group). This item is required. This item shall be documented in the implementor's user documentation. (14.9.11, DISPLAY statement, General rule 7)58) DISPLAY statement (size of data transfer). This item is required. This item shall be documented in the implementor's user documentation. (14.9.11, DISPLAY statement, General rule 2)59) DISPLAY statement (standard display device). This item is required. This item shall be documented in the implementor's user documentation. (14.9.11, DISPLAY statement, General rule 8)60) Dynamic-capacity table (determination of highest permissible occurrence number). This item is required. This item does not have to be documented in the implementor's documentation. (8.4.2.3, Subscripts)61) Dynamic-capacity table (physical allocation). This item is required. This item does not have to be documented in the implementor's documentation. (8.5.1.9, Dynamic-capacity tables)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 949

62) Dynamic-length elementary items (maximum length).This item is required. This item shall be documented in the implementor's user documentation. (8.5.1.10, Dynamic-length elementary items)63) Dynamic-length elementary items (structure if dynamic-length-structure-name-1 is not specified). This item is required. This item need not be documented in the implementor's user documentation (8.5.1.10.2, Structure of a dynamic-length elementary item)64) ENTRY-CONVENTION clause (entry-convention-names, their meanings and the default when not specified). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (11.9.7, ENTRY-CONVENTION clause, General rule 2)65) EXIT and GOBACK statements (execution continuation in a non-COBOL runtime element). This item is conditionally required, because it is conditioned upon support for calling from non-COBOL programs. This item shall be documented in the implementor's user documentation. (14.9.18, GOBACK statement, General rule 3)66) External repository (mechanism for specifying whether checking and updating occur). This item is required. This item shall be documented in the implementor's user documentation. (8.13, External repository)67) External repository information (other information beyond the required information). This item is optional. This item, if provided by the implementor, shall be documented in the implementor’s user documentation. (8.13, External repository)68) Externalized names (formation and mapping rules). This item is required. This item shall be documented in the implementor’s user documentation. (7.3.9, CALL-CONVENTION directive, General rules 2a and 2b; 8.3.2.2, User-defined words)69) Fatal exception condition (whether detected at compile time, circumstances under which detected). This item is optional. This item if provided by the implementor, does not have to be included in the implementor’s user documentation. (14.6.13.1.3, Fatal exception conditions) 70) Fatal exception condition (whether or not execution will continue, how it will continue, and how any receiving operands are affected when events that would cause a fatal exception to exist occur but checking for that condition is not enabled). This item is required. This item shall be documented in the implementor’s user documentation. (14.6.13.1.3, Fatal exception conditions)71) FILE-CONTROL entry, ASSIGN clause (TO phrase meaning and rules). This item is required. This item shall be documented in the implementor's user documentation. (12.4.5, File control entry, Syntax rules 5 and 6)72) FILE-CONTROL entry, ASSIGN clause (consistency rules for external file connectors). This item is required. This item shall be documented in the implementor's user documentation. (12.4.5, File control entry, General rule 1)73) FILE-CONTROL entry, ASSIGN clause (USING phrase meaning and rules). This item is required. This item shall be documented in the implementor's user documentation. (12.4.5, File control entry, General rule 4)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

950 ©ISO/IEC 2023

74) Figurative constant values (representation of zero, space, and quote). This item is required. This item shall be documented in the implementor's user documentation. (8.3.3.6, Figurative constant values)75) File sharing (interaction with other facilities and languages). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (9.1.15, Sharing mode)76) File sharing (which devices allow concurrent access to the file). This item is required. This item shall be documented in the implementor’s user documentation. (9.1.15, Sharing mode)77) File sharing (default mode when unspecified). This item is required. This item shall be documented in the implementor's user documentation. (9.1.3, File connector; 9.1.15, Sharing mode; 14.9.27, OPEN statement, General rule 23)78) Fixed file attribute (whether the ability to share a file is a fixed file attribute). This item is required. This item shall be documented in the implementor's user documentation. (9.1.6, Fixed file attributes)79) FLAG-02 directive (warning mechanism). This item is required. This item shall be documented in the implementor’s user documentation. (7.3.14, FLAG-02 directive, General rule 1)80) FLAG-14 directive (warning mechanism). This item is required. This item shall be documented in the implementor’s user documentation. (7.3.15, FLAG-14 directive, General rule 1)81) Floating-point numeric item (alignment when used as a receiving operand). This item is required. This alignment does not have to be documented in the implementor's user documentation. (14.6.8.3, Floating-point numeric receiving data items, rule 1)82) Floating-point numeric literals (maximum permitted value and minimum permitted value of the exponent). This item is required. This item shall be documented in the implementor's user documentation. (8.3.3.3.3, Floating-point numeric literals, rule 3)83) FOREGROUND-COLOR clause (the foreground color when the clause is not specified or the value specified is not in the range 0 to 7). This item is required. This item shall be documented in the implementor's user documentation. (13.18.23, FOREGROUND-COLOR clause, General rule 4)84) FORMAT clause (representation produced). This item is required. This item shall be documented in the implementor's user documentation. (13.18.24, FORMAT clause, General rule 10) 85) FORMAT clause (exclusions on restoring to same internal representation). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (13.18.24, FORMAT clause, General rule 11)86) Format validation (rules for checking items of usages other than display or national). This item is required. This item shall be documented in the implementor’s user documentation. (13.18.40, PICTURE clause, General rule 15; 13.18.60, USAGE clause, General rule 3)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 951

87) FORMATTED-CURRENT-DATE (accuracy of returned time). This item is required. This item shall be documented in the implementor's user documentation. (15.38, FORMATTED-CURRENT-DATE function, Returned value rule 1).88) Function-identifier (execution of a non-COBOL function when a function-prototype-name is specified). This item is conditionally required because it is conditioned upon support for calling non-COBOL functions. This item shall be documented in the implementor’s user documentation. (8.4.3.2, Function-identifier, General rule 6d)89) Function-identifier (object time resources that are checked). This item is required. This item shall be documented in the implementor's user documentation. (8.4.3.2, Function-identifier, General rule 6c)90) Function-identifier (result when argument rules are violated and checking for the EC-ARGUMENT-FUNCTION exception condition is not enabled). This item is required. The value returned does not have to be documented in the implementor's user documentation. (15.3, Arguments)91) Function keys (context-dependent keys, function number, and method for enabling and disabling). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (9.2.2, Function keys)92) Function returned values (characteristics, representation, and returned value for native arithmetic). This item is required. The value returned does not have to be documented in the implementor's user documentation. (15.4.1, Numeric and integer functions)93) Function returned values (returned value length exceeds implementor-defined limits). This item is required. The value returned shall be documented in the implementor's user documentation. (15.4, Returned values)94) GOBACK statement (values in the STATUS phrase). Any constraints on the value in the data item or value of the literal in the STATUS phrase are defined by the implementor. This item is required. This item shall be documented in the implementor’s user documentation. (14.9.18.3, GOBACK statement, General rule 10)95) Hexadecimal alphanumeric literals (mapping for non-existing corresponding character). This item is required. This item shall be documented in the implementor's user documentation. (8.3.3.2, Alphanumeric literals, General rule 4)96) Hexadecimal alphanumeric literals (mapping when characters not multiples of four bits). This item is conditionally required because it is conditioned upon a computer's coded character set with characters that are not multiples of four bits. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (8.3.3.2, Alphanumeric literals, General rule 4)97) Hexadecimal national literals (mapping for non-existing corresponding character). This item is required. This item shall be documented in the implementor's user documentation. (8.3.3.5, National literals, General rule 4)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

952 ©ISO/IEC 2023

98) Hexadecimal national literals (mapping when characters not multiples of four bits). This item is conditionally required because it is conditioned upon a computer's coded character set with characters that are not multiples of four bits. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (8.3.3.5, National literals, General rule 4)99) Implementor-defined exception conditions, EC-IMP-xxx (specification and meaning of xxx). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (Table 13, Exception-names and exception conditions)100) Implementor-defined level-2 exception conditions, EC-level-2-IMP (specification and meaning of the specified level-2 exception condition). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (Table 13, Exception-names and exception conditions)101) INVOKE statement (behavior when invoking a non-COBOL method). This item is required. This item shall be documented in the implementor's user documentation. (14.9.23, INVOKE statement, General rule 2b)102) INVOKE statement (runtime resources that are checked). This item is required. This item shall be documented in the implementor's user documentation. (14.9.23, INVOKE statement, General rule 7e)103) I-O status (action taken for fatal exception conditions). This item is required. This item shall be documented in the implementor's user documentation. (9.1.13, I-O status)104) I-O status (if more than one value applies). This item is required. The internal procedure employed by the implementor does not have to be documented in the implementor's user documentation. (9.1.13, I-O status)105) I-O status, permanent error (technique for error correction). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (9.1.13, I-O status)106) I-O status 0x (value of x). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (9.1.13.3, Implementor-defined successful completion)107) I-O status 24 (manner in which the boundaries of a file are defined). This item is required. This item shall be documented in the implementor's user documentation. (9.1.13.5, Invalid key condition with unsuccessful completion)108) I-O status 34 (manner in which the boundaries of a file are defined). This item is required. This item shall be documented in the implementor's user documentation. (9.1.13.6, Permanent error condition with unsuccessful completion)109) I-O status 52 (conditions under which deadlock is detected). This item is required. This item shall be documented in the implementor’s user documentation. (9.1.13.8, Record operation conflict condition with unsuccessful completion)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 953

110) I-O status 9x (value of x). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (9.1.13.11, Implementor-defined condition with unsuccessful completion)111) LEAP-SECOND directive (whether a value greater than 59 seconds may be reported and, if so, the maximum number of seconds that may be reported). This item is required. This item shall be documented in the implementor’s user documentation. (7.3.17, LEAP-SECOND directive, General rule 2; 14.9.1, ACCEPT statement, General rule 11; 15.21, CURRENT-DATE function, Returned value rule 1; 15.99, WHEN-COMPILED function, Returned value rule 1)112) LEAP-SECOND directive (whether standard numeric time form values greater than or equal to 86,400 may be reported). This item is required. This item shall be documented in the implementor's user documentation. (7.3.17, LEAP-SECOND directive, General rule 4; 15.80, SECONDS-PAST-MIDNIGHT function, Returned value rule 4; 15.3.3.3, Permissible values for data associated with common time formats)113) Life cycle for objects (timing and algorithm for taking part in continued execution). This item is required. This item need not be documented in the implementor's user documentation. (9.3.14.3, Life cycle for instance objects)114) Line delimiter, specification of. This item is required. This item shall be documented in the implementor’s user documentation. (9.1.13.2, Successful completion, I-O Status = 06, 12.4.5.10, ORGANIZATION clause, General rule 2)115) Line sequential character set. This item is required. This item shall be documented in the implementor’s user documentation. (14.9.30, READ statement, General rule 16, 9.1.13.2, Successful completion, I-O Status = 09; 14.9.35, REWRITE statement, General rule 17d; 14.9.51, WRITE statement General rule 23; and 9.1.13.10, Record with invalid content with unsuccessful completion, I-O Status = 71)116) Linkage section (whether access to linkage section items is meaningful when called from a non-COBOL program). This item is conditionally required because it is conditioned upon support for calling a COBOL program from a non-COBOL program. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (13.7, Linkage section)117) Listings (whether and when produced by the compiler, effect of logical conversion). This item is required. This item shall be documented in the implementor's user documentation. (6.5, Logical conversion; Clause 7, Compiler directing facility; 7.3.18, LISTING directive, General rule 1)118) Locale specification (how user and system defaults defined; at least one user and one system default). This item is required. This item need not be documented in the implementor's user documentation. The implementor may specify that the user locale and the system locale are the same locale. (8.2, Locales)119) Locale specification (manner of implementation). This item is required because at least one default locale is required. This item does not have to be documented in the implementor's user documentation. (8.2, Locales)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

954 ©ISO/IEC 2023

120) Locale switch (whether a switch by a non-COBOL runtime module is recognized by COBOL). This item is conditionally required because it is conditioned upon support for activation of non-COBOL runtime modules. This item, if provided, shall be documented in the implementor’s user documentation. (8.2, Locales)121) METHOD-ID paragraph (actual method-name used when PROPERTY phrase is specified). This item is required. This item shall be documented in the implementor's user documentation. (11.7, METHOD-ID paragraph, General rule 1)122) National literals (number of hexadecimal digits that map to a national character). This item is required. This item shall be documented in the implementor's user documentation. (8.3.3.5, National literals, Syntax rule 5)123) Native arithmetic (techniques used, intermediate data item). This item is required. The internal procedure employed by the implementor does not have to be documented in the implementor’s user documentation. (8.8.1.3, Native arithmetic; 11.9.5, ARITHMETIC clause; 14.7.7, Arithmetic statements)124) Native arithmetic (when an operand or arithmetic expression is an integer). This item is required. This item shall be documented in the implementor’s user documentation. (5.5, Integer operands)125) NULL (value of NULL). This item is required. This item need not be documented in the implementor’s user documentation. (8.4.3.7, NULL object reference, General rule 1; 8.4.3.10, NULL address pointer and message tag content, General rules 1, 2, and 3)126) OBJECT-COMPUTER paragraph (default object computer). This item is required. This item shall be documented in the implementor's user documentation. (12.3.6, OBJECT-COMPUTER paragraph, General rules 3 and 4)127) OBJECT-COMPUTER paragraph (computer-name and implied equipment configuration). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (12.3.6, OBJECT-COMPUTER paragraph, General rule 2)128) OCCURS clause (range of values allowed in the index). This item is required. This item shall be documented in the implementor's user documentation. (13.18.38, OCCURS clause, General rule 2) 129) OPEN statement (validation of fixed file attributes). This item is required. This item shall be documented in the implementor's user documentation. (14.9.27, OPEN statement, General rule 10)130) OPEN statement with OUTPUT phrase (positioning of the output file with regard to physical page boundaries). This item is required. This item shall be documented in the implementor's user documentation. (14.9.27, OPEN statement, General rule 18)131) OPEN statement without the SHARING phrase and no SHARING clause in the file control entry (definition of sharing mode established for each file connector). This item is required. This item shall be documented in the implementor’s user documentation. (14.9.27, OPEN statement, General rule 23)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 955

132) MODULE-NAME Function, (Which type of dynamic length elementary item is used as the returned value). This item is conditionally required because it is conditioned upon the implementor supporting more than one type of dynamic length elementary item. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (15.65, MODULE-NAME function, Returned value, rule 1)133) MODULE-NAME Function, (The length of the returned value item and whether or not it may have trailing spaces). This item is conditionally required because it is conditioned upon the implementor not supporting any dynamic length elementary items. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (15.65, MODULE-NAME function, Returned value, rule 1)134) MODULE-NAME Function, (What is returned if the indicated module is not COBOL). This item is required. This item shall be documented in the implementor's user documentation. (15.65, MODULE-NAME function, Returned value, rule 3)135) MODULE-NAME Function, (What form of the module name is returned). This item is required. This item shall be documented in the implementor's user documentation. (15.65, MODULE-NAME function, Returned value, rule 4)136) MODULE-NAME Function, (How it is determined whether the program is a main program or not). This item is required. This item shall be documented in the implementor's user documentation. (15.65, MODULE-NAME function, Returned value, rule 5)137) MODULE-NAME Function, (What value is returned if the ACTIVATING keyword is specified and the activation was in a nested program). This item is required. This item shall be documented in the implementor's user documentation. (15.65, MODULE-NAME function, Returned value, rule 6)138) Parameterized classes and interfaces (when expanded). This item is required. This item need not be documented in the implementor's user documentation. (Clause 7, Compiler directing facility)139) PERFORM statement (whether location information is available when the LOCATION phrase is not specified). This item is required. This item shall be documented in the implementor's user documentation. (14.9.28, PERFORM statement General rule 14)140) POP directive (warning mechanism for an unsuccessful POP directive). This item is required. This item shall be documented in the implementor’s user documentation. (7.3.20, POP directive, General rule 2)141) Procedure division header rules when either the activating or the activated runtime element is not a COBOL element (restrictions and mechanisms for all supported language products with details such as the matching of parameters, data type representation, returning of a value, and omission of parameters). This item is conditionally required because it is conditioned upon support for a language other than COBOL. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (Clause 14, Procedure division, General rule 13)142) Program-address identifier (relation between address and non-COBOL program). This item is conditionally required because it is conditioned upon support of non-COBOL programs. This item

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

956 ©ISO/IEC 2023

shall be documented in the implementor's user documentation. (8.4.3.13, Program-address-identifier, General rule 2)143) Program-name (formation rules for a non-COBOL program). This item is optional. This item if provided by the implementor, shall be documented in the implementor’s user documentation. (8.3.2.2.21, Program-name)144) RANDOM function (seed value when no argument on first reference). This item is required. The seed value used by the implementor does not have to be documented in the implementor's user documentation. (15.75, RANDOM function, Argument rule 4)145) RANDOM function (subset of the domain of argument-1). This item is required. This item shall be documented in the implementor's user documentation. (15.75, RANDOM function, Returned value, rule 3)146) RECORD clause (calculations to derive size of records on storage medium). This item is required. This item shall be documented in the implementor’s user documentation. (13.18.43, RECORD clause, General rule 2)147) RECORD clause (implicit RECORD clause if RECORD clause is not specified). This item is required. This item shall be documented in the implementor's user documentation. (13.18.43, RECORD clause, General rule 5)148) RECORD clause (whether fixed or variable records produced for fixed-or-variable-length format). This item is required. This item shall be documented in the implementor's user documentation. (13.18.43, RECORD clause, General rule 17)149) RECORD DELIMITER clause (consistency rules when used with external file connectors). This item is conditionally required because it is conditioned upon the existence of the optional feature-name in the RECORD DELIMITER clause. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (12.4.5, File control entry, General rule 1c)150) RECORD DELIMITER clause (feature-name and associated method for determining length of variable-length records). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (12.4.5.11, RECORD DELIMITER clause, Syntax rule 2 and General rule 4)151) RECORD DELIMITER clause (if not specified, method for determining length of variable-length records). This item is required. This item shall be documented in the implementor's user documentation. (12.4.5.11, RECORD DELIMITER clause, General rule 5)152) Record locking (circumstances other than a locked logical record that return a locked record status). This item is conditionally required because it is conditioned on the existence of such circumstances in an implementation. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (9.1.16, Record locking)153) Record locking (default mode when unspecified by user). This item is required. This item shall be documented in the implementor's user documentation. (12.4.5.9, LOCK MODE clause, General rule 1)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 957

154) Record locking (maximum number allowed for a run unit). This item is required and shall be at least 255. This item shall be documented in the implementor's user documentation. (12.4.5.9, LOCK MODE clause, General rule 7).155) Record locks (maximum number allowed for a file connector). This item is required and shall be at least 15. This item shall be documented in the implementor's user documentation. (12.4.5.9, LOCK MODE clause, General rule 7)156) Reference format (control characters in a free-form line). This item is required. This item shall be documented in the implementor's user documentation. (Clause 6, Reference format, rule 3b)157) Reference format (meaning of lines and character positions in free-form and fixed-form format). This item is required. This item shall be documented in the implementor's user documentation. (Clause 6, Reference format, rule 1c)158) Reference format (rightmost character position of program-text area). This item is required. This item shall be documented in the implementor's user documentation. (6.3, Fixed-form reference format, margin R.)159) Report file (record structure). This item is required. This item shall be documented in the implementor's user documentation. (13.4.5, File description entry, General rule 4)160) Report writer printable item (fixed correspondence between columns and national characters). This item is required. This item shall be documented in the implementor's user documentation. (13.18.14, COLUMN clause, General rule 2)161) REPOSITORY paragraph (how external repository and class-specifier determine which class is used). This item is required. This item shall be documented in the implementor's user documentation. (12.3.8, REPOSITORY paragraph, General rule 6)162) REPOSITORY paragraph, INTERFACE phrase (how interface specifier and external repository determine which interface is used). This item is required. This item shall be documented in the implementor’s user documentation. (12.3.8, REPOSITORY paragraph, General rule 9)163) REPOSITORY paragraph (when the AS phrase is required). This item is required. This item shall be documented in the implementor's user documentation. (12.3.8, REPOSITORY paragraph, General rule 2)164) RESERVE clause (number of input-output areas, if not specified). This item is required. This item shall be documented in the implementor's user documentation. (12.4.5.14, RESERVE clause, General rule 1)165) RETRY phrase (interval between attempts to obtain access to a locked file or record). This item is required. This item shall be documented in the implementor’s user documentation. (14.7.9, RETRY phrase, General rule 1)166) RETRY phrase (maximum meaningful time-out value and internal representation; technique for determining frequency of retries). This item is required. This item shall be documented in the implementor’s user documentation. (14.7.9, RETRY phrase, General rule 2)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

958 ©ISO/IEC 2023

167) Run unit (relationship and interaction with non-COBOL components). This item is conditionally required because it is conditioned upon support for non-COBOL modules. This item shall be documented in the implementor's user documentation. (14.6.1, Run unit organization).168) Run unit termination (whether locale reset). This item is required. This item shall be documented in the implementor's user documentation. (14.6.11, Normal run unit termination)169) SAME SORT/SORT-MERGE AREA clause (extent of allocation). This item is required. The internal procedure employed by the implementor does not have to be documented in the implementor's user documentation. (12.4.6.4, SAME clause, General rule 4b)170) SEARCH ALL statement (varying of the search index during the search operation). This item is required. The internal procedure employed by the implementor does not have to be documented in the implementor's user documentation. (14.9.37, SEARCH statement, General rule 9)171) SECONDS-PAST-MIDNIGHT function returned value (precision). This item is required. This item shall be documented in the implementor's user documentation. (15.80, SECONDS-PAST-MIDNIGHT function, Returned value rule 3)172) SECURE clause (cursor movement when data is entered into a field for which the SECURE clause is specified). This item is required. This item shall be documented in the implementor’s user documentation. (13.18.50, SECURE clause, General rule 4)173) SELECT WHEN clause (whether a SELECT WHEN takes effect for READ statements and REWRITE or WRITE statements with the FILE phrase in the absence of a CODE-SET clause or a FORMAT clause). This item is optional. If provided, this item shall be documented in the implementor's user documentation. (13.18.51, SELECT WHEN clause, General rule 5)174) SET statement (effect of SET on function whose address is being stored in a function-pointer). This item is required. This item shall be documented in the implementor's user documentation. (14.9.39, SET statement, General rule 15)175) SET statement (effect of SET on program whose address is being stored in a program-pointer). This item is required. This item shall be documented in the implementor's user documentation. (14.9.39, SET statement, General rule 17)176) SET statement (value in NaN payload). The content of the payload in the operand specified in a SET statement with either a FLOAT-NOT-A-NUMBER phrase or a FLOAT-NOT-A-NUMBER-SIGNALING phrase is defined by the implementor in conformance with the constraints of ISO/IEC 60559. The value or values chosen by the implementor shall be documented in the implementor's user documentation. (14.9.39, SET statement, General rules 34 and 35)177) SIGN clause (representation when PICTURE contains character 'S' with no optional SIGN clause). This item is required. This item shall be documented in the implementor's user documentation. (13.18.52, SIGN clause, General rule 4 and 8.5.1.5, Algebraic signs)178) SIGN clause (valid sign when SEPARATE CHARACTER phrase not present). This item is required. This item shall be documented in the implementor's user documentation. (13.18.52, SIGN clause, General rule 5b)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 959

179) Size error condition (whether or not range of values allowed for the intermediate data item is to be checked). This item is required. This item shall be documented in the implementor’s user documentation. (14.7.5, SIZE ERROR phrase and size error condition)180) SMALLEST-ALGEBRAIC function (usage of the argument when native arithmetic is in effect) This item is required. This item shall be documented in the implementor’s user documentation. (15.83, SMALLEST-ALGEBRAIC function Argument rule 4)181) SPECIAL-NAMES paragraph (allowable locale-names and literal values). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (12.3.7, SPECIAL-NAMES paragraph, General rule 5)182) SPECIAL-NAMES paragraph, ALPHABET clause (coded character set referenced by STANDARD-2 phrase). This item is required. This item shall be documented in the implementor's user documentation. (12.3.7, SPECIAL-NAMES paragraph, General rule 7c)183) SPECIAL-NAMES paragraph, ALPHABET clause, code-name-1 (alphanumeric coded character set and collating sequence; ordinal number of characters; correspondence with native alphanumeric character set). This item is conditionally required because it is conditioned upon the existence of a code-name. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (12.3.7, SPECIAL-NAMES paragraph, General rule 7i)184) SPECIAL-NAMES paragraph, ALPHABET clause, code-name-1 and code-name-2 (the names supported for code-name-1 and code-name-2). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (12.3.7, SPECIAL-NAMES paragraph Syntax rule 15)185) SPECIAL-NAMES paragraph, ALPHABET clause, code-name-2 (national coded character set and collating sequence; ordinal number of characters; correspondence with native national character set). This item is conditionally required because it is conditioned upon the existence of a code-name. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (12.3.7, SPECIAL-NAMES paragraph, General rule 7j)186) SPECIAL-NAMES paragraph, ALPHABET clause, literal phrase (ordinal number of characters not specified). This item is required. The implementor shall document the scheme used for assigning the ordinal number, but does not need to specify the ordinal number character-by-character. (12.3.7, SPECIAL-NAMES paragraph General rule 7k4)187) SPECIAL-NAMES paragraph, ALPHABET clause, STANDARD-1 and STANDARD-2 phrases (correspondence with native character set). This item is required. This item shall be documented in the implementor's user documentation. (12.3.7, SPECIAL-NAMES paragraph, General rule 7c)188) SPECIAL-NAMES paragraph, ALPHABET clause, UCS-4, UTF-8, and UTF-16 phrases (correspondence with native character set). This item is required. This item shall be documented in the implementor's user documentation. (12.3.7, SPECIAL-NAMES paragraph, General rules 7f and 7h)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

960 ©ISO/IEC 2023

189) SPECIAL-NAMES paragraph, device-name (names available, restrictions on use). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (12.3.7, SPECIAL-NAMES paragraph, Syntax rules 7 and 8)190) SPECIAL-NAMES paragraph, feature-name (names available, any positioning rules, any restrictions on use). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (12.3.7, SPECIAL-NAMES paragraph, Syntax rules 6 and 8)191) SPECIAL-NAMES paragraph, switch-name (names available, which switches may be referenced by the SET statement, scope of, and external facility for modification). This item is optional. This item, if provided by the implementor, shall be documented in the implementor’s user documentation. (8.3.2.3.11, Switch-name, and 12.3.7, SPECIAL-NAMES paragraph, Syntax rule 8 and General rules 2 and 3)192) STOP and GOBACK statements (constraints on the value of the STATUS literal or on the contents of the data item referenced by the STATUS identifier). This item is required. This item shall be documented in the implementor's user documentation. (14.9.42, STOP statement, General rule 5, 14.9.18, GOBACK statement, General rule 10)193) STOP and GOBACK statements (mechanism for error termination). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (14.9.42, STOP statement, General rule 4, 14.9.18, GOBACK statement, General rule 9)194) Subscripts (mapping indexes to occurrence numbers). This item is required. The internal procedure employed by the implementor does not have to be documented in the implementor's user documentation. (8.4.2.3, Subscripts, General rule 1c)195) SYNCHRONIZED clause (effect on elementary items and containing records or groups; implicit filler generation). This item is required. This item shall be documented in the implementor's user documentation. (8.5.1.6.3, Alignment of data items of usage bit; 13.18.55, SYNCHRONIZED clause, General rule 9)196) SYNCHRONIZED clause (how records of a file are handled). This item is optional. This item, if provided by the implementor, shall be documented in the implementor’s user documentation. (13.18.55, SYNCHRONIZED clause, General rule 11)197) SYNCHRONIZED clause (positioning when neither RIGHT nor LEFT is specified). This item is required. This item shall be documented in the implementor's user documentation. (13.18.55, SYNCHRONIZED clause, General rule 3)198) System-names (rules for formation of a system-name). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (8.3.2.3, System-names)199) Terminal screen (correspondence of a column and a character in the computer’s national coded character set). This item is required. This item shall be documented in the implementor’s user documentation. (9.2.1, Terminal screen)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 961

200) Text manipulation (stage of processing the LISTING and PAGE directives and the SUPPRESS phrase of COPY). This item is conditional. This item is conditioned on the implementor producing listings. This item, if provided, need not be documented in the implementor's user documentation. (7.2, Text manipulation)201) Text manipulation (stage of processing parameterized class expansion). This item is required. This item need not be documented in the implementor's user documentation. (7.2, Text manipulation)202) Time formats and corresponding function values (maximum precision not less than nine fractional digits). This item is required. This item shall be documented in the implementor's user documentation. (15.3.3.2, Common time formats with fractional seconds representation)203) THROUGH phrase in VALUE clause and EVALUATE statement (collating sequence used for determining range of values when no alphabet-name is specified). This item is required. This item shall be documented in the implementor’s user documentation. (14.7.8, THROUGH phrase, rule 2)204) TURN directive (whether location information is available when the LOCATION phrase is not specified). This item is required. This item shall be documented in the implementor's user documentation. (7.3.25, TURN directive, General rule 7)205) USAGE BINARY clause (computer storage allocation, alignment and representation of data). This item is required. This item shall be documented in the implementor's user documentation. (13.18.60, USAGE clause, General rule 4)206) USAGE BINARY-CHAR, BINARY-SHORT, BINARY-LONG, BINARY-DOUBLE (allow wider range than minimum specified). This item is optional. This item, if provided by the implementor, shall be documented in the implementor’s user documentation. (13.18.60, USAGE clause, General rule 12)207) USAGE BINARY-SHORT, BINARY-LONG. BINARY-DOUBLE, FLOAT-SHORT, FLOAT-LONG, FLOAT-EXTENDED (representation and length of data item associated with). This item is required. This item shall be documented in the implementor’s user documentation. (13.18.60, USAGE clause, General rule 13, and 13, 13.18.60, USAGE clause, General rule 21)208) USAGE COMPUTATIONAL clause (alignment and representation of data). This item is required. This item shall be documented in the implementor's user documentation. (13.18.60, USAGE clause, General rule 6)209) USAGE DISPLAY (size and representation of characters). This item is required; an implementor may provide an option to vary the size or representation for different compilation units. This item shall be documented in the implementor's user documentation. (13.18.60, USAGE clause, General rule 7)210) USAGE FUNCTION-POINTER clause (alignment, size, and representation of data; and allowable languages). This item is required. This item shall be documented in the implementor's user documentation. (13.18.60, USAGE clause, General rule 26)211) USAGE INDEX clause (alignment and representation of data). This item is required. This item shall be documented in the implementor's user documentation. (13.18.60, USAGE clause, General rule 10)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

962 ©ISO/IEC 2023

212) USAGE MESSAGE-TAG (size and contents). This item is required. This item shall be documented in the implementor’s user documentation. (13.18.60, USAGE clause, General rule 9) 213) USAGE NATIONAL (size and representation of characters). This item is required; an implementor may provide an option to vary the size or representation for different compilation units. This item shall be documented in the implementor's user documentation. (13.18.60, USAGE clause, General rule 8)214) USAGE OBJECT REFERENCE clause (amount of storage allocated). This item is required. This item shall be documented in the implementor’s user documentation. (13.18.60, USAGE clause General rule 22a)215) USAGE PACKED-DECIMAL clause (computer storage allocation, alignment and representation of data). This item is required. This item shall be documented in the implementor's user documentation. (13.18.60, USAGE clause, General rule 11)216) USAGE POINTER clause (alignment, size, representation, and range of values). This item is required. This item shall be documented in the implementor's user documentation. (13.18.60, USAGE clause, General rule 23)217) USAGE PROGRAM-POINTER clause (alignment, size, and representation of data; and allowable languages). This item is required. This item shall be documented in the implementor's user documentation. (13.18.60, USAGE clause, General rule 24)218) USE statement (action taken following execution of the USE procedure when I-O status value indicates a fatal exception condition). This item is required. This item shall be documented in the implementor’s user documentation. (14.9.49, USE statement, General rules 7 and 12; 9.1.13, I-O status)219) User-defined words (whether extended letters may be specified in user-defined words externalized to the operating environment). This item is required. This item shall be documented in the implementor’s user documentation. (8.3.2.2, User-defined words)220) Variable-length data items (actual time when the resources used are freed). This item is required. This item does not have to be documented in the implementor's documentation. (8.5.1.11.3, Availability and persistence of variable-length data items)221) WRITE statement (mnemonic-name-1). This item is optional. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (14.9.51, WRITE statement, Syntax rule 16)222) WRITE statement (page advance when mnemonic-name-1 specified). This item is conditionally required because it is conditioned upon the existence of a mnemonic-name-1 for the WRITE statement. This item, if provided by the implementor, shall be documented in the implementor's user documentation. (14.9.51, WRITE statement, General rule 25d)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 963

A.2 Undefined language element listThe following is a list of the COBOL language elements within this Working Draft International Standard that are explicitly undefined.1) ALLOCATE statement. If the INITIALIZED phrase is not specified in the ALLOCATE statement, the INITIALIZE clause is not specified in the OPTIONS paragraph, and arithmetic-expression-1 is specified, the content of allocated storage is undefined. (14.9.3, ALLOCATE statement, General rule 8)2) ALLOCATE statement. If the INITIALIZED phrase is not specified in the ALLOCATE statement and data-name-1 is specified, the content of allocated storage is undefined except for data items of class object or class pointer. (14.9.3, ALLOCATE statement, General rule 9)3) CALL statement. If a program-pointer data item containing an invalid program address is used in a CALL statement, execution of the CALL statement is undefined. (14.9.4, CALL statement, General rule 3g)4) CANCEL statement. If a program-pointer has been set to point to the program to be canceled, the result of referencing that program-pointer in a subsequent CALL statement is undefined. (14.9.5, CANCEL statement, General rule 11)5) CLOSE statement. The unsuccessful execution of the CLOSE statement without the UNIT phrase leaves the availability of the record area undefined. (14.9.6, CLOSE statement, General rule 7)6) COLUMN clause. The result of printing a report line is undefined if any given column position in the report line is occupied by more than one printable item when the line is printed. (13.18.14, COLUMN clause, General rule 4)7) Cursor. The position and visibility of the cursor is undefined during execution of a DISPLAY screen statement. (9.2.4, Cursor)8) Cursor locator. The value of the cursor locator is undefined after an unsuccessful execution of an ACCEPT screen statement. (9.2.5, Cursor locator)9) Cursor locator. The value of the cursor locator is undefined if the position of the visible cursor is at a line or column number that is greater than 999 when the execution of an ACCEPT screen statement is terminated. (9.2.5, Cursor locator)10) Exception conditions. The exception condition that is set to exist if multiple exceptions are detected during the execution of a statement is undefined unless otherwise specified. (14.6.13.1, Exception conditions)11) Explicit and implicit transfers of control. In the declarative section the flow of control is undefined when there is no next executable statement after either the last statement when the paragraph in which it appears is not being executed under the control of some other COBOL statement, or the last statement when the statement is in the range of an active PERFORM statement executed in a different section and this last statement of the declarative section is not also the last statement of

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

964 ©ISO/IEC 2023

the procedure that is the exit of the active PERFORM statement. (14.6.3, Explicit and implicit transfers of control)12) File section. The initial value of the data items in the file section is undefined. (13.4, File section, General rule 1 and 13.18.63, VALUE clause, General rule 2)13) FREE statement. The contents of any data items located within the dynamic storage area being released become undefined. (14.9.15, FREE statement, General rule 1) 14) Function-identifier. The results of the execution of a function are undefined if the activated function references an omitted argument. (8.4.3.2, Function-identifier, General rule 8)15) Incompatible data. When a numeric-edited data item is the sending operand of a de-editing MOVE statement and the content of that data item is not a possible result for any editing operation in that data item, the result of the MOVE operation is undefined and an EC-DATA-INCOMPATIBLE exception condition is set to exist. (14.6.13.2, Incompatible data)16) Incompatible data. When the content of a boolean or numeric sending operand is referenced during the execution of a statement and the content of that sending operand would result in a false value in the corresponding class test, the result of the reference is undefined and an EC-DATA-INCOMPATIBLE exception condition is set to exist, except when the sending operand is referenced in a class condition or in a VALIDATE statement. (14.6.13.2, Incompatible data)17) Incompatible data on partial reference. If part of a sending operand's content is referenced by a given execution of a statement, it is undefined whether any incompatible data in the unreferenced content is detected. (14.6.13.2, Incompatible data)18) Initial items. It is undefined whether each activation of an initial program has its own copy of initial items. (8.6.4, Automatic, initial, and static internal items)19) Initial state. If a VALUE clause is not associated with a data item described in the working-storage section, screen section, or local-storage section with the exception of data items of category object reference and data items of class pointer, the initial value of the data item is undefined unless the INITIALIZED clause is specified in the OPTIONS paragraph. The initial value of the following is always undefined: an index, a based item, and an item described with the EXTERNAL clause that does not also contain a CONSTANT RECORD clause. (13.18.63, VALUE clause, General rule 4)20) INITIALIZE statement. The result of the execution of the INITIALIZE statement is undefined if the receiving operand and the sending operand occupies the same storage area even if they are defined by the same data description entry. (14.9.20, INITIALIZE statement, General rule 9)21) INSPECT statement. The results of the execution of an INSPECT statement are undefined if:a) the CONVERTING phrase is specified and the size of the item preceding TO is not equal to the size of the item following TO;b) the CHARACTERS phrase is specified and the size of the replacement item is not one character;

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 965

c) replacing-phrase is specified and CHARACTERS is not specified and the size of the replacing item is not equal to the size of the item being replaced;d) the INSPECT identifier, ALL identifier, LEADING identifier, AFTER identifier, or BEFORE identifier occupies the same storage area as the TALLYING identifier;e) the CHARACTERS BY identifier, ALL identifier, LEADING identifier, FIRST identifier, BY identifier, AFTER identifier, or BEFORE identifier occupies the same storage area as the INSPECT identifier;f) the CONVERTING identifier, TO identifier, AFTER identifier, or BEFORE identifier occupies the same storage area as the INSPECT identifier.(14.9.22, INSPECT statement, General rules 13, 14, 15, 18, 21, and 22)22) Intrinsic functions. The evaluation of an ALL subscript shall result in at least one argument, otherwise the result of the reference to the function-identifier is undefined. (15.3, Arguments)23) Linkage section. If a formal parameter or returning item in the linkage section is accessed in a program that is not a called program, such as a program that is activated by the operating system, the effect is undefined. (13.7, Linkage section, General rule 3)24) Linkage section. If the runtime element containing the linkage section is activated by the operating system, the initial value of a linkage section data item is undefined. (13.7, Linkage section, General rule 5)25) LINE clause. The results of printing a report that is divided into pages are undefined if each report group does not fit on one page. (13.18.35, LINE clause, General rule 2)26) LINE clause. The results of printing a report group are undefined if any lines or groups of lines overlap each other, except that the non-space characters of a relative line specified with a relative line number of zero will overwrite the corresponding characters of the preceding line. (13.18.35, LINE clause, General rule 3)27) MERGE statement. Unless the EC-SORT-MERGE-SEQUENCE exception condition is enabled, the results of the merge operation are undefined if the records in the USING files are not ordered as described in the ASCENDING or DESCENDING KEY phrases in the collating sequence associated with the MERGE statement. (14.9.24, MERGE statement, General rule 6)28) MERGE statement. For a relative file, the content of the relative key data item is undefined after the execution of the MERGE statement. (14.9.24, MERGE statement, General rule 7c)29) MERGE statement. The value of the data item referenced by the DEPENDING ON phrase of a RECORD IS VARYING clause specified in the file description entry for the USING file or files is undefined upon completion of the MERGE statement. (14.9.24, MERGE statement, General rule 7)30) MERGE statement. Unless the EC-SORT-MERGE-ACTIVE exception condition is enabled, the results of the execution of a MERGE statement are undefined if the range of the output procedure causes

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

966 ©ISO/IEC 2023

the execution of any MERGE, RELEASE, or file format SORT statement. (14.9.24, MERGE statement, General rule 8)31) MERGE statement. The value of the data item referenced by the DEPENDING ON phrase of a RECORD IS VARYING clause specified in the sort-merge file description entry for the MERGE file is undefined upon completion of the MERGE statement for which the GIVING phrase is specified. (14.9.24, MERGE statement, General rule 12)32) MOVE statement. The results of the execution of a MOVE statement are undefined if the contents of the sending operand are not valid according to the rules for incompatible data. (14.9.25, MOVE statement, General rules 6d and 14.6.13.2, Incompatible data)33) MOVE statement. The result of the execution of a MOVE statement is undefined if the sending operand is of category alphanumeric-edited or national-edited and the receiving operand shares the same storage area and the same data-description entry as the sending operand. (14.9.25, MOVE statement, General rule 6b).34) OCCURS clause. The value of an index is undefined when execution of a statement creates a value for the index that is outside the range of the values allowed by the implementor. (13.18.38, OCCURS clause, General rule 2)35) OCCURS clause, DEPENDING phrase. For an occurs-depending table, the content of a data item whose occurrence number exceeds the value of the data item referenced by the DEPENDING ON data-name is undefined. (13.18.38, OCCURS clause, General rule 7)36) Overlapping operands. The situations where the results of an operation involving overlapping operands are undefined as follows:a) When a sending and a receiving operand in any statement share a part or all of their storage areas, yet are not defined by the same data description entry, and the sequence of operations described in the rules for the statement do not ensure a defined result.b) When one or more of the operands is reference-modified.(14.6.10, Overlapping operands)37) PERFORM statement. The results of the execution of overlapping PERFORM statements are undefined. (14.9.28, PERFORM statement, General rule 2)38) PERFORM STATEMENT. The results of processing are undefined when the contents of a control variable are not numeric. (14.9.28, PERFORM statement)39) Procedure division header. The Initial value of the RETURNING data-name is undefined. (14.2, Procedure division structure, General rule 7)40) READ statement. The content of the associated record area is undefined at the completion of most unsuccessful executions of the READ statement. (14.9.30, READ statement, General rules 10c and 18)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 967

41) READ statement. The contents of any data items that lie outside the range of the current data record are undefined at the completion of the execution of the READ statement. (14.9.30, READ statement, General rule 3)42) READ statement. The key of reference is undefined at the completion of most unsuccessful executions of the READ statement for an indexed file. (14.9.30, READ statement, General rule 18)43) READ statement. The portion of the record area that is to the right of the last valid character read is undefined when the number of bytes in the record that is read is less than the minimum size specified by the record description entries for the file being read. (14.9.30, READ statement, General rule 17)44) RECORD clause. The contents of any implicit filler bits generated to complete the last byte of a logical record are undefined. (13.18.43, RECORD clause, General rule 4)45) RELEASE statement. The content of the bytes that extend outside the end of the record are undefined when the number of bytes to be released to the sort operation is greater than the number of bytes in the record. (14.9.32, RELEASE statement, General rule 6)46) RETURN statement. The contents of any data items that lie outside the range of the current data record are undefined at the completion of the execution of the RETURN statement. (14.9.34, RETURN statement, General rule 2)47) RETURN statement. The contents of the record area are undefined when the at end condition occurs. (14.9.34, RETURN statement, General rule 3)48) RETURN statement. The results of the execution of a RETURN statement are undefined if an attempt is made to execute a RETURN statement as part of the current output procedure after an at end condition occurs. (14.9.34, RETURN statement, General rule 3)49) REWRITE statement. The content of the bytes that extend beyond the end of the record are undefined when the number of bytes to be written to the file is greater than the number of bytes in the record. (14.9.35, REWRITE statement, General rule 15)a) SEARCH ALL statement. If one or more settings of the search index satisfy all conditions in the WHEN phrase, it is undefined whether the search will succeed in identifying any applicable index unless:b) The contents of each key data item referenced in the WHEN phrase are sequenced in the table according to the ASCENDING or DESCENDING phrase associated with that key data item, andc) When the table is subordinate to one or more data description entries that contain an OCCURS clause, the evaluation of the conditions within a WHEN phrase that references a key data item subordinate to the table results in the same occurrence number for any subscripts associated with a given level of the superordinate tables.(14.9.37, SEARCH statement, General rule 6)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

968 ©ISO/IEC 2023

50) SEARCH ALL statement. If there is more than one setting of the search index that satisfies all conditions in the WHEN phrase, it is undefined which one will be used as the final setting of the search index. (14.9.37, SEARCH statement, General rule 7)51) SEARCH ALL statement. If any of the conditions specified in the WHEN phrase are not satisfied for any setting of the index within the permitted range, control is passed to the AT END phrase imperative statement, when specified, or to the end of the SEARCH statement when the AT END phrase is not specified; in either case the final setting of the search index is undefined. (14.9.37, SEARCH statement, General rule 9)52) SORT statement. If the DUPLICATES phrase is not specified and the contents of all the key data items associated with one data record or table element are equal to the contents of the corresponding key data items associated with one or more other data records or table elements, the order of return of these records or the relative order of the contents of these table elements is undefined. (14.9.40, SORT statement, General rule 4)53) SORT statement. Unless the EC-SORT-MERGE-FILE-OPEN exception condition is enabled, the results of the execution of a file SORT statement are undefined when a file specified in the USING or GIVING phases is in an open mode. (14.9.40, SORT statement, General rules 9a and 9c)54) SORT Statement. Unless the EC-SORT-MERGE-FILE-ACTIVE exception condition is enabled, the results of the execution of a file SORT statement are undefined if the range of the input procedure causes the execution of any MERGE, RETURN, or file SORT statement. (14.9.40, SORT statement, General rule 10)55) SORT Statement. Unless the EC-SORT-MERGE-FILE-ACTIVE exception condition is enabled, the results of the execution of a file SORT statement are undefined if the range of the output procedure causes the execution of any MERGE, RELEASE, or file SORT statement. (14.9.40, SORT statement, General rule 13)56) SORT statement. For a relative file, the content of the relative key data item is undefined after the execution of the SORT statement if the USING file is not referenced in the GIVING phrase. (14.9.40, SORT statement, General rule 12c)57) SORT statement. The value of the data item referenced by the DEPENDING ON phrase of a RECORD IS VARYING clause specified in the file description entry for the USING file is undefined upon completion of the SORT statement for which the USING phrase is specified. (14.9.40, SORT statement, General rule 12)58) SORT statement. The value of the data item referenced by the DEPENDING ON phrase of a RECORD IS VARYING clause specified in the sort-merge file description entry for file SORT file name is undefined upon completion of the SORT statement for which the GIVING phrase is specified. (14.9.40, SORT statement, General rule 15)59) START statement. Following the unsuccessful execution of the START statement for a given indexed file, the key of reference for that file is undefined. (14.9.41, START statement, General rule 7)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 969

60) STRING statement. If the STRING identifier, or DELIMITED BY identifier, occupies the same storage area as the INTO identifier, or WITH POINTER identifier, or if the INTO identifier and the WITH POINTER identifier occupy the same storage area, the result of the execution of the STRING statement is undefined, even if they are defined by the same data description entry. (14.9.43, STRING statement, General rule 10 and 14.6.10, Overlapping operands)61) UNSTRING statement. If the UNSTRING identifier, DELIMITED BY identifier, or OR identifier, occupies the same storage area as the INTO identifier, DELIMITER identifier, COUNT identifier, POINTER identifier, or TALLYING identifier, or if the INTO identifier, DELIMITER identifier, or COUNT identifier, occupies the same storage area as the POINTER identifier or TALLYING identifier, or if the POINTER identifier and the TALLYING identifier occupy the same storage area, the result of the execution of the UNSTRING statement is undefined, even if they are defined by the same data description entry. (14.9.48, UNSTRING statement, General rule 18 and 14.6.10, Overlapping operands)62) VALIDATE statement. If the evaluation of an arithmetic expression specified in the VARYING clause of an element of the operand of a VALIDATE statement produces a noninteger value, the content of the receiving items of the VALIDATE statement is undefined. (13.18.64, VARYING clause, General rule 6)63) VARYING clause. If the value of an arithmetic expression in the VARYING clause produces a noninteger value, the content of the print line is undefined. (13.18.64, VARYING clause, General rule 5)64) WRITE statement. The content of the bytes that extend outside the end of the record are undefined when the number of bytes to be written to the file is greater than the number of bytes in the record. (14.9.51, WRITE statement, General rule 13)65) WRITE statement. If two or more file connectors for a sequential file add records by sharing the physical file after opening it in extend mode, the added records follow the records present in the physical file when it was opened, but are otherwise in an undefined order. (14.9.51, WRITE statement, General rule 19)66) WRITE statement (ADVANCING phrase). If the value of the data item referenced by the ADVANCING identifier is negative, the results of the ADVANCING operation are undefined. (14.9.51, WRITE statement, General rule 25b)
A.3 Processor-dependent language element listA processor consists of the hardware and associated software used to translate a compilation group or to execute a run unit.The following is a list of the COBOL language elements within this Working Draft International Standard that depend on specific devices or on a specific processor capability, functionality, or architecture. A processor-dependent element may relate to capability or functionality of hardware or of software, or both. An element described with a device-specific term may be implemented in hardware, software, or a combination of hardware and software.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

970 ©ISO/IEC 2023

1) When no support for any of the features standard binary floating-point usages, standard decimal floating-point usages, standard-binary arithmetic, and standard-decimal arithmetic is provided, the following features are dependent on the capabilities of the processor:a) The ability to specify a significand longer than 31 digits in a floating-point literal.b) The ability to specify an exponent longer than 3 digits in a floating-point literal.c) The ability to specify a significand longer than 31 digits in the PICTURE character-string associated with a floating-point numeric-edited data item.d) The ability to specify an exponent longer than 3 digits in the PICTURE character-string associated with a floating-point numeric-edited data item.2) The ARITHMETIC IS STANDARD-BINARY clause in the OPTIONS paragraph is dependent on the capabilities of the processor.NOTE 1 The STANDARD-BINARY mode of arithmetic is an obsolete feature.3) The ARITHMETIC IS STANDARD-DECIMAL clause in the OPTIONS paragraph is dependent on the capabilities of the processor.4) The asynchronous messaging facility is dependent on the capability of a processor to allow run units to communicate with each other.5) The BLOCK CONTAINS clause has no effect if the operating environment does not support the required features or if it is overridden by operating environment directives.6) The commit and rollback facility is dependent upon the capabilities of the processor and its storage devices.7) The devices which allow commit and rollback are dependent on the capability of the processor and its storage devices.8) The capability of specifying an interval whose precision is greater than .99 in the CONTINUE statement with an AFTER phrase is dependent on the capabilities of the processor.9) The DEFAULT ROUNDED clause in the OPTIONS paragraph is dependent on the capabilities of the processor. When support for this clause is provided, support for at least one of the following shall be provided in the DEFAULT ROUNDED clause:—the NEAREST-AWAY-FROM-ZERO phrase— the NEAREST-EVEN phrase— the PROHIBITED phrase— the TRUNCATION phrase— the set of phrases NEAREST-TOWARD-ZERO, TOWARD-GREATER, and TOWARD-LESSER.NOTE 2 Support for the functionality of nearest-away-from-zero rounding is required under all forms of arithmetic, whether or not the NEAREST-AWAY-FROM-ZERO phrase is provided, in support of the default behavior associated with the ROUNDED phrase.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 971

NOTE 3 Support for the functionality of truncation rounding is required under all forms of arithmetic, whether or not the TRUNCATION phrase is provided, in order to provide the default behavior when a ROUNDED phrase is permitted by syntax rules but not specified by the user.10) The INTERMEDIATE ROUNDING clause in the OPTIONS paragraph is dependent on the capabilities of the processor. When support for this clause is provided, support for at least one of the following shall be provided: —the NEAREST-AWAY-FROM-ZERO phrase— the NEAREST-EVEN phrase— the PROHIBITED phrase — the TRUNCATION phrase.NOTE 4 Support for the functionality of nearest-away-from-zero intermediate rounding is required under standard-decimal arithmetic, whether or not the NEAREST-AWAY-FROM-ZERO phrase is provided, in order to provide the default behavior for intermediate rounding in that mode of arithmetic. NOTE 5 Support for nearest-even intermediate rounding is required under standard-binary arithmetic, whether or not the NEAREST-EVEN phrase is provided, in order to provide the default behavior for intermediate rounding in that mode of arithmetic.11) Support for I-O status value ‘37’ for insufficient authority is dependent on the capabilities of the processor.12) The FLOAT-BINARY clause is dependent both on the capabilities of the processor and on support for the standard binary floating-point usages. When support for this clause is provided, support for at least one of the phrases HIGH-ORDER-LEFT and HIGH-ORDER-RIGHT shall be provided. Support for either or both of these phrases shall be provided in a manner consistent with support for these phrases in the endianness-phrase of the USAGE clause for standard binary floating-point usages.13) The FLOAT-DECIMAL clause is dependent both on the capabilities of the processor and on support for the standard decimal floating-point usages. When support for this clause is provided, the following applies to the phrases of the FLOAT-DECIMAL clause:a) Support for at least one of the phrases HIGH-ORDER-LEFT, HIGH-ORDER-RIGHT, BINARY-ENCODING and DECIMAL-ENCODING shall be provided.b) Support for either or both of the phrases HIGH-ORDER-LEFT and HIGH-ORDER-RIGHT shall be consistent with support for these phrases in the endianness-phrase of the USAGE clause for standard decimal floating-point usages.c) Support for either or both of the phrases BINARY-ENCODING and DECIMAL-ENCODING shall be consistent with support for these phrases in the encoding-phrase of the USAGE clause for standard decimal floating-point usages.14) The MODE phrase is dependent on the capabilities of the processor. When support for this phrase is provided, support for at least one of the following shall be provided in the ROUNDED phrase:—the NEAREST-AWAY-FROM-ZERO phrase— the NEAREST-EVEN phrase

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

972 ©ISO/IEC 2023

— the PROHIBITED phrase— the TRUNCATION phrase— the set of phrases NEAREST-TOWARD-ZERO, TOWARD-GREATER, and TOWARD-LESSER.NOTE 6 Support for the functionality of nearest-away-from-zero rounding is required under all forms of arithmetic, whether or not the NEAREST-AWAY-FROM-ZERO phrase is provided, in order to provide the default behavior associated with the ROUNDED phrase.NOTE 7 Support for the functionality of truncation rounding is required under all forms of arithmetic, whether or not the TRUNCATION phrase is provided, in order to provide the default behavior when a ROUNDED phrase is permitted by syntax rules but not specified by the user.15) The USAGE BINARY clause is dependent on the capabilities of the processor.16) The usages BINARY-CHAR, BINARY-SHORT, BINARY-LONG, and BINARY-DOUBLE are dependent on the capabilities of the processor.17) The usages FLOAT-BINARY-32, FLOAT-BINARY-64 and FLOAT-BINARY-128 are dependent on the capabilities of the processor.18) The endianness-phrase for standard binary floating-point usages is dependent on the capabilities of the processor. When the FLOAT-BINARY clause is supported, the phrases of the endianness-phrase that are supported in the USAGE clause shall also be supported in the FLOAT-BINARY clause.19) The usages FLOAT-DECIMAL-16 and FLOAT-DECIMAL-34 are dependent on the capabilities of the processor.20) The encoding-phrase for standard decimal floating-point usages is dependent on the capabilities of the processor. When the FLOAT-DECIMAL clause is supported, the phrases of the encoding-phrase that are supported in the USAGE clause shall also be supported in the encoding-phrase of the FLOAT-DECIMAL clause.21) The endianness-phrase for standard decimal floating-point usages is dependent on the capabilities of the processor. When the FLOAT-DECIMAL clause is supported, the phrases of the endianness-phrase that are supported in the USAGE clause shall also be supported in the endianness-phrase of the FLOAT-DECIMAL Clause.22) The usages FLOAT-SHORT, FLOAT-LONG, and FLOAT-EXTENDED are dependent upon the capabilities of the processor.23) The USAGE PACKED-DECIMAL clause is dependent upon the capabilities of the processor.24) If positioning is not applicable on the hardware device, the operating system will ignore the positioning specified or implied by the DISPLAY statement.25) The STANDARD-COMPARE intrinsic function, the EC-ORDER-NOT-SUPPORTED exception condition, and the ORDER TABLE clause in the SPECIAL-NAMES paragraph are dependent upon an implementation of ISO/IEC 14651:2020. The implementor need not accept the syntax or set the

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 973

EC-ORDER-NOT-SUPPORTED exception condition to exist when support for ISO/IEC 14651:2020 is not provided.26) The STANDARD-1 phrase of the RECORD DELIMITER clause is dependent upon a reel type of device.27) The CODE-SET clause is dependent upon a device capable of supporting the specified code.28) The REEL/UNIT phrase of the CLOSE statement is dependent upon a reel or mass storage type of device.29) The FOR REMOVAL phrase of the CLOSE statement is dependent upon a reel or mass storage type of device.30) The WITH NO REWIND phrase of the CLOSE statement is dependent upon a reel or mass storage type of device.31) The DELETE statement is dependent upon a mass storage device.32) The I-O phrase of the OPEN statement is dependent upon a mass storage device.33) The WITH NO REWIND phrase of the OPEN statement is dependent upon a reel or mass storage type of device.34) The EXTEND phrase of the OPEN statement is dependent upon a reel or mass storage type of device.35) The REWRITE statement is dependent upon a mass storage device.36) The I-O phrase of the USE statement is dependent upon a mass storage device.37) The BEFORE and AFTER ADVANCING phrases of the WRITE statement are each separately dependent upon a device capable of vertical positioning or of an action based on mnemonic-name.38) The capability of creating, printing, and displaying source code written with extended letters and national literals and the capability of printing or displaying data containing national characters is dependent on devices capable of processing the coded character sets supported by the implementation.39) The PREVIOUS phrase of the READ statement and the relational operators LESS, NOT GREATER, or LESS OR EQUAL in the START statement are dependent on the capabilities of the processor.40) The capability of specifying the SOURCE phrase of the RECORD KEY clause and ALTERNATE RECORD KEY clause is dependent on the capabilities of the processor.41) The capability of specifying a collating sequence for primary and alternate keys of an indexed file where the alphabet specified in the COLLATING SEQUENCE clause is defined in the SPECIAL-NAMES paragraph with the LOCALE phrase or with literals is dependent on the capabilities of the processor.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

974 ©ISO/IEC 2023

42) The functionality of culturally-dependent collating sequences, multiple alternate record keys with different collating sequences, and collating sequences different from the primary record key is dependent on the capabilities of the processor.43) The capabilities of specifying a zero-length record for relative and sequential files, and of reading and writing such records, are dependent on the capabilities of the processor.44) The capability of indicating abnormal termination of the run unit is dependent on the capabilities of the processor.45) When parametric polymorphism is provided in object orientation, the algorithm used for method resolution may be dependent on the methodology used in the object management system.46) The ability to detect any specific level-3 exception condition is dependent on the ability of the processor to detect that level-3 exception condition.
A.4 Optional language element list

A.4.1 GeneralThe following is a list of the language elements that are optional language elements within this Working Draft International Standard. An implementation shall accept the syntax and provide the functionality for an optional element only when support for that language element is claimed by the implementor.This list identifies features, statements, formats (or parts of formats), clauses, or phrases that are optional. Any associated syntax rules, general rules, other rules, exception conditions, and I-O status values are also optional, even if not explicitly listed.NOTE 1 For some optional elements, higher-level language constructs are shown to provide context. The higher-level constructs or cross-referenced topics are not optional. For example, only the lowest-level element (repetition of interface-name-2) in the following entry is optional:CLASS-ID paragraph, INHERITS phrase, repetition of interface-name-2 (11.2)An implementor's user documentation shall identify optional language elements for which support is claimed.The requirements of A.1, Implementor-defined language element list, apply for all supported optional language elements.
A.4.2 ACCEPT and DISPLAY screen handling1) ACCEPT statement, format 3: screen (14.9.1)2) AUTO clause (13.18.3)3) BACKGROUND-COLOR clause (13.18.4)4) BELL clause (13.18.6)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 975

5) BLANK clause (13.18.7)6) BLINK clause (13.18.9)7) COLUMN clause, format 2: screen-item (13.18.14)8) Data division: SCREEN SECTION header (13.9)9) DISPLAY statement, format 2: screen (14.9.10)10) EC-SCREEN exception conditions in the RAISING phrase of the EXIT and GOBACK statements, the RAISING phrase of the procedure division header, the USE statement, the WHEN phrase of the PERFORM statement, the RAISE statement, and the TURN compiler directive.11) Entry-name clause, format 2: screen-name (13.18.20)12) ERASE clause (13.18.21)13) FOREGROUND-COLOR clause (13.18.23)14) FROM clause (13.18.25)15) FULL clause (13.18.26)16) HIGHLIGHT clause (13.18.30)17) LOWLIGHT clause (13.18.36)18) REQUIRED clause (13.18.47)19) REVERSE-VIDEO clause (13.18.48)20) Screen description entry, format 1: group; format 2: elementary (13.17)21) Screens (9.2)22) Screen section (13.9)23) SECURE clause (13.18.50)24) SET statement, format 6: attribute (14.9.39)25) SPECIAL-NAMES paragraph: CURSOR clause and CRT STATUS clause (12.3.7)26) TO clause (13.18.56)27) UNDERLINE clause (13.18.59)
A.4.3 Commit and Rollback

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

976 ©ISO/IEC 2023

1) Commit and Rollback 9.1.18, Commit and Rollback2) IO-CONTROL paragraph, APPLY COMMIT clause 12.4.6.3, APPLY COMMIT clause3) EC-FLOW-APPLY-COMMIT, EC-FLOW-COMMIT, and EC-FLOW-ROLLBACK exception conditions in the RAISING phrase of the EXIT and GOBACK statements, the RAISING phrase of the procedure division header, the USE statement, the WHEN phrase of the PERFORM statement, the RAISE statement, and the TURN compiler directive.4) COMMIT statement 14.9.75) ROLLBACK statement 14.9.36
A.4.4 Dynamic capacity tables1) EC-BOUND-OVERFLOW, EC-BOUND-SET, EC-BOUND-TABLE-LIMIT, and EC-FLOW-SEARCH exception conditions in the RAISING phrase of the EXIT and GOBACK statements, the RAISING phrase of the procedure division header, the USE statement, the WHEN phrase of the PERFORM statement, the RAISE statement, and the TURN compiler directive2) OCCURS clause, format 4: dynamic-capacity-table (13.18.38)3) SET statement, format 14: dynamic-capacity-table (14.9.39)
A.4.5 DYNAMIC LENGTH elementary items1) DYNAMIC LENGTH clause (13.18.19)
A.4.6 Extended letters1) Extended letters in the COBOL character repertoire (8.1.3)
A.4.7 File sharing and record locking1) Sharing mode (9.1.15)2) Record locking (9.1.16)3) File control entry, LOCK MODE clause and SHARING clause (12.4.4)4) LOCK MODE clause (12.4.5.9)5) SHARING clause (12.4.5.15)6) OPEN statement, SHARING phrase (14.9.27)7) EC-I-O-FILE-SHARING exception condition in the RAISING phrase of the EXIT and GOBACK statements, the RAISING phrase of the procedure division header, the USE statement, the WHEN phrase of the PERFORM statement, the RAISE statement, and the TURN compiler directive

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 977

A.4.8 FORMAT and SELECT WHEN file handling 1) FORMAT clause (13.18.24)2) SELECT WHEN clause (13.18.51)
A.4.9 Locale support and related functions1) EC-LOCALE and EC-ORDER-NOT-SUPPORTED exception conditions in the RAISING phrase of the EXIT and GOBACK statements, the RAISING phrase of the procedure division header, the USE statement, the WHEN phrase of the PERFORM statement, the RAISE statement, and the TURN compiler directive2) LOCALE-COMPARE function (15.51)3) LOCALE-DATE function (15.52)4) LOCALE-TIME function (15.53)5) LOCALE-TIME-FROM-SECONDS function (15.54)6) LOWER-CASE function, LOCALE keyword (15.57)7) OBJECT-COMPUTER paragraph, CHARACTER CLASSIFICATION clause (12.3.6)8) PICTURE clause, format 2: locale (13.18.40)9) SET statement, format 11: set-locale and format 12: save-locale (14.9.39)10) SPECIAL-NAMES paragraph: LOCALE clause and LOCALE phrases in the ALPHABET clause (12.3.7)11) STANDARD-COMPARE function (15.85)12) TEST-NUMVAL-C function, LOCALE keyword and locale-name-1 (15.94)13) UPPER-CASE function, LOCALE keyword (15.97)
A.4.10 Object orientation1) Multiple inheritance: CLASS-ID paragraph, INHERITS phrase, repetition of object-class-name-2 (11.3)2) Multiple inheritance: INTERFACE-ID paragraph, INHERITS phrase, repetition of interface-name-2 (11.6)3) Parametric polymorphism (9.3.5.3)
A.4.11 Report Writer

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

978 ©ISO/IEC 2023

1) Data division, REPORT SECTION header (13)2) File description entry, format 3: report (13.4.5)3) Report section (13.8)4) Report description entry (13.8.4)5) Report group description entry (13.8.5)6) CODE clause (13.18.12)7) COLUMN clause, format 1: report-writer (13.18.14)8) CONTROL clause (13.18.16)9) GROUP INDICATE clause (13.18.28)10) LINAGE clause (13.18.34)11) NEXT GROUP clause (13.18.37)12) OCCURS clause, format 3: report-writer (13.18.38) 13) PAGE clause (13.18.39)14) PRESENT WHEN clause (13.18.41)15) REPORT clause (13.18.46)16) SOURCE clause (13.18.53)17) SUM clause (13.18.54)18) TYPE clause, report-group format (13.18.57)19) VALUE clause, report-section format (13.18.63)20) VARYING clause (13.18.64)21) GENERATE statement (14.9.16)22) INITIATE statement (14.9.21)23) SUPPRESS statement (14.9.45)24) TERMINATE statement (14.9.46)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 979

25) EC-REPORT and EC-FLOW-REPORT exception conditions in the RAISING phrase of the EXIT and GOBACK statements, the RAISING phrase of the procedure division header, the USE statement, the WHEN phrase of the PERFORM statement, the RAISE statement, and the TURN compiler directive
A.4.12 RESUME statement1) RESUME statement (14.9.33)
A.4.13 REWRITE FILE and WRITE FILE1) REWRITE FILE file-name-1 (14.9.35)2) WRITE FILE file-name-1 (14.9.51)
A.4.14 VALIDATENOTE The VALIDATE facility is an obsolete feature.1) Data description entry, format 4: validation (13.16)2) DEFAULT clause (13.18.17)3) DESTINATION clause (13.18.18)4) INVALID clause (13.18.31)5) PRESENT WHEN clause (13.18.41)6) VALIDATE-STATUS clause (13.18.62)7) VALUE clause, format 5: content-validation-entry (13.18.63)8) VARYING clause (13.18.64)9) VALIDATE statement (13.18.64)10) EC-VALIDATE exception conditions in the RAISING phrase of the EXIT and GOBACK statements, the RAISING phrase of the procedure division header, the USE statement, the WHEN phrase of the PERFORM statement, the RAISE statement, and the TURN compiler directive

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

980 ©ISO/IEC 2023

 Annex B (normative)
 Characters permitted in user-defined words

B.1 GeneralThis annex presents the repertoire of characters permitted in user-defined words. The characters include the letters, ideographic and syllabic characters, digits, modifiers, and combining marks that the Unicode Standard Annex, UAX #31, Unicode version 13.0.0, classifies as Identifier Characters. This Annex includes two more characters beyond those Identifier Characters, HYPHEN-MINUS and KATAKANA MIDDLE DOT.NOTE 1 In UAX #31, characters with the property XID_Continue, or XID_Continue characters, are known as Identifier Characters, and only those with the property XID_Start, or XID_Start characters, are for the start character of an identifier. The set of XID_Start characters is a proper subset of the set of XID_Continue characters.The repertoire includes the basic letters, basic digits, and basic hyphen and underscore; these are the basic characters of the COBOL character repertoire that are permitted in user-defined words. The remaining characters of the repertoire are referred to as extended letters, which are permitted in user-defined words as specified in the detailed rules of COBOL.NOTE 2 Attention is drawn to the possibility that use of extended letters in user-defined words can impact source code portability because the full set of extended letters is not universally implemented at the time of publication of this Working Draft International Standard.
B.2 NotationThe repertoire of characters permitted in user-defined words shall use the hexadecimal code values that identify characters specified in ISO/IEC 10646. A range of characters is specified in the form nnnn-mmmm, where nnnn identifies the first character in the range and mmmm identifies the last character in the range.NOTE 1 The specification of code values in ISO/IEC 10646 is a means of character identification and not a requirement for implementation of ISO/IEC 10646.NOTE 2 The letter 'U' customarily used in referencing code values in ISO/IEC 10646 is not used so as to increase the readability of code values and range specifications.
B.3 Repertoire of characters permitted in user-defined words1) The following characters are permitted in a user-defined word.NOTE 1 The list contains the XID_Start characters and Basic digits. Basic Digits:0030-0039Adlam:1E900-1E943, 1E94B

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 981

Ahom:11700-1171AAnatolian_Hieroglyphs:14400-14646Arabic:0620-063F, 0641-064A, 066E-066F, 0671-06D3, 06D5, 06E5-06E6, 06EE-06EF, 06FA-06FC, 06FF, 0750-077F, 08A0-08B4, 08B6-08C7, FB50-FBB1, FBD3-FC5D, FC64-FD3D, FD50-FD8F, FD92-FDC7, FDF0-FDF9, FE71, FE73, FE77, FE79, FE7B, FE7D, FE7F-FEFC, 1EE00-1EE03, 1EE05-1EE1F, 1EE21-1EE22, 1EE24, 1EE27, 1EE29-1EE32, 1EE34-1EE37, 1EE39, 1EE3B, 1EE42, 1EE47, 1EE49, 1EE4B, 1EE4D-1EE4F, 1EE51-1EE52, 1EE54, 1EE57, 1EE59, 1EE5B, 1EE5D, 1EE5F, 1EE61-1EE62, 1EE64, 1EE67-1EE6A, 1EE6C-1EE72, 1EE74-1EE77, 1EE79-1EE7C, 1EE7E, 1EE80-1EE89, 1EE8B-1EE9B, 1EEA1-1EEA3, 1EEA5-1EEA9, 1EEAB-1EEBBArmenian:0531-0556, 0559, 0560-0588, FB13-FB17Avestan:10B00-10B35Balinese:1B05-1B33, 1B45-1B4BBamum:A6A0-A6EF, 16800-16A38Bassa_Vah:16AD0-16AEDBatak:1BC0-1BE5Bengali:0980, 0985-098C, 098F-0990, 0993-09A8, 09AA-09B0, 09B2, 09B6-09B9, 09BD, 09CE, 09DC-09DD, 09DF-09E1, 09F0-09F1, 09FCBhaiksuki:11C00-11C08, 11C0A-11C2E, 11C40Bopomofo:3105-312F, 31A0-31BFBrahmi:11003-11037Buginese:1A00-1A16

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

982 ©ISO/IEC 2023

Buhid:1740-1751Canadian_Aboriginal:1401-166C, 166F-167F, 18B0-18F5Carian:102A0-102D0Caucasian_Albanian:10530-10563Chakma:11103-11126, 11144, 11147Cham:AA00-AA28, AA40-AA42, AA44-AA4BCherokee:13A0-13F5, 13F8-13FD, AB70-ABBFChorasmian:10FB0-10FC4Common:00B5, 02B9-02C1, 02C6-02D1, 02EC, 02EE, 0374, 0640, 1CE9-1CEC, 1CEE-1CF3, 1CF5-1CF6, 1CFA, 2102, 2107, 210A-2113, 2115, 2118-211D, 2124, 2128, 212C-2131, 2133-2139, 213C-213F, 2145-2149, 3006, 3031-3035, 303C, 30FC, A717-A71F, A788, A9CF, FF70, 16FE3, 1D400-1D454, 1D456-1D49C, 1D49E-1D49F, 1D4A2, 1D4A5-1D4A6, 1D4A9-1D4AC, 1D4AE-1D4B9, 1D4BB, 1D4BD-1D4C3, 1D4C5-1D505, 1D507-1D50A, 1D50D-1D514, 1D516-1D51C, 1D51E-1D539, 1D53B-1D53E, 1D540-1D544, 1D546, 1D54A-1D550, 1D552-1D6A5, 1D6A8-1D6C0, 1D6C2-1D6DA, 1D6DC-1D6FA, 1D6FC-1D714, 1D716-1D734, 1D736-1D74E, 1D750-1D76E, 1D770-1D788, 1D78A-1D7A8, 1D7AA-1D7C2, 1D7C4-1D7CBCoptic:03E2-03EF, 2C80-2CE4, 2CEB-2CEE, 2CF2-2CF3Cuneiform:12000-12399, 12400-1246E, 12480-12543Cypriot:10800-10805, 10808, 1080A-10835, 10837-10838, 1083C, 1083FCyrillic:0400-0481, 048A-052F, 1C80-1C88, 1D2B, 1D78, A640-A66E, A67F-A69DDeseret:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 983

10400-1044FDevanagari:0904-0939, 093D, 0950, 0958-0961, 0971-097F, A8F2-A8F7, A8FB, A8FD-A8FEDives_Akuru:11900-11906, 11909, 1190C-11913, 11915-11916, 11918-1192F, 1193F, 11941Dogra:11800-1182BDuployan:1BC00-1BC6A, 1BC70-1BC7C, 1BC80-1BC88, 1BC90-1BC99Egyptian_Hieroglyphs:13000-1342EElbasan:10500-10527Elymaic:10FE0-10FF6Ethiopic:1200-1248, 124A-124D, 1250-1256, 1258, 125A-125D, 1260-1288, 128A-128D, 1290-12B0, 12B2-12B5, 12B8-12BE, 12C0, 12C2-12C5, 12C8-12D6, 12D8-1310, 1312-1315, 1318-135A, 1380-138F, 2D80-2D96, 2DA0-2DA6, 2DA8-2DAE, 2DB0-2DB6, 2DB8-2DBE, 2DC0-2DC6, 2DC8-2DCE, 2DD0-2DD6, 2DD8-2DDE, AB01-AB06, AB09-AB0E, AB11-AB16, AB20-AB26, AB28-AB2EGeorgian:10A0-10C5, 10C7, 10CD, 10D0-10FA, 10FC-10FF, 1C90-1CBA, 1CBD-1CBF, 2D00-2D25, 2D27, 2D2DGlagolitic:2C00-2C2E, 2C30-2C5EGothic:10330-1034AGrantha:11305-1130C, 1130F-11310, 11313-11328, 1132A-11330, 11332-11333, 11335-11339, 1133D, 11350, 1135D-11361Greek:0370-0373, 0376-0377, 037B-037D, 037F, 0386, 0388-038A, 038C, 038E-03A1, 03A3-03E1, 03F0-03F5, 03F7-03FF, 1D26-1D2A, 1D5D-1D61, 1D66-1D6A, 1DBF, 1F00-1F15, 1F18-1F1D, 1F20-1F45, 1F48-1F4D, 1F50-1F57, 1F59, 1F5B, 1F5D, 1F5F-1F7D, 1F80-1FB4, 1FB6-1FBC, 1FBE, 1FC2-1FC4, 1FC6-1FCC, 1FD0-1FD3,

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

984 ©ISO/IEC 2023

1FD6-1FDB, 1FE0-1FEC, 1FF2-1FF4, 1FF6-1FFC, 2126, AB65, 10140-10174Gujarati:0A85-0A8D, 0A8F-0A91, 0A93-0AA8, 0AAA-0AB0, 0AB2-0AB3, 0AB5-0AB9, 0ABD, 0AD0, 0AE0-0AE1, 0AF9Gunjala_Gondi:11D60-11D65, 11D67-11D68, 11D6A-11D89, 11D98Gurmukhi:0A05-0A0A, 0A0F-0A10, 0A13-0A28, 0A2A-0A30, 0A32-0A33, 0A35-0A36, 0A38-0A39, 0A59-0A5C, 0A5E, 0A72-0A74Han:3005, 3007, 3021-3029, 3038-303B, 3400-4DBF, 4E00-9FFC, F900-FA6D, FA70-FAD9, 20000-2A6DD, 2A700-2B734, 2B740-2B81D, 2B820-2CEA1, 2CEB0-2EBE0, 2F800-2FA1D, 30000-3134AHangul:1100-11FF, 3131-318E, A960-A97C, AC00-D7A3, D7B0-D7C6, D7CB-D7FB, FFA0-FFBE, FFC2-FFC7, FFCA-FFCF, FFD2-FFD7, FFDA-FFDCHanifi_Rohingya:10D00-10D23Hanunoo:1720-1731Hatran:108E0-108F2, 108F4-108F5Hebrew:05D0-05EA, 05EF-05F2, FB1D, FB1F-FB28, FB2A-FB36, FB38-FB3C, FB3E, FB40-FB41, FB43-FB44, FB46-FB4FHiragana:3041-3096, 309D-309F, 1B001-1B11E, 1B150-1B152Imperial_Aramaic:10840-10855Inscriptional_Pahlavi:10B60-10B72Inscriptional_Parthian:10B40-10B55Javanese:A984-A9B2

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 985

Kaithi:11083-110AFKannada:0C80, 0C85-0C8C, 0C8E-0C90, 0C92-0CA8, 0CAA-0CB3, 0CB5-0CB9, 0CBD, 0CDE, 0CE0-0CE1, 0CF1-0CF2Katakana:30A1-30FA, 30FD-30FF, 31F0-31FF, FF66-FF6F, FF71-FF9D, 1B000, 1B164-1B167Kayah_Li:A90A-A925Kharoshthi:10A00, 10A10-10A13, 10A15-10A17, 10A19-10A35Khitan_Small_Script:18B00-18CD5Khmer:1780-17B3, 17D7, 17DCKhojki:11200-11211, 11213-1122BKhudawadi:112B0-112DELao:0E81-0E82, 0E84, 0E86-0E8A, 0E8C-0EA3, 0EA5, 0EA7-0EB0, 0EB2, 0EBD, 0EC0-0EC4, 0EC6, 0EDC-0EDFLatin:0041-005A, 0061-007A, 00AA, 00BA, 00C0-00D6, 00D8-00F6, 00F8-02B8, 02E0-02E4, 1D00-1D25, 1D2C-1D5C, 1D62-1D65, 1D6B-1D77, 1D79-1DBE, 1E00-1EFF, 2071, 207F, 2090-209C, 212A-212B, 2132, 214E, 2160-2188, 2C60-2C7F, A722-A787, A78B-A7BF, A7C2-A7CA, A7F5-A7FF, AB30-AB5A, AB5C-AB64, AB66-AB69, FB00-FB06, FF21-FF3A, FF41-FF5ALepcha:1C00-1C23, 1C4D-1C4FLimbu:1900-191ELinear_A:10600-10736, 10740-10755, 10760-10767

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

986 ©ISO/IEC 2023

Linear_B:10000-1000B, 1000D-10026, 10028-1003A, 1003C-1003D, 1003F-1004D, 10050-1005D, 10080-100FALisu:A4D0-A4FD, 11FB0Lycian:10280-1029CLydian:10920-10939Mahajani:11150-11172, 11176Makasar:11EE0-11EF2Malayalam:0D04-0D0C, 0D0E-0D10, 0D12-0D3A, 0D3D, 0D4E, 0D54-0D56, 0D5F-0D61, 0D7A-0D7FMandaic:0840-0858Manichaean:10AC0-10AC7, 10AC9-10AE4Marchen:11C72-11C8FMasaram_Gondi:11D00-11D06, 11D08-11D09, 11D0B-11D30, 11D46Medefaidrin:16E40-16E7FMeetei_Mayek:AAE0-AAEA, AAF2-AAF4, ABC0-ABE2Mende_Kikakui:1E800-1E8C4Meroitic_Cursive:109A0-109B7, 109BE-109BFMeroitic_Hieroglyphs:10980-1099F

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 987

Miao:16F00-16F4A, 16F50, 16F93-16F9FModi:11600-1162F, 11644Mongolian:1820-1878, 1880-18A8, 18AAMro:16A40-16A5EMultani:11280-11286, 11288, 1128A-1128D, 1128F-1129D, 1129F-112A8Myanmar:1000-102A, 103F, 1050-1055, 105A-105D, 1061, 1065-1066, 106E-1070, 1075-1081, 108E, A9E0-A9E4, A9E6-A9EF, A9FA-A9FE, AA60-AA76, AA7A, AA7E-AA7FNabataean:10880-1089ENandinagari:119A0-119A7, 119AA-119D0, 119E1, 119E3New_Tai_Lue:1980-19AB, 19B0-19C9Newa:11400-11434, 11447-1144A, 1145F-11461Nko:07CA-07EA, 07F4-07F5, 07FANushu:16FE1, 1B170-1B2FBNyiakeng_Puachue_Hmong:1E100-1E12C, 1E137-1E13D, 1E14EOgham:1681-169AOl_Chiki:1C5A-1C7DOld_Hungarian:10C80-10CB2, 10CC0-10CF2

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

988 ©ISO/IEC 2023

Old_Italic:10300-1031F, 1032D-1032FOld_North_Arabian:10A80-10A9COld_Permic:10350-10375Old_Persian:103A0-103C3, 103C8-103CF, 103D1-103D5Old_Sogdian:10F00-10F1C, 10F27Old_South_Arabian:10A60-10A7COld_Turkic:10C00-10C48Oriya:0B05-0B0C, 0B0F-0B10, 0B13-0B28, 0B2A-0B30, 0B32-0B33, 0B35-0B39, 0B3D, 0B5C-0B5D, 0B5F-0B61, 0B71Osage:104B0-104D3, 104D8-104FBOsmanya:10480-1049DPahawh_Hmong:16B00-16B2F, 16B40-16B43, 16B63-16B77, 16B7D-16B8FPalmyrene:10860-10876Pau_Cin_Hau:11AC0-11AF8Phags_Pa:A840-A873Phoenician:10900-10915Psalter_Pahlavi:10B80-10B91

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 989

Rejang:A930-A946Runic:16A0-16EA, 16EE-16F8Samaritan:0800-0815, 081A, 0824, 0828Saurashtra:A882-A8B3Sharada:11183-111B2, 111C1-111C4, 111DA, 111DCShavian:10450-1047FSiddham:11580-115AE, 115D8-115DBSinhala:0D85-0D96, 0D9A-0DB1, 0DB3-0DBB, 0DBD, 0DC0-0DC6Sogdian:10F30-10F45Sora_Sompeng:110D0-110E8Soyombo:11A50, 11A5C-11A89, 11A9DSundanese:1B83-1BA0, 1BAE-1BAF, 1BBA-1BBFSyloti_Nagri:A800-A801, A803-A805, A807-A80A, A80C-A822Syriac:0710, 0712-072F, 074D-074F, 0860-086ATagalog:1700-170C, 170E-1711Tagbanwa:1760-176C, 176E-1770Tai_Le:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

990 ©ISO/IEC 2023

1950-196D, 1970-1974Tai_Tham:1A20-1A54, 1AA7Tai_Viet:AA80-AAAF, AAB1, AAB5-AAB6, AAB9-AABD, AAC0, AAC2, AADB-AADDTakri:11680-116AA, 116B8Tamil:0B83, 0B85-0B8A, 0B8E-0B90, 0B92-0B95, 0B99-0B9A, 0B9C, 0B9E-0B9F, 0BA3-0BA4, 0BA8-0BAA, 0BAE-0BB9, 0BD0Tangut:16FE0, 17000-187F7, 18800-18AFF, 18D00-18D08Telugu:0C05-0C0C, 0C0E-0C10, 0C12-0C28, 0C2A-0C39, 0C3D, 0C58-0C5A, 0C60-0C61Thaana:0780-07A5, 07B1Thai:0E01-0E30, 0E32, 0E40-0E46Tibetan:0F00, 0F40-0F47, 0F49-0F6C, 0F88-0F8CTifinagh:2D30-2D67, 2D6FTirhuta:11480-114AF, 114C4-114C5, 114C7Ugaritic:10380-1039DVai:A500-A60C, A610-A61F, A62A-A62BWancho:1E2C0-1E2EBWarang_Citi:118A0-118DF, 118FFYezidi:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 991

10E80-10EA9, 10EB0-10EB1Yi:A000-A48CZanabazar_Square:11A00, 11A0B-11A32, 11A3A
2) The following characters are permitted in a user-defined word except as the start character.NOTE 2 The list contains the XID_Continue characters excluding XID_Start characters, Basic digits, and a Basic special character underscore, or LOW LINE.Adlam:1E944-1E94A, 1E950-1E959Ahom:1171D-1172B, 11730-11739Arabic:0610-061A, 0656-0669, 06D6-06DC, 06DF-06E4, 06E7-06E8, 06EA-06ED, 06F0-06F9, 08D3-08E1, 08E3-08FFBalinese:1B00-1B04, 1B34-1B44, 1B50-1B59, 1B6B-1B73Bamum:A6F0-A6F1Bassa_Vah:16AF0-16AF4Batak:1BE6-1BF3Bengali:0981-0983, 09BC, 09BE-09C4, 09C7-09C8, 09CB-09CD, 09D7, 09E2-09E3, 09E6-09EF, 09FEBhaiksuki:11C2F-11C36, 11C38-11C3F, 11C50-11C59Brahmi:11000-11002, 11038-11046, 11066-1106F, 1107FBuginese:1A17-1A1B

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

992 ©ISO/IEC 2023

Buhid:1752-1753Chakma:11100-11102, 11127-11134, 11136-1113F, 11145-11146Cham:AA29-AA36, AA43, AA4C-AA4D, AA50-AA59Common:00B7, 0387, 1CE1, 1CF7, 203F-2040, 2054, FE33-FE34, FE4D-FE4F, FF10-FF19, FF3F, FF9E-FF9F, 1D165-1D166, 1D16D-1D172, 1D7CE-1D7FF, 1FBF0-1FBF9Coptic:2CEF-2CF1Cyrillic:0483-0484, 0487, 2DE0-2DFF, A66F, A674-A67D, A69E-A69F, FE2E-FE2FDevanagari:0900-0903, 093A-093C, 093E-094F, 0955-0957, 0962-0963, 0966-096F, A8E0-A8F1, A8FFDives_Akuru:11930-11935, 11937-11938, 1193B-1193E, 11940, 11942-11943, 11950-11959Dogra:1182C-1183ADuployan:1BC9D-1BC9EEthiopic:135D-135F, 1369-1371Glagolitic:1E000-1E006, 1E008-1E018, 1E01B-1E021, 1E023-1E024, 1E026-1E02AGrantha:11300-11303, 1133C, 1133E-11344, 11347-11348, 1134B-1134D, 11357, 11362-11363, 11366-1136C, 11370-11374Greek:1D242-1D244Gujarati:0A81-0A83, 0ABC, 0ABE-0AC5, 0AC7-0AC9, 0ACB-0ACD, 0AE2-0AE3, 0AE6-0AEF, 0AFA-0AFF

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 993

Gunjala_Gondi:11D8A-11D8E, 11D90-11D91, 11D93-11D97, 11DA0-11DA9Gurmukhi:0A01-0A03, 0A3C, 0A3E-0A42, 0A47-0A48, 0A4B-0A4D, 0A51, 0A66-0A71, 0A75Han:16FF0-16FF1Hangul:302E-302FHanifi_Rohingya:10D24-10D27, 10D30-10D39Hanunoo:1732-1734Hebrew:0591-05BD, 05BF, 05C1-05C2, 05C4-05C5, 05C7, FB1EInherited:0300-036F, 0485-0486, 064B-0655, 0670, 0951-0954, 1AB0-1ABD, 1ABF-1AC0, 1CD0-1CD2, 1CD4-1CE0, 1CE2-1CE8, 1CED, 1CF4, 1CF8-1CF9, 1DC0-1DF9, 1DFB-1DFF, 20D0-20DC, 20E1, 20E5-20F0, 302A-302D, 3099-309A, FE00-FE0F, FE20-FE2D, 101FD, 102E0, 1133B, 1D167-1D169, 1D17B-1D182, 1D185-1D18B, 1D1AA-1D1AD, E0100-E01EFJavanese:A980-A983, A9B3-A9C0, A9D0-A9D9Kaithi:11080-11082, 110B0-110BAKannada:0C81-0C83, 0CBC, 0CBE-0CC4, 0CC6-0CC8, 0CCA-0CCD, 0CD5-0CD6, 0CE2-0CE3, 0CE6-0CEFKayah_Li:A900-A909, A926-A92DKharoshthi:10A01-10A03, 10A05-10A06, 10A0C-10A0F, 10A38-10A3A, 10A3FKhitan_Small_Script:16FE4Khmer:17B4-17D3, 17DD, 17E0-17E9

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

994 ©ISO/IEC 2023

Khojki:1122C-11237, 1123EKhudawadi:112DF-112EA, 112F0-112F9Lao:0EB1, 0EB3-0EBC, 0EC8-0ECD, 0ED0-0ED9Lepcha:1C24-1C37, 1C40-1C49Limbu:1920-192B, 1930-193B, 1946-194FMahajani:11173Makasar:11EF3-11EF6Malayalam:0D00-0D03, 0D3B-0D3C, 0D3E-0D44, 0D46-0D48, 0D4A-0D4D, 0D57, 0D62-0D63, 0D66-0D6FMandaic:0859-085BManichaean:10AE5-10AE6Marchen:11C92-11CA7, 11CA9-11CB6Masaram_Gondi:11D31-11D36, 11D3A, 11D3C-11D3D, 11D3F-11D45, 11D47, 11D50-11D59Meetei_Mayek:AAEB-AAEF, AAF5-AAF6, ABE3-ABEA, ABEC-ABED, ABF0-ABF9Mende_Kikakui:1E8D0-1E8D6Miao:16F4F, 16F51-16F87, 16F8F-16F92Modi:11630-11640, 11650-11659

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 995

Mongolian:180B-180D, 1810-1819, 18A9Mro:16A60-16A69Myanmar:102B-103E, 1040-1049, 1056-1059, 105E-1060, 1062-1064, 1067-106D, 1071-1074, 1082-108D, 108F-109D, A9E5, A9F0-A9F9, AA7B-AA7DNandinagari:119D1-119D7, 119DA-119E0, 119E4New_Tai_Lue:19D0-19DANewa:11435-11446, 11450-11459, 1145ENko:07C0-07C9, 07EB-07F3, 07FDNyiakeng_Puachue_Hmong:1E130-1E136, 1E140-1E149Ol_Chiki:1C50-1C59Old_Permic:10376-1037AOriya:0B01-0B03, 0B3C, 0B3E-0B44, 0B47-0B48, 0B4B-0B4D, 0B55-0B57, 0B62-0B63, 0B66-0B6FOsmanya:104A0-104A9Pahawh_Hmong:16B30-16B36, 16B50-16B59Rejang:A947-A953Samaritan:0816-0819, 081B-0823, 0825-0827, 0829-082DSaurashtra:A880-A881, A8B4-A8C5, A8D0-A8D9

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

996 ©ISO/IEC 2023

Sharada:11180-11182, 111B3-111C0, 111C9-111CC, 111CE-111D9Siddham:115AF-115B5, 115B8-115C0, 115DC-115DDSignWriting:1DA00-1DA36, 1DA3B-1DA6C, 1DA75, 1DA84, 1DA9B-1DA9F, 1DAA1-1DAAFSinhala:0D81-0D83, 0DCA, 0DCF-0DD4, 0DD6, 0DD8-0DDF, 0DE6-0DEF, 0DF2-0DF3Sogdian:10F46-10F50Sora_Sompeng:110F0-110F9Soyombo:11A51-11A5B, 11A8A-11A99Sundanese:1B80-1B82, 1BA1-1BAD, 1BB0-1BB9Syloti_Nagri:A802, A806, A80B, A823-A827, A82CSyriac:0711, 0730-074ATagalog:1712-1714Tagbanwa:1772-1773Tai_Tham:1A55-1A5E, 1A60-1A7C, 1A7F-1A89, 1A90-1A99Tai_Viet:AAB0, AAB2-AAB4, AAB7-AAB8, AABE-AABF, AAC1Takri:116AB-116B7, 116C0-116C9Tamil:0B82, 0BBE-0BC2, 0BC6-0BC8, 0BCA-0BCD, 0BD7, 0BE6-0BEF

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 997

Telugu:0C00-0C04, 0C3E-0C44, 0C46-0C48, 0C4A-0C4D, 0C55-0C56, 0C62-0C63, 0C66-0C6FThaana:07A6-07B0Thai:0E31, 0E33-0E3A, 0E47-0E4E, 0E50-0E59Tibetan:0F18-0F19, 0F20-0F29, 0F35, 0F37, 0F39, 0F3E-0F3F, 0F71-0F84, 0F86-0F87, 0F8D-0F97, 0F99-0FBC, 0FC6Tifinagh:2D7FTirhuta:114B0-114C3, 114D0-114D9Vai:A620-A629Wancho:1E2EC-1E2F9Warang_Citi:118E0-118E9Yezidi:10EAB-10EACZanabazar_Square:11A01-11A0A, 11A33-11A39, 11A3B-11A3E, 11A47
3) The following characters are permitted in a user-defined word except as the start or last character.

NOTE 3 The list contains Basic special characters minus sign and underscore, or HYPHEN-MINUS and LOW LINE, respectively, and a medial character KATAKANA MIDDLE DOT.Basic special characters:002D, 005FAdditional medial character:30FB

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

998 ©ISO/IEC 2023

 Annex C (normative)
 Mapping of uppercase letters to lowercase letters in the COBOL

character repertoire

C.1 NotationsThe following notation conventions are used in this annex:(xxxx,yyyy) denotes a mapping of an uppercase letter xxxx to a lowercase letter yyyy, where xxxx and yyyy are four-digit or five-digit hexadecimal notation using the digits 0-9 and the letters A-F (for 10 through 15, respectively) and represent code points specified in ISO/IEC 10646 to identify characters.NOTE Code points specified in ISO/IEC 10646 are used only for identifying characters. It is not a requirement for implementation of ISO/IEC 10646.
C.2 General case mappingsThe mapping of uppercase letters to lowercase letters is listed below.NOTE Any character listed in Annex B, Characters permitted in user-defined words, with the Changes_When_Lowercased property as specified in the Unicode Standard Annex, UAX #44, Unicode version 13.0.0, is listed with its corresponding lowercase, if correspondence exists..

(0041,0061);(0042,0062);(0043,0063);(0044,0064);
(0045,0065);(0046,0066);(0047,0067);(0048,0068);
(0049,0069);(004A,006A);(004B,006B);(004C,006C);
(004D,006D);(004E,006E);(004F,006F);(0050,0070);
(0051,0071);(0052,0072);(0053,0073);(0054,0074);
(0055,0075);(0056,0076);(0057,0077);(0058,0078);
(0059,0079);(005A,007A);(00C0,00E0);(00C1,00E1);
(00C2,00E2);(00C3,00E3);(00C4,00E4);(00C5,00E5);
(00C6,00E6);(00C7,00E7);(00C8,00E8);(00C9,00E9);
(00CA,00EA);(00CB,00EB);(00CC,00EC);(00CD,00ED);
(00CE,00EE);(00CF,00EF);(00D0,00F0);(00D1,00F1);
(00D2,00F2);(00D3,00F3);(00D4,00F4);(00D5,00F5);
(00D6,00F6);(00D8,00F8);(00D9,00F9);(00DA,00FA);
(00DB,00FB);(00DC,00FC);(00DD,00FD);(00DE,00FE);
(0100,0101);(0102,0103);(0104,0105);(0106,0107);
(0108,0109);(010A,010B);(010C,010D);(010E,010F);
(0110,0111);(0112,0113);(0114,0115);(0116,0117);
(0118,0119);(011A,011B);(011C,011D);(011E,011F);
(0120,0121);(0122,0123);(0124,0125);(0126,0127);
(0128,0129);(012A,012B);(012C,012D);(012E,012F);
(0130,0069);(0132,0133);(0134,0135);(0136,0137);
(0139,013A);(013B,013C);(013D,013E);(013F,0140);
(0141,0142);(0143,0144);(0145,0146);(0147,0148);
(014A,014B);(014C,014D);(014E,014F);(0150,0151);
(0152,0153);(0154,0155);(0156,0157);(0158,0159);
(015A,015B);(015C,015D);(015E,015F);(0160,0161);
(0162,0163);(0164,0165);(0166,0167);(0168,0169);

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 999

(016A,016B);(016C,016D);(016E,016F);(0170,0171);
(0172,0173);(0174,0175);(0176,0177);(0178,00FF);
(0179,017A);(017B,017C);(017D,017E);(0181,0253);
(0182,0183);(0184,0185);(0186,0254);(0187,0188);
(0189,0256);(018A,0257);(018B,018C);(018E,01DD);
(018F,0259);(0190,025B);(0191,0192);(0193,0260);
(0194,0263);(0196,0269);(0197,0268);(0198,0199);
(019C,026F);(019D,0272);(019F,0275);(01A0,01A1);
(01A2,01A3);(01A4,01A5);(01A6,0280);(01A7,01A8);
(01A9,0283);(01AC,01AD);(01AE,0288);(01AF,01B0);
(01B1,028A);(01B2,028B);(01B3,01B4);(01B5,01B6);
(01B7,0292);(01B8,01B9);(01BC,01BD);(01C4,01C6);
(01C5,01C6);(01C7,01C9);(01C8,01C9);(01CA,01CC);
(01CB,01CC);(01CD,01CE);(01CF,01D0);(01D1,01D2);
(01D3,01D4);(01D5,01D6);(01D7,01D8);(01D9,01DA);
(01DB,01DC);(01DE,01DF);(01E0,01E1);(01E2,01E3);
(01E4,01E5);(01E6,01E7);(01E8,01E9);(01EA,01EB);
(01EC,01ED);(01EE,01EF);(01F1,01F3);(01F2,01F3);
(01F4,01F5);(01F6,0195);(01F7,01BF);(01F8,01F9);
(01FA,01FB);(01FC,01FD);(01FE,01FF);(0200,0201);
(0202,0203);(0204,0205);(0206,0207);(0208,0209);
(020A,020B);(020C,020D);(020E,020F);(0210,0211);
(0212,0213);(0214,0215);(0216,0217);(0218,0219);
(021A,021B);(021C,021D);(021E,021F);(0220,019E);
(0222,0223);(0224,0225);(0226,0227);(0228,0229);
(022A,022B);(022C,022D);(022E,022F);(0230,0231);
(0232,0233);(023A,2C65);(023B,023C);(023D,019A);
(023E,2C66);(0241,0242);(0243,0180);(0244,0289);
(0245,028C);(0246,0247);(0248,0249);(024A,024B);
(024C,024D);(024E,024F);(0370,0371);(0372,0373);
(0376,0377);(037F,03F3);(0386,03AC);(0388,03AD);
(0389,03AE);(038A,03AF);(038C,03CC);(038E,03CD);
(038F,03CE);(0391,03B1);(0392,03B2);(0393,03B3);
(0394,03B4);(0395,03B5);(0396,03B6);(0397,03B7);
(0398,03B8);(0399,03B9);(039A,03BA);(039B,03BB);
(039C,03BC);(039D,03BD);(039E,03BE);(039F,03BF);
(03A0,03C0);(03A1,03C1);(03A3,03C3);(03A4,03C4);
(03A5,03C5);(03A6,03C6);(03A7,03C7);(03A8,03C8);
(03A9,03C9);(03AA,03CA);(03AB,03CB);(03CF,03D7);
(03D8,03D9);(03DA,03DB);(03DC,03DD);(03DE,03DF);
(03E0,03E1);(03E2,03E3);(03E4,03E5);(03E6,03E7);
(03E8,03E9);(03EA,03EB);(03EC,03ED);(03EE,03EF);
(03F4,03B8);(03F7,03F8);(03F9,03F2);(03FA,03FB);
(03FD,037B);(03FE,037C);(03FF,037D);(0400,0450);
(0401,0451);(0402,0452);(0403,0453);(0404,0454);
(0405,0455);(0406,0456);(0407,0457);(0408,0458);
(0409,0459);(040A,045A);(040B,045B);(040C,045C);
(040D,045D);(040E,045E);(040F,045F);(0410,0430);
(0411,0431);(0412,0432);(0413,0433);(0414,0434);
(0415,0435);(0416,0436);(0417,0437);(0418,0438);
(0419,0439);(041A,043A);(041B,043B);(041C,043C);
(041D,043D);(041E,043E);(041F,043F);(0420,0440);

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1000 ©ISO/IEC 2023

(0421,0441);(0422,0442);(0423,0443);(0424,0444);
(0425,0445);(0426,0446);(0427,0447);(0428,0448);
(0429,0449);(042A,044A);(042B,044B);(042C,044C);
(042D,044D);(042E,044E);(042F,044F);(0460,0461);
(0462,0463);(0464,0465);(0466,0467);(0468,0469);
(046A,046B);(046C,046D);(046E,046F);(0470,0471);
(0472,0473);(0474,0475);(0476,0477);(0478,0479);
(047A,047B);(047C,047D);(047E,047F);(0480,0481);
(048A,048B);(048C,048D);(048E,048F);(0490,0491);
(0492,0493);(0494,0495);(0496,0497);(0498,0499);
(049A,049B);(049C,049D);(049E,049F);(04A0,04A1);
(04A2,04A3);(04A4,04A5);(04A6,04A7);(04A8,04A9);
(04AA,04AB);(04AC,04AD);(04AE,04AF);(04B0,04B1);
(04B2,04B3);(04B4,04B5);(04B6,04B7);(04B8,04B9);
(04BA,04BB);(04BC,04BD);(04BE,04BF);(04C0,04CF);
(04C1,04C2);(04C3,04C4);(04C5,04C6);(04C7,04C8);
(04C9,04CA);(04CB,04CC);(04CD,04CE);(04D0,04D1);
(04D2,04D3);(04D4,04D5);(04D6,04D7);(04D8,04D9);
(04DA,04DB);(04DC,04DD);(04DE,04DF);(04E0,04E1);
(04E2,04E3);(04E4,04E5);(04E6,04E7);(04E8,04E9);
(04EA,04EB);(04EC,04ED);(04EE,04EF);(04F0,04F1);
(04F2,04F3);(04F4,04F5);(04F6,04F7);(04F8,04F9);
(04FA,04FB);(04FC,04FD);(04FE,04FF);(0500,0501);
(0502,0503);(0504,0505);(0506,0507);(0508,0509);
(050A,050B);(050C,050D);(050E,050F);(0510,0511);
(0512,0513);(0514,0515);(0516,0517);(0518,0519);
(051A,051B);(051C,051D);(051E,051F);(0520,0521);
(0522,0523);(0524,0525);(0526,0527);(0528,0529);
(052A,052B);(052C,052D);(052E,052F);(0531,0561);
(0532,0562);(0533,0563);(0534,0564);(0535,0565);
(0536,0566);(0537,0567);(0538,0568);(0539,0569);
(053A,056A);(053B,056B);(053C,056C);(053D,056D);
(053E,056E);(053F,056F);(0540,0570);(0541,0571);
(0542,0572);(0543,0573);(0544,0574);(0545,0575);
(0546,0576);(0547,0577);(0548,0578);(0549,0579);
(054A,057A);(054B,057B);(054C,057C);(054D,057D);
(054E,057E);(054F,057F);(0550,0580);(0551,0581);
(0552,0582);(0553,0583);(0554,0584);(0555,0585);
(0556,0586);(10A0,2D00);(10A1,2D01);(10A2,2D02);
(10A3,2D03);(10A4,2D04);(10A5,2D05);(10A6,2D06);
(10A7,2D07);(10A8,2D08);(10A9,2D09);(10AA,2D0A);
(10AB,2D0B);(10AC,2D0C);(10AD,2D0D);(10AE,2D0E);
(10AF,2D0F);(10B0,2D10);(10B1,2D11);(10B2,2D12);
(10B3,2D13);(10B4,2D14);(10B5,2D15);(10B6,2D16);
(10B7,2D17);(10B8,2D18);(10B9,2D19);(10BA,2D1A);
(10BB,2D1B);(10BC,2D1C);(10BD,2D1D);(10BE,2D1E);
(10BF,2D1F);(10C0,2D20);(10C1,2D21);(10C2,2D22);
(10C3,2D23);(10C4,2D24);(10C5,2D25);(10C7,2D27);
(10CD,2D2D);(1C90,10D0);(1C91,10D1);(1C92,10D2);
(1C93,10D3);(1C94,10D4);(1C95,10D5);(1C96,10D6);
(1C97,10D7);(1C98,10D8);(1C99,10D9);(1C9A,10DA);
(1C9B,10DB);(1C9C,10DC);(1C9D,10DD);(1C9E,10DE);

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1001

(1C9F,10DF);(1CA0,10E0);(1CA1,10E1);(1CA2,10E2);
(1CA3,10E3);(1CA4,10E4);(1CA5,10E5);(1CA6,10E6);
(1CA7,10E7);(1CA8,10E8);(1CA9,10E9);(1CAA,10EA);
(1CAB,10EB);(1CAC,10EC);(1CAD,10ED);(1CAE,10EE);
(1CAF,10EF);(1CB0,10F0);(1CB1,10F1);(1CB2,10F2);
(1CB3,10F3);(1CB4,10F4);(1CB5,10F5);(1CB6,10F6);
(1CB7,10F7);(1CB8,10F8);(1CB9,10F9);(1CBA,10FA);
(1CBD,10FD);(1CBE,10FE);(1CBF,10FF);(1E00,1E01);
(1E02,1E03);(1E04,1E05);(1E06,1E07);(1E08,1E09);
(1E0A,1E0B);(1E0C,1E0D);(1E0E,1E0F);(1E10,1E11);
(1E12,1E13);(1E14,1E15);(1E16,1E17);(1E18,1E19);
(1E1A,1E1B);(1E1C,1E1D);(1E1E,1E1F);(1E20,1E21);
(1E22,1E23);(1E24,1E25);(1E26,1E27);(1E28,1E29);
(1E2A,1E2B);(1E2C,1E2D);(1E2E,1E2F);(1E30,1E31);
(1E32,1E33);(1E34,1E35);(1E36,1E37);(1E38,1E39);
(1E3A,1E3B);(1E3C,1E3D);(1E3E,1E3F);(1E40,1E41);
(1E42,1E43);(1E44,1E45);(1E46,1E47);(1E48,1E49);
(1E4A,1E4B);(1E4C,1E4D);(1E4E,1E4F);(1E50,1E51);
(1E52,1E53);(1E54,1E55);(1E56,1E57);(1E58,1E59);
(1E5A,1E5B);(1E5C,1E5D);(1E5E,1E5F);(1E60,1E61);
(1E62,1E63);(1E64,1E65);(1E66,1E67);(1E68,1E69);
(1E6A,1E6B);(1E6C,1E6D);(1E6E,1E6F);(1E70,1E71);
(1E72,1E73);(1E74,1E75);(1E76,1E77);(1E78,1E79);
(1E7A,1E7B);(1E7C,1E7D);(1E7E,1E7F);(1E80,1E81);
(1E82,1E83);(1E84,1E85);(1E86,1E87);(1E88,1E89);
(1E8A,1E8B);(1E8C,1E8D);(1E8E,1E8F);(1E90,1E91);
(1E92,1E93);(1E94,1E95);(1E9E,00DF);(1EA0,1EA1);
(1EA2,1EA3);(1EA4,1EA5);(1EA6,1EA7);(1EA8,1EA9);
(1EAA,1EAB);(1EAC,1EAD);(1EAE,1EAF);(1EB0,1EB1);
(1EB2,1EB3);(1EB4,1EB5);(1EB6,1EB7);(1EB8,1EB9);
(1EBA,1EBB);(1EBC,1EBD);(1EBE,1EBF);(1EC0,1EC1);
(1EC2,1EC3);(1EC4,1EC5);(1EC6,1EC7);(1EC8,1EC9);
(1ECA,1ECB);(1ECC,1ECD);(1ECE,1ECF);(1ED0,1ED1);
(1ED2,1ED3);(1ED4,1ED5);(1ED6,1ED7);(1ED8,1ED9);
(1EDA,1EDB);(1EDC,1EDD);(1EDE,1EDF);(1EE0,1EE1);
(1EE2,1EE3);(1EE4,1EE5);(1EE6,1EE7);(1EE8,1EE9);
(1EEA,1EEB);(1EEC,1EED);(1EEE,1EEF);(1EF0,1EF1);
(1EF2,1EF3);(1EF4,1EF5);(1EF6,1EF7);(1EF8,1EF9);
(1EFA,1EFB);(1EFC,1EFD);(1EFE,1EFF);(1F08,1F00);
(1F09,1F01);(1F0A,1F02);(1F0B,1F03);(1F0C,1F04);
(1F0D,1F05);(1F0E,1F06);(1F0F,1F07);(1F18,1F10);
(1F19,1F11);(1F1A,1F12);(1F1B,1F13);(1F1C,1F14);
(1F1D,1F15);(1F28,1F20);(1F29,1F21);(1F2A,1F22);
(1F2B,1F23);(1F2C,1F24);(1F2D,1F25);(1F2E,1F26);
(1F2F,1F27);(1F38,1F30);(1F39,1F31);(1F3A,1F32);
(1F3B,1F33);(1F3C,1F34);(1F3D,1F35);(1F3E,1F36);
(1F3F,1F37);(1F48,1F40);(1F49,1F41);(1F4A,1F42);
(1F4B,1F43);(1F4C,1F44);(1F4D,1F45);(1F59,1F51);
(1F5B,1F53);(1F5D,1F55);(1F5F,1F57);(1F68,1F60);
(1F69,1F61);(1F6A,1F62);(1F6B,1F63);(1F6C,1F64);
(1F6D,1F65);(1F6E,1F66);(1F6F,1F67);(1F88,1F80);
(1F89,1F81);(1F8A,1F82);(1F8B,1F83);(1F8C,1F84);

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1002 ©ISO/IEC 2023

(1F8D,1F85);(1F8E,1F86);(1F8F,1F87);(1F98,1F90);
(1F99,1F91);(1F9A,1F92);(1F9B,1F93);(1F9C,1F94);
(1F9D,1F95);(1F9E,1F96);(1F9F,1F97);(1FA8,1FA0);
(1FA9,1FA1);(1FAA,1FA2);(1FAB,1FA3);(1FAC,1FA4);
(1FAD,1FA5);(1FAE,1FA6);(1FAF,1FA7);(1FB8,1FB0);
(1FB9,1FB1);(1FBA,1F70);(1FBB,1F71);(1FBC,1FB3);
(1FC8,1F72);(1FC9,1F73);(1FCA,1F74);(1FCB,1F75);
(1FCC,1FC3);(1FD8,1FD0);(1FD9,1FD1);(1FDA,1F76);
(1FDB,1F77);(1FE8,1FE0);(1FE9,1FE1);(1FEA,1F7A);
(1FEB,1F7B);(1FEC,1FE5);(1FF8,1F78);(1FF9,1F79);
(1FFA,1F7C);(1FFB,1F7D);(1FFC,1FF3);(2126,03C9);
(212A,006B);(212B,00E5);(2132,214E);(2160,2170);
(2161,2171);(2162,2172);(2163,2173);(2164,2174);
(2165,2175);(2166,2176);(2167,2177);(2168,2178);
(2169,2179);(216A,217A);(216B,217B);(216C,217C);
(216D,217D);(216E,217E);(216F,217F);(2183,2184);
(2C00,2C30);(2C01,2C31);(2C02,2C32);(2C03,2C33);
(2C04,2C34);(2C05,2C35);(2C06,2C36);(2C07,2C37);
(2C08,2C38);(2C09,2C39);(2C0A,2C3A);(2C0B,2C3B);
(2C0C,2C3C);(2C0D,2C3D);(2C0E,2C3E);(2C0F,2C3F);
(2C10,2C40);(2C11,2C41);(2C12,2C42);(2C13,2C43);
(2C14,2C44);(2C15,2C45);(2C16,2C46);(2C17,2C47);
(2C18,2C48);(2C19,2C49);(2C1A,2C4A);(2C1B,2C4B);
(2C1C,2C4C);(2C1D,2C4D);(2C1E,2C4E);(2C1F,2C4F);
(2C20,2C50);(2C21,2C51);(2C22,2C52);(2C23,2C53);
(2C24,2C54);(2C25,2C55);(2C26,2C56);(2C27,2C57);
(2C28,2C58);(2C29,2C59);(2C2A,2C5A);(2C2B,2C5B);
(2C2C,2C5C);(2C2D,2C5D);(2C2E,2C5E);(2C60,2C61);
(2C62,026B);(2C63,1D7D);(2C64,027D);(2C67,2C68);
(2C69,2C6A);(2C6B,2C6C);(2C6D,0251);(2C6E,0271);
(2C6F,0250);(2C70,0252);(2C72,2C73);(2C75,2C76);
(2C7E,023F);(2C7F,0240);(2C80,2C81);(2C82,2C83);
(2C84,2C85);(2C86,2C87);(2C88,2C89);(2C8A,2C8B);
(2C8C,2C8D);(2C8E,2C8F);(2C90,2C91);(2C92,2C93);
(2C94,2C95);(2C96,2C97);(2C98,2C99);(2C9A,2C9B);
(2C9C,2C9D);(2C9E,2C9F);(2CA0,2CA1);(2CA2,2CA3);
(2CA4,2CA5);(2CA6,2CA7);(2CA8,2CA9);(2CAA,2CAB);
(2CAC,2CAD);(2CAE,2CAF);(2CB0,2CB1);(2CB2,2CB3);
(2CB4,2CB5);(2CB6,2CB7);(2CB8,2CB9);(2CBA,2CBB);
(2CBC,2CBD);(2CBE,2CBF);(2CC0,2CC1);(2CC2,2CC3);
(2CC4,2CC5);(2CC6,2CC7);(2CC8,2CC9);(2CCA,2CCB);
(2CCC,2CCD);(2CCE,2CCF);(2CD0,2CD1);(2CD2,2CD3);
(2CD4,2CD5);(2CD6,2CD7);(2CD8,2CD9);(2CDA,2CDB);
(2CDC,2CDD);(2CDE,2CDF);(2CE0,2CE1);(2CE2,2CE3);
(2CEB,2CEC);(2CED,2CEE);(2CF2,2CF3);(A640,A641);
(A642,A643);(A644,A645);(A646,A647);(A648,A649);
(A64A,A64B);(A64C,A64D);(A64E,A64F);(A650,A651);
(A652,A653);(A654,A655);(A656,A657);(A658,A659);
(A65A,A65B);(A65C,A65D);(A65E,A65F);(A660,A661);
(A662,A663);(A664,A665);(A666,A667);(A668,A669);
(A66A,A66B);(A66C,A66D);(A680,A681);(A682,A683);
(A684,A685);(A686,A687);(A688,A689);(A68A,A68B);

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1003

(A68C,A68D);(A68E,A68F);(A690,A691);(A692,A693);
(A694,A695);(A696,A697);(A698,A699);(A69A,A69B);
(A722,A723);(A724,A725);(A726,A727);(A728,A729);
(A72A,A72B);(A72C,A72D);(A72E,A72F);(A732,A733);
(A734,A735);(A736,A737);(A738,A739);(A73A,A73B);
(A73C,A73D);(A73E,A73F);(A740,A741);(A742,A743);
(A744,A745);(A746,A747);(A748,A749);(A74A,A74B);
(A74C,A74D);(A74E,A74F);(A750,A751);(A752,A753);
(A754,A755);(A756,A757);(A758,A759);(A75A,A75B);
(A75C,A75D);(A75E,A75F);(A760,A761);(A762,A763);
(A764,A765);(A766,A767);(A768,A769);(A76A,A76B);
(A76C,A76D);(A76E,A76F);(A779,A77A);(A77B,A77C);
(A77D,1D79);(A77E,A77F);(A780,A781);(A782,A783);
(A784,A785);(A786,A787);(A78B,A78C);(A78D,0265);
(A790,A791);(A792,A793);(A796,A797);(A798,A799);
(A79A,A79B);(A79C,A79D);(A79E,A79F);(A7A0,A7A1);
(A7A2,A7A3);(A7A4,A7A5);(A7A6,A7A7);(A7A8,A7A9);
(A7AA,0266);(A7AB,025C);(A7AC,0261);(A7AD,026C);
(A7AE,026A);(A7B0,029E);(A7B1,0287);(A7B2,029D);
(A7B3,AB53);(A7B4,A7B5);(A7B6,A7B7);(A7B8,A7B9);
(A7BA,A7BB);(A7BC,A7BD);(A7BE,A7BF);(A7C2,A7C3);
(A7C4,A794);(A7C5,0282);(A7C6,1D8E);(A7C7,A7C8);
(A7C9,A7CA);(A7F5,A7F6);(FF21,FF41);(FF22,FF42);
(FF23,FF43);(FF24,FF44);(FF25,FF45);(FF26,FF46);
(FF27,FF47);(FF28,FF48);(FF29,FF49);(FF2A,FF4A);
(FF2B,FF4B);(FF2C,FF4C);(FF2D,FF4D);(FF2E,FF4E);
(FF2F,FF4F);(FF30,FF50);(FF31,FF51);(FF32,FF52);
(FF33,FF53);(FF34,FF54);(FF35,FF55);(FF36,FF56);
(FF37,FF57);(FF38,FF58);(FF39,FF59);(FF3A,FF5A);
(10400,10428);(10401,10429);(10402,1042A);(10403,1042B);
(10404,1042C);(10405,1042D);(10406,1042E);(10407,1042F);
(10408,10430);(10409,10431);(1040A,10432);(1040B,10433);
(1040C,10434);(1040D,10435);(1040E,10436);(1040F,10437);
(10410,10438);(10411,10439);(10412,1043A);(10413,1043B);
(10414,1043C);(10415,1043D);(10416,1043E);(10417,1043F);
(10418,10440);(10419,10441);(1041A,10442);(1041B,10443);
(1041C,10444);(1041D,10445);(1041E,10446);(1041F,10447);
(10420,10448);(10421,10449);(10422,1044A);(10423,1044B);
(10424,1044C);(10425,1044D);(10426,1044E);(10427,1044F);
(104B0,104D8);(104B1,104D9);(104B2,104DA);(104B3,104DB);
(104B4,104DC);(104B5,104DD);(104B6,104DE);(104B7,104DF);
(104B8,104E0);(104B9,104E1);(104BA,104E2);(104BB,104E3);
(104BC,104E4);(104BD,104E5);(104BE,104E6);(104BF,104E7);
(104C0,104E8);(104C1,104E9);(104C2,104EA);(104C3,104EB);
(104C4,104EC);(104C5,104ED);(104C6,104EE);(104C7,104EF);
(104C8,104F0);(104C9,104F1);(104CA,104F2);(104CB,104F3);
(104CC,104F4);(104CD,104F5);(104CE,104F6);(104CF,104F7);
(104D0,104F8);(104D1,104F9);(104D2,104FA);(104D3,104FB);
(10C80,10CC0);(10C81,10CC1);(10C82,10CC2);(10C83,10CC3);
(10C84,10CC4);(10C85,10CC5);(10C86,10CC6);(10C87,10CC7);
(10C88,10CC8);(10C89,10CC9);(10C8A,10CCA);(10C8B,10CCB);
(10C8C,10CCC);(10C8D,10CCD);(10C8E,10CCE);(10C8F,10CCF);

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1004 ©ISO/IEC 2023

(10C90,10CD0);(10C91,10CD1);(10C92,10CD2);(10C93,10CD3);
(10C94,10CD4);(10C95,10CD5);(10C96,10CD6);(10C97,10CD7);
(10C98,10CD8);(10C99,10CD9);(10C9A,10CDA);(10C9B,10CDB);
(10C9C,10CDC);(10C9D,10CDD);(10C9E,10CDE);(10C9F,10CDF);
(10CA0,10CE0);(10CA1,10CE1);(10CA2,10CE2);(10CA3,10CE3);
(10CA4,10CE4);(10CA5,10CE5);(10CA6,10CE6);(10CA7,10CE7);
(10CA8,10CE8);(10CA9,10CE9);(10CAA,10CEA);(10CAB,10CEB);
(10CAC,10CEC);(10CAD,10CED);(10CAE,10CEE);(10CAF,10CEF);
(10CB0,10CF0);(10CB1,10CF1);(10CB2,10CF2);(118A0,118C0);
(118A1,118C1);(118A2,118C2);(118A3,118C3);(118A4,118C4);
(118A5,118C5);(118A6,118C6);(118A7,118C7);(118A8,118C8);
(118A9,118C9);(118AA,118CA);(118AB,118CB);(118AC,118CC);
(118AD,118CD);(118AE,118CE);(118AF,118CF);(118B0,118D0);
(118B1,118D1);(118B2,118D2);(118B3,118D3);(118B4,118D4);
(118B5,118D5);(118B6,118D6);(118B7,118D7);(118B8,118D8);
(118B9,118D9);(118BA,118DA);(118BB,118DB);(118BC,118DC);
(118BD,118DD);(118BE,118DE);(118BF,118DF);(16E40,16E60);
(16E41,16E61);(16E42,16E62);(16E43,16E63);(16E44,16E64);
(16E45,16E65);(16E46,16E66);(16E47,16E67);(16E48,16E68);
(16E49,16E69);(16E4A,16E6A);(16E4B,16E6B);(16E4C,16E6C);
(16E4D,16E6D);(16E4E,16E6E);(16E4F,16E6F);(16E50,16E70);
(16E51,16E71);(16E52,16E72);(16E53,16E73);(16E54,16E74);
(16E55,16E75);(16E56,16E76);(16E57,16E77);(16E58,16E78);
(16E59,16E79);(16E5A,16E7A);(16E5B,16E7B);(16E5C,16E7C);
(16E5D,16E7D);(16E5E,16E7E);(16E5F,16E7F);(1E900,1E922);
(1E901,1E923);(1E902,1E924);(1E903,1E925);(1E904,1E926);
(1E905,1E927);(1E906,1E928);(1E907,1E929);(1E908,1E92A);
(1E909,1E92B);(1E90A,1E92C);(1E90B,1E92D);(1E90C,1E92E);
(1E90D,1E92F);(1E90E,1E930);(1E90F,1E931);(1E910,1E932);
(1E911,1E933);(1E912,1E934);(1E913,1E935);(1E914,1E936);
(1E915,1E937);(1E916,1E938);(1E917,1E939);(1E918,1E93A);
(1E919,1E93B);(1E91A,1E93C);(1E91B,1E93D);(1E91C,1E93E);
(1E91D,1E93F);(1E91E,1E940);(1E91F,1E941);(1E920,1E942);
(1E921,1E943)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1005

 Annex D (informative)
 Concepts

D.1 GeneralThis annex describes major features in the language using examples of the use of the features and textual discussion on how the features function.
D.2 Files

D.2.1 GeneralA file is a collection of records that may be placed into or retrieved from a storage medium. The user not only chooses the file organization, but also chooses the file processing method and sequence. Although the file organization and processing method are restricted for sequential media, no such restrictions exist for mass storage media.When describing the capabilities of COBOL to manipulate files, the following conventions are used. The term "file-name" means the user-defined word used to reference a file. The terms "file referenced by file-name" and "file" mean the physical file regardless of the file-name used in the COBOL program. The term "file connector" means the entity containing information concerning the file. All accesses to physical files occur through file connectors. In various implementations the file connector is referred to as a file information table, a file control block, etc.
D.2.2 File organization

D.2.2.1 Sequential organizationSequential files are organized so that each record, except the last, has a unique successor record; each record, except the first, has a unique predecessor record. The successor relationships are established by the order of execution of WRITE statements when the file is created. Once established, successor relationships do not change except in the case where records are added to the end of a file.Two types of sequential file are specified. In record sequential files the length of each record is determined by any information the implementor may add to the record on the physical storage medium (such as record length headers). In line sequential files the length of each record is determined by the number of characters between the preceding line delimiter and the following line delimiter or the end of file if no line delimiter is present, or in the case of the first logical record the start of the file and the first line delimiter. A sequentially organized mass storage file has the same logical structure as a file on any sequential medium; however, a sequential mass storage file may be updated in place. When this technique is used, new records cannot be added to the file and each replaced record shall be the same size as the original record.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1006 ©ISO/IEC 2023

D.2.2.2 Relative organizationA file with relative organization is a mass storage file from which any record may be stored or retrieved by providing the value of its relative record number.Conceptually, a file with relative organization is a serial string of areas, each capable of holding a logical record. Each of these areas is denominated by a relative record number. Each logical record in a relative file is identified by the relative record number of its storage area. For example, the tenth record is the one addressed by relative record number 10 and is in the tenth record area, whether or not records have been written in any of the first through the ninth record areas.In order to achieve more efficient access to records in a relative file, the number of bytes reserved on the medium to store a particular logical record may be different from the number of bytes in the description of that record in the data division.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1007

D.2.2.3 Indexed organizationA file with indexed organization is a mass storage file from which any record may be accessed by giving the value of a specified key in that record. For each key data item defined for the records of a file, an index is maintained. Each such index represents the set of values from the corresponding key data item in each record. Each index, therefore, is a mechanism that may provide access to any record in the file.Each indexed file has a primary index that represents the prime record key of each record in the file. Each record is inserted in the file, changed, or deleted from the file based solely upon the value of its prime record key. The prime record key of each record in the file shall be unique, and it shall not be changed when updating a record. The prime record key is declared in the RECORD KEY clause of the file control entry for the file.Alternate record keys provide alternative means of retrieval for the records of a file. Such keys are named in the ALTERNATE RECORD KEY clauses of the file control entry. When the DUPLICATES phrase is specified in the ALTERNATE RECORD KEY clause, the value of a particular alternate record key need not be unique within the file. The SUPPRESS WHEN phrase when specified in the ALTERNATE RECORD KEY clause allows suppression of records that match a literal. When using that alternate key to access the file, the records suppressed would be skipped on reading the file and ignored when using the START statement.
D.2.2.4 Logical records

D.2.2.5 GeneralA logical record is the unit of data that is retrieved from or stored into a file. The number of records that may exist in a file is limited only by the capacity of the storage media. There are two types of records: fixed length and variable length. When a file is created, it is declared to contain either fixed-length or variable-length records. In any case, the content of the record area does not reflect any information the implementor may add to the record on the physical storage medium (such as record length headers), nor does the length of the record used by the COBOL programmer reflect these additions.
D.2.2.5.1 Fixed-length recordsFixed-length records shall contain the same number of bytes for all the records in the file. All input-output operations on the file may process only this one record size. Fixed-length records may be explicitly selected by specifying format 1 of the RECORD clause in the file description entry for the file regardless of the individual record descriptions.
D.2.2.5.2 Variable-length recordsVariable-length records may contain differing numbers of bytes among the records on the file. To define variable-length records explicitly, the VARYING phrase may be specified in the RECORD clause in the file description entry or the sort-merge file description entry for the file. In record sequential files, the length of a record is affected by the data item referenced in the DEPENDING phrase of the RECORD clause or the DEPENDING phrase of an OCCURS clause or by the length of the record description entry for the file. In line sequential files the length of each record is determined by the number of characters between the preceding line delimiter and the following line delimiter or the end of file if no line delimiter is present, or in the case of the first logical record the start of the file and the first line delimiter.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1008 ©ISO/IEC 2023

D.2.2.5.3 Implementor-defined record typesWhere no RECORD clause is specified in the file description entry for a file, or where the RECORD clause specifies a range of byte positions, it is implementor-defined whether fixed-length or variable-length records are obtained.
D.2.3 File processing

D.2.3.1 GeneralA file may be processed by performing operations upon individual records or upon the file as a unit. Unusual conditions that occur during processing are communicated back to the runtime element.
D.2.3.2 Record operations

D.2.3.2.1 GeneralThe ACCESS MODE clause of the file description entry specifies the manner in which the runtime element operates upon records within a file. The access mode may be sequential, random, or dynamic.For files that are organized as relative or indexed, any of the three access modes may be used to access the file regardless of the access mode used to create the file. A file with sequential organization may only be accessed in sequential mode.The organization, format, and contents of an output report may be specified using the report writer feature. (See D.20, Report writer.)
D.2.3.2.2 Sequential access modeA file may be accessed sequentially irrespective of the file organization.For sequential organization, the order of sequential access is the order in which the records were originally written.For relative organization, the order of sequential access is ascending based on the value of the relative record numbers. Only records that currently exist in the file are made available. The START statement may be used to establish a starting point for a series of subsequent sequential retrievals.For indexed organization, the order of sequential access is ascending based on the value of the key of reference according to the collating sequence associated with the file. Any of the keys associated with the file may be established as the key of reference during the processing of the file. The order of retrieval from a set of records that have duplicate key of reference values is the original order of arrival of those records into the set. The START statement may be used to establish a starting point within an indexed file for a series of subsequent sequential retrievals.If the physical device where the file resides is capable of accessing records backwards, records may be accessed in the reverse order from which they are organized in the file by specifying the PREVIOUS phrase on the READ statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1009

D.2.3.2.3 Random access modeWhen a file is accessed in random mode, input-output statements are used to access the records in a programmer-specified order. The random access mode may only be used with relative or indexed file organizations.For a file with relative organization, the programmer specifies the desired record by placing its relative record number in a relative key data item. With the indexed organization, the programmer specifies the desired record by placing the value of one of its record keys in a record key or an alternate record key data item.
D.2.3.2.4 Dynamic access modeWith dynamic access mode, the programmer may change at will from sequential accessing to random accessing, using appropriate forms of input-output statements. The dynamic access mode may only be used on files with relative or indexed organizations.
D.2.3.2.5 Open modeThe open mode of the file is related to the actions to be performed upon records in the file. The open modes and purposes are: input, to retrieve records; output, to place records into a file; extend, to append records to an existing file; I-O, to retrieve and update records. The open mode is specified in the OPEN statement.When the open mode is input, a file may be accessed by the READ statement. The START statement may also be used for files organized as indexed or relative that are in sequential or dynamic access modes.When the open mode is output, the records are placed into the file by issuing WRITE, GENERATE, or TERMINATE statements. When the open mode is extend, new records are added to the logical end of a file by issuing WRITE, GENERATE, or TERMINATE statements. Only mass storage files may be referenced in the open I-O mode. The additional capabilities of mass storage devices permit updating in place, thus READ and REWRITE statements may always be used. A mass storage file may be updated in the same manner as a file on a sequential medium, by transcribing the entire file into another file (perhaps in a separate area of mass storage) using READ and WRITE statements. However, it is sometimes more efficient to update a mass storage file in place. This mass storage file maintenance technique uses the REWRITE statement to return to their previous locations on the storage medium only those records that have changed. READ and REWRITE statements are the only operations allowed while updating in place sequentially organized files. For files with relative or indexed organization, the following additional functions may be applied: the START statement may be used in sequential or dynamic access mode to alter the sequence of record retrieval; the DELETE RECORD statement may be used with any access mode to remove a record logically from a file; the WRITE statement may be used in random or dynamic access mode to insert a new record into the file.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1010 ©ISO/IEC 2023

D.2.3.2.6 Current volume pointerThe current volume pointer is a conceptual entity used in this document to facilitate exact specification of the current physical volume of a sequential file. The status of the current volume pointer is affected by the CLOSE, OPEN, READ, and WRITE statements.
D.2.3.2.7 File position indicatorThe file position indicator is a conceptual entity used in this document to facilitate exact specification of the next record to be accessed within a given file during certain sequences of input-output operations. The setting of the file position indicator is affected only by a CLOSE statement with a REEL or UNIT phrase, an OPEN statement, a READ statement, and a START statement. The concept of a file position indicator has no meaning for a file opened in the output or extend mode.
D.2.3.2.8 Linage conceptsThe LINAGE clause may be used when specifying an output report. It facilitates definition of a logical page, and the positioning within that logical page of top and bottom margins and a footing area. Use of the LINAGE clause implicitly defines an associated identifier, the LINAGE-COUNTER, that acts as a pointer to a line within the page body.
D.2.3.3 File operations

D.2.3.3.1 GeneralSeveral COBOL statements operate upon files as entities or as collections of records. These are the CLOSE, COMMIT, MERGE, OPEN, ROLLBACK, and SORT statements.
D.2.3.3.2 SortingThe SORT statement organizes records from a file into a sequence based upon specified keys that are data items within those records. Those records need not have originally been in the required sequence.In many sort applications it is necessary to apply some special processing to the contents of a sort file. The special processing may consist of addition, deletion, creation, altering, editing, or other modification of the individual records in the file. It may be necessary to apply the special processing before or after the records are reordered by the sort, or special processing may be required in both places. The COBOL sort feature allows the user to express these procedures and to specify at which point, before or after the sort, they are to be executed. A COBOL program may contain any number of sorts, and each of them may have its own input and output procedures. The sort feature automatically causes execution of these procedures at the specified point.Within an input procedure, the RELEASE statement writes records to the sort file. That is, at the completion of execution of the input procedure those records that have been processed by use of the RELEASE statement (rather than the WRITE statement) constitute the sort file, and this file is available only to the SORT statement. Execution of the SORT statement arranges the entire set of records in the sort file according to the keys specified in the SORT statement. The sorted records are made available from the sort file by use of the RETURN statement during execution of the output procedure or by automatically writing the records to one or more files by the use of the GIVING phrase.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1011

D.2.3.3.3 MergingThe MERGE statement organizes records from multiple files into a sequence on a new file based upon specified keys that are data items within those records. Those records have originally been in the required sequence.In some applications it is necessary to apply some special processing to the contents of a merged file. The special processing may consist of addition, deletion, altering, editing, or other modification of the individual records in the file. The COBOL merge feature allows the user to express an output procedure to be executed as the merged output is created. The merged records are made available from the merge file by use of the RETURN statement in the output procedure or by automatically writing the records to one or more files by the use of the GIVING phrase.
D.2.3.4 Exception handling

D.2.3.4.1 GeneralDuring the execution of any input or output operation, unusual conditions may arise that preclude normal completion of the operation. There are five methods by which these conditions are communicated to the runtime element; an I-O status data item associated with the FILE STATUS clause, exception checking PERFORM statements, exception declaratives, exception functions, and optional phrases associated with the imperative statement.
D.2.3.4.2 I-O statusI-O status is a conceptual entity used in this document to facilitate exact specification of the status of the execution of an input-output operation. The setting of I-O status is affected only by the CLOSE, DELETE, OPEN, READ, REWRITE, START, WRITE, and UNLOCK statements. The I-O status value for a given file is made available to a runtime element via the data item referenced by the data-name specified in the FILE STATUS clause of the file description entry for that file and via the EXCEPTION-FILE or EXCEPTION-FILE-N function. The I-O status value is placed into this data item or made available to the EXCEPTION-FILE and EXCEPTION-FILE-N functions during the execution of the input-output statement and prior to the execution of any imperative statement associated with that input-output statement or prior to the execution of any applicable exception declarative or WHEN phrase in a PERFORM statement.
D.2.3.4.3 Exception checking PERFORM statementsAn exception checking PERFORM statement allows checking for exceptions inline. The statements immediately following the word PERFORM or the words PERFORM LOCATION contain the code that will be checked and those statements are immediately followed by one or more WHEN phrases that allow processing of exceptions that occur in that code. This processing takes precedence over exception declaratives. However, the code in the WHEN phrase is not executed when the condition is:1) invalid key and the INVALID KEY phrase is specified; or2) at end and the AT END phrase is specified; or3) end-of-page and AT EOP phrase or AT END-OF-PAGE phrase is specified; or

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1012 ©ISO/IEC 2023

4) any exception and ON EXCEPTION phrase is specified.
D.2.3.4.4 Exception declarativesA USE AFTER EXCEPTION procedure, when one is specified for the file, is executed whenever an input or output condition arises that results in an unsuccessful input-output operation. However, the exception declarative is not executed if the condition is invalid key and the INVALID KEY phrase is specified, or if the condition is at end and the AT END phrase is specified. Also, the exception declarative is not executed if the statement that caused the exception is in imperative-statement-1 of an exception-checking PERFORM statement and there is an applicable WHEN phrase
D.2.3.4.5 Exception functionsThe exception function EXCEPTION-FILE or EXCEPTION-FILE-N may be referenced in a statement in the logical range of any applicable exception declarative or WHEN phrase in a PERFORM statement to determine the I-O status value resulting from the input-output operation that caused the WHEN phrase or the declarative to be executed as well as the associated file-name. In addition, the exception function EXCEPTION-STATUS may be referenced to determine the exception-name that was returned (such as EC-I-O-AT-END).
D.2.3.4.6 Optional phrasesThe INVALID KEY phrases may be associated with the DELETE RECORD, READ, REWRITE, START, or WRITE statements. Some of the conditions that give rise to an invalid key condition are when a requested key does not exist in the file (DELETE RECORD, READ, or START statements), when a key is already in a file and duplicates are not allowed (WRITE statement), and when a key does not exist in the file or when it was not the last key read (REWRITE statement). If the invalid key condition occurs during the execution of a statement for which the INVALID KEY phrase has been specified, the statement identified by that INVALID KEY phrase is executed.The AT END phrase may be associated with a READ statement. The at end condition occurs in a sequentially accessed file when no next logical record exists in the file, when the number of significant digits in the relative record number is larger than the size of the relative key data item, or when an optional file is not present. If the at end condition occurs during the execution of a statement for which the AT END phrase has been specified, the statement identified by that AT END phrase is executed.
D.2.4 File sharing and record locking

D.2.4.1 GeneralFile sharing and record locking provide a way to ensure integrity of data in a physical file being accessed by multiple logical files simultaneously. Integrity is ensured only when all accesses to the physical file appropriately utilize file sharing and record locking conventions.File sharing provides the capability of sharing a physical file among different logical files by specifying the SHARING clause in the file control entry or the SHARING phrase in an OPEN statement.Record locking provides the capability of managing concurrent access to records in a shared physical file. Record locking is selected by specifying the LOCK MODE clause in the file control entry.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1013

The rules for file sharing and record locking are the same whether the physical file is shared among different run units or different runtime elements in a COBOL run unit or different file definitions within a COBOL runtime element.Implementation of file sharing and record locking such that concurrent access is managed for both COBOL and non-COBOL runtime elements is recommended; however, the requirement and specification of this is beyond the scope of the COBOL specification. This Working Draft International Standard describes file sharing and record locking in a COBOL context.Transaction processing facilities with commit and rollback are provided as an optional feature as described in D.2.4 Commit and rollback
D.2.4.2 File sharingA physical file may be shared only when it resides on a medium that allows concurrent access to the physical file.File sharing is selected for access to a given physical file by coding a SHARING clause in the file control entry that describes the logical file or in an OPEN statement that opens the logical file. A sharing mode specified in an OPEN statement overrides a sharing mode specified in a file control entry. Permitted sharing and input-output operations are further specified by the i-o modes of OPEN statements.Each OPEN statement succeeds or fails on the basis of the most restrictive sharing mode and i-o mode already in effect for the physical file as well as the sharing mode and i-o mode specified for that OPEN statement. The permitted sharing, then, is dynamic based on the sharing and i-o modes of the on-going opening and closing of logical files. When a shared file is already open, a subsequent OPEN statement that specifies the OUTPUT open mode for that file will be unsuccessful.The specification for the OPEN statement in Table 19, Opening available shared files that are currently open by another file connector, should be reviewed for an understanding of the detailed interaction of opening request and sharing modes. The following is a simplified description:— SHARING WITH NO OTHER establishes exclusive access; the physical file cannot be opened by any other logical file. The opening of a logical file in this sharing mode will fail if any other logical file already has the physical file open.— SHARING WITH READ ONLY establishes that the physical file may be opened by another logical file for input, provided that the other logical file's sharing mode permits the sharing and i-o mode of this OPEN statement. The opening of a file with SHARING WITH READ ONLY will fail if another logical file has the file open in a more restrictive sharing mode or i-o mode. Record locking capabilities should be used to control concurrent access so that retrieved records reflect correct content.— SHARING WITH ALL OTHER establishes that the physical file may be opened by other logical files in sharing mode READ ONLY or in sharing mode ALL OTHER and in any i-o mode. Concurrent access is possible both for update and retrieval, and for retrieval of records that are in process of being updated. Record locking capabilities should be used to control concurrent access so that updates are not overwritten or lost and that retrieved records reflect correct content.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1014 ©ISO/IEC 2023

To allow compatible behavior with earlier COBOL standards, default sharing, if any, is defined by the implementor.
D.2.4.3 Record lockingRecord locking gives application developers the ability to control concurrent access to logical records in a shared physical file. Concurrent access is possible when a physical file is opened by more than one logical file.In order to guarantee the integrity of records in a physical file, it is usually necessary for applications to restrict access to records being updated or deleted — but this depends on the nature of the application. The mechanism for restricting access to a record is called a record lock.COBOL provides two modes of record locking — automatic locking and manual locking — that can be selected by coding a LOCK MODE clause in a file control entry. Except for files subject to commit and rollback, the following combinations of access mode and lock mode are provided:Access mode Lock mode Single/multiple recordsSequential Automatic or manual Single only Random or dynamic Automatic or manual Single or multipleWhen sharing WITH NO OTHER is specified, record locking is not applicable and use of any syntax that requests record locking is ignored.In the case of files subject to commit and rollback there is an enforced default of an implicit LOCK MODE IS AUTOMATIC WITH LOCK ON MULTIPLE RECORDS applied automatically.
D.2.4.3.1 Automatic lockingLOCK MODE AUTOMATIC indicates that the runtime system will take care of locking records. When automatic locking is in effect, the time at which locks are acquired and released is defined by the COBOL specification, rather than controlled by the application. At the same time, however, other logical files can access the physical file with either manual locking or automatic locking.It is easier for an application to control concurrent access to records with automatic locking than with manual locking, but it might not meet the needs of all applications.Single record or multiple record automatic locking can be selected.With single record automatic locking, a logical file has a lock on one record at a time. The successful execution of a READ statement establishes a lock on the newly read record. The execution of a READ, REWRITE, WRITE, DELETE RECORD, UNLOCK, or CLOSE statement releases a lock on a previously-locked record.With multiple record automatic locking, all newly read records are automatically locked and the lock for a record is retained until the record is deleted, or an UNLOCK statement is executed for the logical file, or the logical file is closed.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1015

The following illustrates a file-control paragraph that defines a logical file (my-file), where the physical file (accounts) resides on a mass storage device. SHARING WITH READ ONLY indicates that the physical file can be shared with other logical files as long as those files are open for READ ONLY. The logical file my-file is not itself restricted to read only.
FILE-CONTROL. SELECT my-file ASSIGN TO accounts
...
SHARING WITH READ ONLY
LOCK MODE IS AUTOMATIC WITH LOCK ON MULTIPLE RECORDS.Single record automatic locking is selected by the following lock mode clause:
LOCK MODE IS AUTOMATICThe automatic acquisition and release of record locks is summarized in A.1, Summary of record lock acquisition and release. The manual locking and unlocking of records is controlled by options on I/O statements, by the UNLOCK statement, and by the CLOSE statement as summarized in Table A.1, “Summary of record lock acquisition and release,” on page 1017.
D.2.4.3.2 Manual lockingLOCK MODE MANUAL indicates that whether and when locks are acquired and released is completely under control of the application; thus, data integrity is completely under application control. Manual locking provides the flexibility to select locking only for records that require it and to release locks at convenient times. The use of manual locking requires careful design of all the applications that share access to a given physical file.An application can manually lock a single record at a time or multiple records at a time.With single record manual locking, each record lock is established by specifying the LOCK phrase on an I/O statement and the lock is automatically released on the next execution of a READ, REWRITE, WRITE, DELETE RECORD, UNLOCK, or CLOSE statement — in the same manner as for single record automatic locking.With multiple record manual locking, each record lock is established by specifying the LOCK phrase on an I/O statement and all locks are held until explicitly released. Successful execution of an UNLOCK statement or a CLOSE statement releases all locks. Successful execution of an I/O statement with a NO LOCK phrase releases a lock on the record that is processed by that I/O statement. Successful execution of a DELETE RECORD statement releases a lock on the deleted record. Additional options on I/O statements allow for selective actions that are not normally needed, but may be useful in special circumstances:
READ ... ADVANCING ON LOCK: Locked records are skipped and the next unlocked record in sequential order is retrieved.
READ ... IGNORING LOCK:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1016 ©ISO/IEC 2023

A record is retrieved even if it is locked.The following illustrates a file-control paragraph that defines a logical file (my-file), where the physical file (accounts) resides on a mass storage device. SHARING WITH ALL OTHER indicates that the physical file can be shared with other logical files and any of them can update records.
FILE-CONTROL. SELECT my-file ASSIGN TO accounts
...
SHARING WITH ALL OTHER
LOCK MODE IS MANUAL WITH LOCK ON MULTIPLE RECORDS.The manual locking and unlocking of records is controlled by options on I/O statements, by the UNLOCK statement, and by the CLOSE statement, as summarized in Table A.1, Summary of record lock acquisition and release.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1017

Table A.1 Summary of record lock acquisition and release For files subject to commit and rollback locks are only released by COMMIT and ROLLBACK statements, otherwise the following rules apply.
I-O statement Lock mode Lock is set Lock for same logical

file is releasedDELETE RECORD Automatic- single no - on successfully deleted record, if locked;- otherwise on any previously locked record-multiple no - on the deleted record, if lockedManual- single no -on successfully deleted record, if locked;-otherwise on any previously locked record-multiple no - on the deleted record, if lockedCLOSE any no - on all locked recordsREAD Automatic- single - on the retrieved record - on any previously locked record- multiple - on the retrieved record noManual-single - on the retrieved record if LOCK specified - on any previously locked record- multiple - on the retrieved record if LOCK specified - on the retrieved record, if locked and NO LOCK is specifiedOPEN any no noREWRITE Automatic- single no - on successfully rewritten record if locked- otherwise, on any previously locked record- multiple no noManual- single - on the rewritten record if LOCK specified - on successfully rewritten record if locked, unless LOCK is specified- and on any previously locked record- multiple - on the rewritten record if LOCK specified - on the rewritten record if locked and NO LOCK is specified

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1018 ©ISO/IEC 2023

D.2.4.4 RetryThe RETRY phrase provides the capability to wait to obtain access to a locked record. The RETRY phrase may specify a period of time during which the operating environment attempts to provide access to the locked record, or may provide the number of times the operating environment will attempt to gain access. The RETRY phrase option FOREVER indicates that the operating environment will continue to attempt access to the record until either it is successful, or some external occurrence terminates the task The number of times to retry may be a number or the word FOREVER, which implies that the operating environment attempts to retry the operation until some external occurrence terminates the task or the locked record or file becomes available. If the lock condition exists throughout, or if there is a lock but no RETRY phrase is specified, the operating environment reports the file sharing conflict condition or record operation conflict condition by setting the I-O status value associated with the file connector to the appropriate value.
D.2.5 Commit and rollback This optional facility is very similar to that used by other software, in particular database and transaction management systems, but enables it to be specified using COBOL syntax, while preventing its use within the range of the MERGE and SORT statements, or recursive runtime elements. Report writer files are excluded from commit and rollback. The implementor defines which devices are capable of supporting commit and rollback.To use this facility effectively, the run unit needs to be organized into logical units of work, often also called transactions or single units of recovery, as described in 9.1.18, Commit and Rollback.

START any no noWRITE Automatic- single no - on any previously locked record- multiple no noManual- single - if LOCK is specified - on any previously locked record- multiple - if LOCK is specified noUNLOCK Automatic-single- multipleManual- single- multiple

for all lock modes:- on all locked records

Table A.1 Summary of record lock acquisition and release For files subject to commit and rollback locks are only released by COMMIT and ROLLBACK statements, otherwise the following rules apply.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1019

A logical unit of work is a set of program instructions used to perform a self-contained task within a run unit, organized so that the files and data involved are in a self-consistent state both before and after it, and while in progress are protected from the activity of other run units that wish to access any of the same records and data. A commit is issued after each logical unit of work, while a rollback within it returns the state of the protected files and data to that which they were in at the previous commit.The sample program below provides an example, in that each iteration of the “processing” section is a logical unit of work, whereby a commit is executed, then a change transaction is read and applied to the stock file and, provided no errors have been detected, the process is repeated for the next change transaction. If a fatal error occurs, a rollback is executed and the program terminated. If a nonfatal error occurs due to a record being locked by another run unit, a rollback is executed and an attempt is made to repeat the processing since the previous commit.Where there is interdependency between data items, such as those between the clauses of a VALIDATE statement, those involved in an OCCURS xxx DEPENDING on clause, and tables referenced by subscripts and indexes, the compiler ensures that they are all specified or not specified in one or more explicit APPLY COMMIT clauses within the run unit. The APPLY COMMIT clause may only be explicitly specified for data-items at the 01 or 77 level.The compiler automatically ensures that the file description linage and record clause data items and the select clause file status data item are subject to the APPLY COMMIT clause specified for the file description. These are the only data items that may be independently subject to an APPLY COMMIT clause within a group data item at other than the 01 level.Commits are to be made between logical units of work. They may be made after every logical unit of work, which is generally recommended for online processing. For batch processing, they may be deferred by using a data-item to count the transactions processed, so that they may be made at a frequency conditional upon the value of that variable, which is then reset after each commit. This provides for greater efficiency by avoiding the overhead of executing each commit independently, but at the cost of increasing the overhead for a rollback. Making the frequency of commits too low will affect the ability of other run units to run concurrently, it will also affect the time taken to do each commit or rollback.It is possible to vary the commit frequency according to another user-defined data-item that could be set dynamically by the operator or operating system monitor according to the time of day and perceived shared workload, for example, one could make the frequency dependent upon a value in a data item in a special file for the purpose. Such a file should not be subject to an APPLY COMMIT clause, sharing mode would be “with all other”, and it would be read with no lock before any logical units of work are started, and immediately after each successful commit.Rollbacks restore the file and data states for files and data items subject to APPLY COMMIT clauses to the state they were in at the last successful commit or, if none, the beginning of the program.Rollbacks are to be used wherever needed. However, rollbacks should be placed according to whether processing is then to be resumed or terminated. Note that in the event of an error that is fatal according to the rules of COBOL or the operating system, a rollback will be invoked automatically as part of abnormal termination without needing to be specified explicitly, when a declarative may be used to provide additional useful information if needed. If processing is to be terminated for a condition that is

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1020 ©ISO/IEC 2023

fatal from the point of view of user specified logic, a rollback may be placed anywhere that is appropriate for the situation. However, for processing that is be resumed, consideration needs to be given to how the program is to return control to the point where such resumption is practical. In practice, this would usually be in the runtime element with overall control of the processing of logical units of work. An invoked runtime element that identifies the need for a rollback could return control to that controlling runtime element by means of raising a series of one or more user-defined exceptions or by setting signal flags specially designed for the purpose immediately after executing a rollback, or it may be more straightforward to just to raise the series of user-exceptions or use signal flags to return to and indicate to the controlling runtime element that a rollback is required.As locks on records are not released until there is a commit or a rollback, other run units may not prevent the current run unit from doing what it needs to do with them in the course of a rollback or commit. Once the locks are released, there is no reason why another run unit may not acquire record locks on the released records. It would be a case of first come, first served as to which run unit then acquires rights to records. There are often in-house conventions for competing run units to use a common sequence for opening files and reading records to minimize the likelihood of deadlocks where each run unit has a lock on records from different files and then needs access to the records in other files that the other run unit already has. Where deadlocks do occur, one or both of the programs would have to rollback what they already have done and try again, but neither of them would have been able to obtain sharing rights and record locks on files and records that the other one already has. This also applies to components of the same run unit where the files are also accessed by independent file connectors that are not specified in APPLY COMMIT clauses.It is possible for another run unit to read a record written or updated by the current run unit, when the sharing mode in the current run unit is “with all other” or “with read only” and the “ignoring lock” phrase is used on the read statement, however, in the event of a rollback, that record would then be inconsistent with what was used by the other run unit.Where practical, it is recommended that the files that are specified in APPLY COMMIT clauses are all opened, any other program initialization is completed and a commit is issued before commencing the first logical unit of work, so that a rollback in the first logical unit of work does not require the files to be opened again and other initialization repeated if normal processing is to be resumed.It is strongly recommended that the control of logical units of work is at the highest level of runtime element that contains an APPLY COMMIT clause, since the related I-O statements for any files associated with the APPLY COMMIT clause are usually in the same runtime element.Once a file subject to an APPLY COMMIT clause has been opened, any record locks remain in effect, including when the file is explicitly closed and possibly reused by the same run unit, until there has been a commit or a rollback.If sharing with all other is in effect, then it is possible for another run unit to have locked a record, when a RETRY could be useful for the I-O statement affected. If there were to be an operating system issue with commit or rollback, then an attempt to retry them could be relevant, but that would be for the operating system to resolve.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1021

It is not essential for the optional facility for file sharing and record locking to be in effect, but if not, then unless the implementor provides equivalent facilities for the files involved, the user shall ensure that the run unit is not run simultaneously with other run units that need access to the files being used.It should be noted that whatever the granularity of record locking specified in the program, the files themselves may impose more restrictive granularity, due to potential limits imposed by aspects such as record blocking.Where one or more system services such as a database server and a transaction management system are used concurrently with COBOL, it is recommended that only one of them should be in control of the facility to provide commit and rollback in a run unit. This is because each commit or rollback should be done as an uninterrupted operation, rather than them being specified separately in a consecutive series for each of the separate system services used within a program, to avoid the possibility of the commit or rollback for one service being successful while another fails. It is recommended that implementors ensure that the validation process in their compilers and pre-processors ensures that only one of the system services provides the commit and rollback facility for a run unit, but in the case where this is not checked by the compiler or pre-processor, programmers are recommended to ensure that this is the case to prevent inconsistent file and database states arising.Commit and Rollback facilities are not available in factory and object instances, unless they have been activated by an invoking program and it is the invoking program or a program that called the invoking program that issues the commit and rollback statements. This means that files changed by methods cannot be committed or rolled back in the event of abnormal termination.Except for those that may be undertaken by the description of a predefined view used as the underlying definition of a file, there are no COBOL equivalents to some database activities such as inserting, updating or deleting multiple rows in one operation.Program example:
 IDENTIFICATION DIVISION.
 PROGRAM-ID. SAMPLE. *> Commit and rollback example
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT STCK-FILE
 ASSIGN TO "STOCK"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS RANDOM
 FILE STATUS IS STCK-FILE-STATUS
 RECORD KEY IS STCK-KEY
 SHARING WITH ALL OTHER.

 *> The SHARING WITH ALL OTHER phrase allows other run
 *> units to simultaneously access and update the files
 *> provided the record and file locks don’t conflict.
 *> Note that checks for record locks only need be done
 *> when reading the two files, since once read they

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1022 ©ISO/IEC 2023

 *> will be locked by this program until a commit or
 *> rollback.

 SELECT CHNG-FILE
 ASSIGN TO "CHANGE"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL
 FILE STATUS IS CHNG-FILE-STATUS
 SHARING WITH ALL OTHER.

 I-O-CONTROL.
 APPLY COMMIT ON STCK-FILE CHNG-FILE UPDATE-COUNT.
 *> This enables commit and rollback and enforces
 *> multiple automatic locks in the specified files
 *> on the records that are accessed by this program
 *> until the next COMMIT or ROLLBACK
 *> The data item UPDATE-COUNT is saved by a commit and
 *> will be reset to its previous value after a rollback

 DATA DIVISION.
 FILE SECTION.

 FD STCK-FILE.
 01 STCK-REC.
 03 STCK-KEY PIC X(5).
 03 STCK-QTY PIC 9(5).

 FD CHNG-FILE.
 01 CHNG-REC.
 03 CHNG-KEY PIC X(5).
 03 CHNG-QTY PIC 9(5).
 03 CHNG-ACTION PIC X.
 88 CHNG-ADD VALUE "A".
 88 CHNG-SUBTRACT VALUE "S".
 03 CHNG-STATE PIC X.
 88 CHNG-ERROR VALUE "X".
 88 CHNG-PROCESSED VALUE "P".

 WORKING-STORAGE SECTION.

 01 FILE-STATES.
 03 STCK-FILE-STATUS PIC XX.
 88 STCK-FILE-OK VALUE "00".
 88 STCK-FILE-KEY-NOT-FOUND VALUE "23".
 88 STCK-FILE-LOCK-CONDITION
 VALUE "51" "52" "53" "54".
 88 STCK-FILE-RECORD-LOCKED VALUE "51".
 88 STCK-FILE-DEADLOCK VALUE "52".
 88 STCK-FILE-TOO-MANY-LOCKS VALUE "53" "54".

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1023

 88 STCK-FILE-SHARING-CONFLICT VALUE "61".

 03 CHNG-FILE-STATUS PIC XX.
 88 CHNG-FILE-OK VALUE "00".
 88 CHNG-FILE-AT-END VALUE "10".
 88 CHNG-FILE-LOCK-CONDITION
 VALUE "51" "52" "53" "54".
 88 CHNG-FILE-RECORD-LOCKED VALUE "51".
 88 CHNG-FILE-DEADLOCK VALUE "52".
 88 CHNG-FILE-TOO-MANY-LOCKS VALUE "53" "54".
 88 CHNG-FILE-SHARING-CONFLICT VALUE "61".

 01 MISC-VALUES.
 03 DISPLAY-STCK-QTY PIC ZZ,ZZ9.
 03 DISPLAY-CHNG-QTY PIC ZZ,ZZ9.
 03 DISPLAY-UPDATE-COUNT PIC Z,ZZZ,ZZ9.
 03 DISPLAY-RETRY-COUNT PIC Z,ZZZ,ZZ9.
 03 WORK-QTY PIC S9(7 PACKED-DECIMAL.
 03 COMMIT-FREQUENCY PIC S9(5) PACKED-DECIMAL
 VALUE 100.
 03 COMMIT-COUNT PIC S9(7) PACKED-DECIMAL
 VALUE 101.
 *> This setting ensures that the first commit is done
 *> before the first records are processed, so that
 *> initialization does not need to be repeated for a
 *> rollback in the first logical unit of work
 03 RETRY-COUNT PIC S9(7) PACKED-DECIMAL
 VALUE 0.
 03 SAVE-KEY PIC X(5) VALUE SPACES.

 01 UPDATE-COUNT PIC S9(5) PACKED-DECIMAL
 VALUE 0.
 PROCEDURE DIVISION.
 DECLARATIVES

 . USER-FATAL-ERROR SECTION.

 USE AFTER EXCEPTION CONDITION EC-USER-FATAL-ERROR

 DISPLAY "STOCK-FILE STATUS IS " STCK-FILE-STATUS
 " - CHANGE-FILE STATUS IS " CHNG-FILE-STATUS
 " - CHANGE-KEY IS " SAVE-KEY
 MOVE RETRY-COUNT TO DISPLAY-RETRY-COUNT
 DISPLAY DISPLAY-RETRY-COUNT " ROLLBACK RETRIES"
 ROLLBACK
 STOP RUN WITH ERROR STATUS 16.

 END DECLARATIVES

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1024 ©ISO/IEC 2023

 . MAIN SECTION.

 PERFORM INITIALISATION
 PERFORM PROCESSING UNTIL CHNG-FILE-AT-END
 PERFORM TERMINATION
 STOP RUN WITH NORMAL STATUS 0
 *> A commit will be automatically applied at normal
 *> program termination

 . INITIALISATION SECTION.

 OPEN I-O RETRY 5 TIMES CHNG-FILE
 OPEN I-O RETRY 5 TIMES STCK-FILE
 *> the RETRY phrase provides an opportunity to
 *> resolve file and record locking conflicts
 IF NOT STCK-FILE-OK OR NOT CHNG-FILE-OK
 DISPLAY "ERROR OPENING FILES"
 RAISE EXCEPTION EC-USER-FATAL-ERROR
 END-IF

 . PROCESSING SECTION.
 *> The paired reads and updates of the files
 *> constitute logical units of work, one per
 *> iteration of this section

 IF COMMIT-COUNT > COMMIT-FREQUENCY
 *> for a real case, the frequency could be obtained
 *> dynamically via an ACCEPT statement or a shared
 *> file that is not subject to an APPLY COMMIT clause in
 *> this run unit
 COMMIT
 MOVE 0 TO COMMIT-COUNT
 ELSE
 ADD 1 TO COMMIT-COUNT
 END-IF

 IF RETRY-COUNT > 1000
 DISPLAY "EXCESSIVE ROLLBACK RETRIES"
 RAISE EXCEPTION EC-USER-FATAL-ERROR
 END-IF

 MOVE SPACES TO SAVE-KEY

 . GET-CHANGE-FILE.

 READ CHNG-FILE RETRY 5 TIMES

 EVALUATE TRUE *> CHNG-FILE-STATUS
 WHEN CHNG-FILE-OK

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1025

 MOVE CHNG-KEY TO SAVE-KEY
 WHEN CHNG-FILE-LOCK-CONDITION
 *> rollback and try to read the next change record
 ADD 1 TO RETRY-COUNT
 ROLLBACK
 EXIT SECTION
 WHEN CHNG-FILE-AT-END
 EXIT SECTION
 WHEN OTHER
 DISPLAY "ERROR READING CHANGE-FILE"
 RAISE EXCEPTION EC-USER-FATAL-ERROR
 END-EVALUATE

 IF CHNG-PROCESSED
 *> skip record flagged as already processed"
 EXIT SECTION
 END-IF

 . LOOK-UP-STOCK-FILE.

 MOVE CHNG-KEY TO STCK-KEY
 READ STCK-FILE KEY STCK-KEY RETRY 5 TIMES

 EVALUATE TRUE *> STCK-FILE-STATUS
 WHEN STCK-FILE-OK
 CONTINUE
 WHEN STCK-FILE-LOCK-CONDITION
 *> rollback and try to read the next change record
 ADD 1 TO RETRY-COUNT
 ROLLBACK
 EXIT SECTION
 WHEN STCK-FILE-KEY-NOT-FOUND AND CHNG-ADD
 *> add a new record to the stock file
 *> and update the change file to indicate success
 MOVE CHNG-KEY TO STCK-KEY
 MOVE CHNG-QTY TO STCK-QTY
 ADD 1 TO UPDATE-COUNT
 WRITE STCK-REC
 IF STCK-FILE-OK
 CONTINUE
 ELSE
 DISPLAY "ERROR ADDING RECORD TO STOCK FILE"
 RAISE EXCEPTION EC-USER-FATAL-ERROR
 END-IF
 MOVE "P" TO CHNG-STATE
 REWRITE CHNG-REC
 IF NOT CHNG-FILE-OK
 DISPLAY "ERROR REWRITING CHANGE-FILE"
 RAISE EXCEPTION EC-USER-FATAL-ERROR

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1026 ©ISO/IEC 2023

 END-IF
 EXIT SECTION
 WHEN STCK-FILE-KEY-NOT-FOUND AND CHNG-SUBTRACT
 *> rewrite the change record flagged as an error
 MOVE CHNG-QTY TO DISPLAY-CHNG-QTY
 MOVE "X" TO CHNG-STATE
 DISPLAY "UNMATCHED CHANGE RECORD FOR SUBTRACTION"
 " - RECORD KEY IS " CHNG-KEY " - CHNG-QTY IS "
 DISPLAY-CHNG-QTY " - CHNG-ACTION IS "
 CHNG-ACTION
 REWRITE CHNG-REC
 IF NOT CHNG-FILE-OK
 DISPLAY "ERROR REWRITING CHANGE FILE"
 RAISE EXCEPTION EC-USER-FATAL-ERROR
 END-IF
 EXIT SECTION
 WHEN OTHER
 DISPLAY "ERROR READING STOCK FILE"
 RAISE EXCEPTION EC-USER-FATAL-ERROR
 END-EVALUATE

 . UPDATE-STOCK-FILE.

 MOVE STCK-QTY TO WORK-QTY
 IF CHNG-ADD
 ADD CHNG-QTY TO WORK-QTY
 ELSE
 SUBTRACT CHNG-QTY FROM WORK-QTY
 END-IF

 IF WORK-QTY > 99999.99
 OR WORK-QTY NEGATIVE
 *> rewrite the flagged change record and try the next
 MOVE STCK-QTY TO DISPLAY-STCK-QTY
 MOVE CHNG-QTY TO DISPLAY-CHNG-QTY
 DISPLAY "NUMERIC ANOMALY FOR STCK-QTY UPDATE - "
 "ORIGINAL STCK-QTY IS " DISPLAY-STCK-QTY
 " - CHNG-QTY IS " DISPLAY-CHNG-QTY
 " - CHANGE ACTION IS " CHNG-ACTION
 " - KEY IS " CHNG-KEY
 MOVE "X" TO CHNG-STATE
 REWRITE CHNG-REC
 IF NOT CHNG-FILE-OK
 DISPLAY "ERROR REWRITING CHANGE FILE"
 RAISE EXCEPTION EC-USER-FATAL-ERROR
 END-IF
 ELSE *> fully matched success - update stock and change
 *> records
 MOVE WORK-QTY TO STCK-QTY

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1027

 ADD 1 TO UPDATE-COUNT
 REWRITE STCK-REC
 IF NOT STCK-FILE-OK
 DISPLAY "ERROR REWRITING STOCK FILE"
 RAISE EXCEPTION EC-USER-FATAL-ERROR
 END-IF
 MOVE "P" TO CHNG-STATE
 REWRITE CHNG-REC
 IF NOT CHNG-FILE-OK
 DISPLAY "ERROR REWRITING CHANGE FILE"
 RAISE EXCEPTION EC-USER-FATAL-ERROR
 END-IF
 END-IF

 . TERMINATION SECTION.

 COMMIT *> in case there is a problem with the
 *> subsequent termination processing
 MOVE UPDATE-COUNT TO DISPLAY-UPDATE-COUNT
 DISPLAY DISPLAY-UPDATE-COUNT " CHANGE RECORDS APPLIED "
 MOVE RETRY-COUNT TO DISPLAY-RETRY-COUNT
 DISPLAY DISPLAY-RETRY-COUNT " ROLLBACK RETRIES "
 CLOSE STCK-FILE CHNG-FILE
 IF NOT STCK-FILE-OK OR NOT CHNG-FILE-OK
 DISPLAY "ERROR ON CLOSING"
 RAISE EXCEPTION EC-USER-FATAL-ERROR
 END-IF.

D.3 Tables and dynamic-length elementary items

D.3.1 GeneralTables of data are common components of business data processing problems. Although the repeating items that make up a table could be otherwise described by a series of separate data description entries all having the same level-number and all subordinate to the same group item, there are two reasons why this approach is not satisfactory. First, from a documentation standpoint, the underlying homogeneity of the items would not be readily apparent; and second, the problem of making available an individual element of such a table would be severe when there is a decision as to which runtime element is made available.A table of data items is defined by coding the OCCURS clause in its data description entry. This clause specifies that the item is to be repeated as many times as stated in the OCCURS clause. The number of occurrences of a table element may be specified to be fixed or variable. The item is considered to be a table element and its name and description apply to each occurrence. The collection of all these elements is the table itself.A reference to a specific occurrence of the table elements may be made only by specifying the data-name of the table element, including any necessary qualifiers, followed by the desired occurrence number. The occurrence number is known as a subscript.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1028 ©ISO/IEC 2023

D.3.2 Table definitionTo define a table, code the OCCURS clause in the data description of the table element. The table so defined is the collection of all elements described with that OCCURS clause, including all items subordinate to these elements.Example 1 shows the data description entry of the table element INDICATOR, and the reference to the twelfth element of the table so defined in a MOVE statement. Each element of that table consists of the elementary item INDICATOR. There are twenty table-elements INDICATOR. However, it is not possible to refer to the table as a unit.EXAMPLE 1
01 FULL-RECORD.
 02 ANOTHER-ITEM PIC X(10).
 02 INDICATOR PICTURE XXX OCCURS 20 TIMES.
…
MOVE SPACES TO INDICATOR (12)To reference the complete table, define the table as the only element of a group item. Example 2 shows the definition of the same table as shown in example 1, which is now part of the group item INDICATOR-TABLE, and the use of that group item in a MOVE statement.EXAMPLE 2
01 FULL-RECORD.
 02 ANOTHER-ITEM PIC X(10).
 02 INDICATOR-TABLE.
 03 INDICATOR PICTURE XXX OCCURS 20 TIMES.
…
 MOVE SPACES TO INDICATOR-TABLEExample 3 shows a table defined by the item MONTHLY-REVENUES. Each table-element is a group item consisting of the two elementary items REV-SHOP-1 and REV-SHOP-2. A reference to the group item REVENUES-TABLE refers to the complete table MONTHLY-REVENUES.EXAMPLE 3
01 REVENUES-TABLE.
 02 MONTHLY-REVENUES OCCURS 12 TIMES.
 03 REV-SHOP-1 PIC S9(8)V99.
 03 REV-SHOP-2 PIC S9(8)V99.Example 4 shows two tables that are part of the same group item. A reference to the group item TABLES refers to the complete table MONTHLY-REVENUES combined with the complete table MONTHLY-PROFITS.EXAMPLE 4

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1029

01 TABLES.
 02 MONTHLY-REVENUES OCCURS 12 TIMES.
 03 REV-SHOP-1 PIC S9(8)V99.
 03 REV-SHOP-2 PIC S9(8)V99.
 02 MONTHLY-PROFITS OCCURS 12 TIMES.
 03 PRO-SHOP-1 PIC S9(8)V99.
 03 PRO-SHOP-2 PIC S9(8)V99.If any group item containing a table is also described with the OCCURS clause, the table is said to be multi-dimensional; otherwise, the table is said to be one-dimensional. All tables in the previous examples are one-dimensional tables.Example 5 shows a two-dimensional table. Each of the 12 occurrences of MONTHLY-REVENUES is a group item containing 100 occurrences of the elementary item REV-SHOP.EXAMPLE 5
01 A-TABLE.
 02 MONTHLY-REVENUES OCCURS 12 TIMES.
 03 REV-SHOP PIC S9(8)V99 OCCURS 100 TIMES.In the general case, to define an n-dimensional table, code the OCCURS clause in the data description of the element of the table and in the descriptions of (n – 1) group items that contain the element.
D.3.3 Values of tablesIn the working-storage and local-storage sections, initial values of elements within tables are specified in one of the following ways:1) The table may be described as a series of separate data description entries all subordinate to the same group item, each of which specifies the value of an element, or part of an element, of the table. In defining the record and its elements, any data description clause (USAGE, PICTURE, etc.) may be used to complete the definition, where required. The hierarchical structure of the table is then shown by use of the REDEFINES entry and its associated subordinate entries. The subordinate entries, following the REDEFINES entry, that are repeated due to OCCURS clauses, shall not contain VALUE clauses.2) All the dimensions of a table may be initialized by associating the VALUE clause with the description of the entry defining the entire table. The lower level entries will show the hierarchical structure of the table; lower level entries shall not contain VALUE clauses.3) The value of selected table elements may be specified using VALUE clauses with or without the optional TO phrase.
D.3.4 References to table itemsWhenever the user references a table element or a condition-name associated with a table element, the reference shall indicate which occurrence of the element is intended, except in a SEARCH statement, in a SORT statement, and in arguments to certain intrinsic functions that reference a table. For access to a

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1030 ©ISO/IEC 2023

one-dimensional table the occurrence number of the desired element provides complete information. For tables of more than one dimension, an occurrence number shall be supplied for each dimension of the table. In example 5, then, a reference to MONTHLY-REVENUES (3) is complete, but a reference to REV-SHOP (2) is not since any reference to a REV-SHOP item requires two subscripts. A valid reference might be REV-SHOP (5, 2) which refers to the second occurrence of REV-SHOP in the fifth occurrence of MONTHLY-REVENUES.
D.3.5 Subscripting

D.3.5.1 GeneralOccurrence numbers are specified by appending one or more subscripts to the data-name.The subscript may be represented either by an arithmetic-expression that produces an integer result or by an index-name associated with the table. An index-name may be followed by either the operator + or the operator – and an integer, which is used as in increment or decrement, respectively. It is permissible to mix both arithmetic-expressions and index-names in a single subscript list.The subscripts, enclosed in parentheses, are written immediately following any qualification for the name of the table element. The number of subscripts in such a reference shall equal the number of dimensions in the table whose element is being referenced. That is, there shall be a subscript for each OCCURS clause in the hierarchy containing the data-name including the data-name itself.When more than one subscript is required, they are written in the order of successively less inclusive dimensions of the data organization. If a multi-dimensional table is thought of as a series of nested tables and the most inclusive or outermost table in the nest is considered to be the major table with the innermost or least inclusive table being the minor table, the subscripts are written from left to right in the order major, intermediate, and minor.A reference to an item shall not be subscripted if the item is not a table element or an item or condition-name within a table element.The lowest permissible occurrence number is 1. The highest permissible occurrence number is the maximum number of occurrences of the item as specified in the OCCURS clause. A subscript value that exceeds the maximum number of occurrences or is negative or zero may be detected by using exception declaratives or WHEN phrases in a PERFORM statement.
D.3.5.2 Subscripting using index-namesIn order to facilitate such operations as table searching and manipulating specific items, a technique called indexing is available. To use this technique, the programmer assigns one or more index-names to an item whose data description entry contains an OCCURS clause. An index associated with an index-name acts as a subscript, and its value corresponds to an occurrence number for the item to which the index-name is associated.The INDEXED BY phrase, by which the index-name is identified and associated with its table, is an optional part of the OCCURS clause. There is no separate entry to describe the index associated with index-name since its definition is completely hardware oriented. At runtime the contents of the index correspond to an occurrence number for that specific dimension of the table with which the index is

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1031

associated; however, the manner of correspondence is determined by the implementor. The initial value of an index at runtime is undefined, and the index shall be initialized before use. The initial value of an index is assigned with the PERFORM statement with the VARYING phrase, the SEARCH statement with the ALL phrase, or the SET statement.The use of an arithmetic-expression or data-name as a subscript referencing a table element or an item within a table element does not cause the alteration of any index associated with that table.An index-name may be used to reference only the table to which it is associated via the INDEXED BY phrase.Data that is arranged in the form of a table is often searched. The SEARCH statement provides facilities for producing serial and nonserial (for example, binary) searches. It is used to search a table for a table element that satisfies a specific condition and to adjust the value of the associated index to indicate that table element.Relative indexing is an additional option for making references to a table element or to an item within a table element. When the name of a table element is followed by a subscript of the form (index-name + or - integer), the occurrence number required to complete the reference is the same as if index-name were set up or down by integer via the SET statement before the reference. The use of relative indexing does not cause the value of the index to be altered.The value of an index may be made accessible to a runtime element by storing the value in an index data item. Index data items are described by a data description entry containing a USAGE INDEX clause. The index value is moved to the index data item by the execution of a SET statement.
D.3.5.3 Subscripting exampleAssuming the following data definition:

02 XCOUNTER PIC S99.
02 YCOUNTER PIC S99.

02 BAKER OCCURS 20 TIMES INDEXED BY BAKER-INDEX ...
03 CHARLIE ...
03 DOG OCCURS 5 TIMES ...

04 EASY
88 MAX VALUE IS ...

04 FOX ...
05 GEORGE OCCURS 10 TIMES ...

06 HARRY ...
06 JIM ...references to BAKER and CHARLIE require only one subscript, references to DOG, EASY, MAX, and FOX require two, and references to GEORGE, HARRY, and JIM require three.To illustrate the requirement of order from major to minor, HARRY (18, 2, 7) means the HARRY in the seventh GEORGE, in the second DOG, in the eighteenth BAKER.Mixing arithmetic-expressions and index-names is illustrated by the following:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1032 ©ISO/IEC 2023

HARRY (BAKER-INDEX – 3, 4, (XCOUNTER * 2) – 3).The use of an arithmetic expression that starts with a unary operator and follows an identifier is illustrated by the following:
DOG (XCOUNTER (- YCOUNTER))Omitting the inner pair of parentheses, the identifier will be interpreted as:
DOG (XCOUNTER - YCOUNTER)

which will cause a syntax error, because only one subscript is coded where two subscripts are necessary.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1033

D.3.5.4 SEARCH exampleA representation of the action of a serial format of a SEARCH statement containing two WHEN phrases is shown below. This figure is not intended to dictate implementation. The sample statement would be:
SEARCH table AT END imperative-statement-1
 WHEN condition-1 imperative-statement-2
 WHEN condition-2 imperative-statement-3
END-SEARCH

Figure D.1 — Format 1 SEARCH statement having two WHEN phrases

Index Setting:
exceeds highest

permissible occur-
rence or is zero or

negative

imperative-
statement-1

Condition-1

Condition-2

Increment
index-name for

identifier-1

Increment
index-name-1

(for a different ta-

ble)
or identifier-2

imperative-
statement-2

imperative-
statement-3

Entrance

True

False

True

False

True (AT END)*

*

*

*

**

False

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1034 ©ISO/IEC 2023

 * These operations are options included only when specified in the VARYING phrase of the SEARCH statement.** Each of these control transfers is to the end of the SEARCH statement unless the flow of control of the imperative-statement contains an EXIT, GO TO, GOBACK, or RETURN statement.
D.3.6 Sorting tablesThe SORT statement may be used to sort tables into a user-defined order. This is especially useful for tables used with SEARCH ALL. The following examples illustrate this capability.
D.3.6.1 EXAMPLE 1This example is a simple sort in which the table is sorted in order using the key definitions in the OCCURS clause of data item tabl to specify the sequence, that is elem-item2 is the major key (ascending) and elem-item1 is the secondary key (descending). It is then possible to use a SEARCH ALL statement knowing that all the elements are in the required order.
01 group-item.

05 tabl occurs 10 times
indexed by ind
ascending elem-item2
descending elem-item1.

10 elem-item1 pic x.
10 elem-item2 pic x.

...
move "l3n3m3p3o3x1x1x1x1x1" to group-item.
sort tabl.
search all tabl

at end
display "not found"

when elem-item1 (ind) = "m"
if (elem-item1 (ind – 1) = "n")
and (elem-item1 (ind + 1) = "l")

display "elem-item1 is descending order – 2nd key"
else

display "sort failed"
end-if

end-search.

D.3.6.2 EXAMPLE 2This example is a simple sort in which the table is sorted in ascending order using each entire element of the table (data item tabl) to determine the sequence.
working-storage section.
01 group-item.

05 tabl occurs 10 times.
10 elem-item1 pic x.
10 elem-item2 pic x.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1035

...
procedure division.
...

sort tabl ascending.
if tabl (1) ...

D.3.6.3 EXAMPLE 3This example is a sort in which the table is sorted based on specified key data items. The major key is elem-item2 even though it is not specified as a KEY in the OCCURS clause. The secondary is elem-item3. It is treated as a descending key for this sort because the DESCENDING (which is transitive across KEY data items) specified in the SORT statement takes precedence over the ASCENDING specified in the OCCURS clause.
working-storage section.
01 group-item.

05 tabl occurs 10 times
ascending elem-item3
descending elem-item1.

10 elem-item1 pic x.
10 elem-item2 pic x.
10 elem-item3 pic x.

...
procedure division.
...

sort tabl descending elem-item2 elem-item3.
if tabl (1)...

D.3.6.4 EXAMPLE 4This example sorts only the third instance of tabl2, that is tabl2 (3). It uses the qualified data item, elem-item1 of group2 as its key. In normal procedure division references, elem-item1 of group2 requires two levels of subscripting/indexing while in this reference it has none. Similarly, tabl2 normally requires two levels of subscripting, but cannot be subscripted as data-name-2 in the SORT statement. Instead it uses the value of t1-ind for determining which instance is sorted.
working-storage section.
01 group-item.

05 tabl1 occurs 10 times
indexed by t1-ind t2-ind.

10 tabl2 occurs 5 times.
15 group1.

20 elem-item1 pic x.
15 group2.

20 elem-item1 pic 9.
...
procedure division.
...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1036 ©ISO/IEC 2023

set t1-ind to 3.
sort tabl2 (t1-ind) descending elem-item1 of group2.
if group1 (3 1) ...

Note that the following is also acceptable syntax for this sort statement.
sort tabl2 (t1-ind, ALL) descending elem-item1 of group2.

D.3.7 Dynamic-capacity tablesA dynamic-capacity table (or "dynamic table") is a table whose physical size, known as its "capacity", grows dynamically as you add more elements to it. Its maximum capacity is limited only by the resources your implementation can make available. Its capacity can also be reduced. To improve the description and the planning of memory resources, you may specify a minimum capacity and an expected capacity. If the expected capacity is reached, you receive a warning in the form of a nonfatal exception but, unless you terminate the process, further elements will continue to be added.You define a dynamic table by coding an OCCURS clause with the keyword DYNAMIC. In the following example, any number of families may be stored, each having up 10 children. (If some family has more than 10 children, this is still allowed, but you may choose to signal a warning.)
01 family-record.
 03 family-code PIC X(10).
 03 family OCCURS DYNAMIC
 CAPACITY IN family-count
 INITIALIZED.
 05 family-name PIC X(30).
 05 childs-name PIC X(30)
 OCCURS DYNAMIC TO 10
 CAPACITY IN child-count.
 05 family-zipcode PIC X(20).
 03 family-town PIC X(20).If Emily is born to family number 300 which previously had 2 children, you only need to code 3 as a subscript and a new element is automatically created:

MOVE "Emily" TO childs-name (300, 3) You can SORT and SEARCH a dynamic table (if it has a key) just like a fixed-capacity table.To know the current capacity (number of elements) of the table at any time, include the CAPACITY phrase, as in the example. The capacity may be changed using the SET statement, as in:
 SET family-count TO 300
or SET family-count UP BY 10

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1037

Any new elements created, and any unreferenced data in them, may be initialized automatically by including the INITIALIZED keyword in the OCCURS clause, as in the example.An entire dynamic table may be moved to another table as part of a group MOVE when the tables defined in the two groups coincide and have the same entry length. You can create a dynamic table from a fixed or OCCURS DEPENDING table and vice versa, because this type of group MOVE allows one of the two tables to be non-dynamic.The storage needed for a dynamic table is allocated and released entirely automatically. If there are other data items adjacent to a dynamic table, their positions are not affected. For example, "family-code" and "family-town" in the example stay in the same fixed locations.The initial capacity of a dynamic-capacity table may be defined using the VALUE clause with a TO phrase and several operands:
01 town-record.
 03 town-name PIC X(20) OCCURS DYNAMIC FROM 1 TO 20
 VALUES ARE "Leeds", "Bordeaux", "Pisa" FROM (1) TO (3).sets the initial capacity of the table to 3.Dynamic-capacity tables may be used in all contexts and applications where a fixed-capacity table could be used, except in the file section.
D.3.8 Dynamic-length elementary itemsA data item of varying size may be defined using a DYNAMIC LENGTH clause that contains a dynamic-length structure name. This type of data item is called a dynamic-length elementary item. The dynamic-length structure name refers back to a SPECIAL NAMES clause that defines the physical format of the dynamic-length elementary item. This might look like:
SPECIAL NAMES.

DYNAMIC LENGTH STRUCTURE dlei-prefix PREFIXED.
.
.
.

my-dlei PIC X DYNAMIC LENGTH dlei-prefix.Because a dynamic-length elementary item may grow very large, the LIMIT phrase may be used to specify the largest size that the dynamic-length elementary item can grow to.When a new value is stored in a dynamic-length elementary item, the item's length is automatically adjusted to be equal to the length of the source. The following:
MOVE "This product is no longer available" TO my-dlei.will set the length of my-dlei to 35. The LENGTH function may be used to return the actual size of my-dlei. Until its value changes, this data item will behave exactly like a fixed length item with a PICTURE of

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1038 ©ISO/IEC 2023

X(35), and all the statements normally available to an alphanumeric or national data item can be used with it.
D.4 Shared memory areaThis feature is basically oriented toward saving runtime memory space as it allows more than one file to share the same file area and input-output areas.If the record-area format of the SAME clause is specified, only the record area is shared and the input-output areas for each file remain independent. In this case any number of the files sharing the same record area may be active at one time. This factor may give rise to an increase in the speed of the run unit.To illustrate this point, consider file maintenance. If the programmer assigns the same record area to both the old and new files, he not only saves memory, but because this technique eliminates a move of each record from the input to the output area, significant time savings result. An additional benefit of this technique is that the programmer need not define the record in detail as a part of both the old and new files. Rather, he defines the record completely in one case and simply includes the level 01 entry in the other. Because these record areas are in fact the same area, one set of names suffices for all processing requirements without requiring qualification.If a format other than the record-area format of the SAME clause is specified, not only the record area but the input-output areas as well are shared.As a result, only one of the files sharing the same set of areas is permitted to be active at one time. This form of the clause is designed for the application in which a series of files is used during different phases of the run unit. In these cases, the SAME clause allows the programmer to save memory space.
D.5 Sharing of storage among data itemsThrough the REDEFINES clause and through the implicit redefinition of records associated with file descriptions, it is possible for the same storage area to be defined in different ways. When the same storage area is used for different purposes during the execution of a given statement, there may be unexpected results.This applies when the data items associated with the storage area are explicitly referenced in the general formats and syntax rules of the statement. 14.6.10, Overlapping operands, addresses this point directly. It also applies when the item is identified in the rules for the procedure division statement as being referenced or modified by it, even when the general format for the statement does not provide for the inclusion of the name of the item in the statement text.The user is cautioned that the contents of the data items in such cases may be unexpected.As an example, consider the following program fragment:
SELECT AFile ASSIGN USING AssignField
ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS FileStatField

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1039

RELATIVE KEY IS RelKeyField.
…
FD AFILE RECORD CONTAINS 80 CHARACTERS.
…
WORKING-STORAGE SECTION.
01 WS-Rec PICTURE X(80).
01 WS-Redef-1 REDEFINES WS-Rec.
 05 AssignField PICTURE X(10).
01 WS-Redef-2 REDEFINES WS-Rec.
 05 FileStatField PICTURE X(2).
01 WS-Redef-3 REDEFINES WS-Rec.
 05 RelKeyField PICTURE 9(4) USAGE PACKED-DECIMAL.
…
READ AFile INTO WS-Rec.The data items FileStatField and RelKeyField are "implicitly referenced" by virtue of the discussion of the impact of the READ statement on their contents in the general rules for READ.AssignField is not mentioned in the general formats, the syntax rules or the general rules for the READ statement at all.The content of all three of these data items will almost certainly not be what is "expected" given their intended purposes after execution of a successful READ statement, because it is probable that the following events are likely to have occurred in something approximating the following order:1) FileStatField is set to a value of "00" during the I/O operation.2) At the conclusion of the I/O operation, RelKeyField is set to the relative record number of the record just read.3) After the I/O operation, the contents of the record area associated with AFile are moved to WS Rec, overwriting AssignField (and FileStatField and RelKeyField).Although these results are well-defined, it is unlikely that the content of FileStatField or RelKeyField will reflect meaningful values at the completion of the READ, and it is also probable that the content of AssignField will have been changed from its original implementor-defined value as part of the implicit MOVE.A second example where this principle applies to multiple receiving operands (without reference to any sending operands) can be found in the multiple-destination COMPUTE statement:
01 Receiving-rec.
 03 Map-1.
 05 Res-1 PIC V9(8).
 05 FILLER PIC XX.
 03 Map-2 REDEFINES Map-1.
 05 FILLER PIC X.
 05 Res-2 PIC V9(8).
 03 Map-3 REDEFINES Map-2.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1040 ©ISO/IEC 2023

 05 FILLER PIC XX.
 05 Res-3 PIC V9(8).

COMPUTE Res-1 Res-2 Res-3 = FUNCTION RANDOM.

In this instance, the result of execution is well-defined; however, it is unlikely that the content of either Res-1 or Res-2 will be particularly useful, nor will they represent the same values as Res-3 as would be the case if the operands shared no part of their storage areas.A third example of circumstances in which there are multiple receiving operands specified, with results that might not be expected, can be found in the CALL statement:
01 Parameter-rec.
 03 Params.
 05 FILLER PIC XXX.
 05 Param-1 PIC X(5).
 03 Params-redef-1 REDEFINES Params.
 05 FILLER PIC XX.
 05 Param-2 PIC X(5)
 03 Params-redef-2 REDEFINES Params.
 05 FILLER PIC X.
 05 Param-2 PIC X(5).

CALL "Some-Prog" USING REFERENCE Param-1 Param-2 Param-3.

In this case, the three by-reference parameters are treated as receiving operands by the rules of the CALL statement, but the program executing the CALL statement has no control over whether or not "Some-Prog" updates any, much less all, of these parameters, or over the order in which they are updated. What parameters contain information that is of significance is unclear in such a circumstance.The fourth example is a slight modification of the second:
CALL "Some-Prog" USING REFERENCE Param-1 Param-2 Param-3
RETURNING Parameter rec.

In this case, whether or not "Some-Prog" updates any or all of the three parameters and in what order they are updated are both immaterial, as the content of those three parameters is expressly overwritten by the result of the calling program once control has passed back to it from "Some-Prog".In summary, for such cases as these, the content of these data items is not likely to reflect a value consistent with expectations associated with their intended purpose; the content instead reflects the fact that their storage area has been overwritten by a value associated with an entirely different purpose.The user is cautioned that unexpected results may occur when the user fails to ensure that operands either explicitly or implicitly associated with a given statement do not overwrite each other during the

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1041

course of execution of that statement, and that such storage is not shared with other data items that may unexpectedly change the result of execution of other statements.
D.6 Compilation group and run unit organization and communicationComplete data processing problems are frequently solved by developing a set of logically coordinated compilation units, which may be compiled separately or stacked together for compilation. At some time prior to runtime the output from the compiler may be assembled into a complete problem solution. The organization of COBOL compilation groups and run units supports this approach of dividing large problem solutions into small, more manageable, portions that may be programmed and validated independently.
D.6.1 Compilation group and run unit organizationThere are two levels in a COBOL environment. These are the source level and the runtime level.
D.6.1.1 Source level organizationAt the source level, the most inclusive unit is a compilation group, which is everything that is submitted to a compiler at one time. A compilation group contains a series of source units. The types of source units are class definitions, factory definitions, function definitions, function prototypes, interface definitions, method definitions, object definitions, program definitions, and program prototypes. A source unit is a set of COBOL statements as specified in this document and consists of an identification division followed optionally by an environment division and/or a data division and/or a procedure division. A source element is a term used to refer to a source unit excluding any nested source units. A source unit that itself is not contained within another source unit is called a compilation unit. A compilation unit may be converted by a compiler into a runtime module that either alone, or together with other runtime modules, is capable of being executed. In general, a source unit that is contained within another unit is not converted by a compiler into a separate runtime module, since the specifications in this document explicitly permit a contained source unit to reference data in a containing source unit. The procedure division of a function, method, or program is organized into a sequence of procedures of two types. Declarative procedures, normally termed declaratives, are procedures that will be executed only when special conditions occur at runtime. Nondeclarative procedures are procedures that will be executed according to the normal flow of control. Declaratives may contain nondeclarative procedures but these will be executed only during the execution of the declarative that contains them. Nondeclarative procedures may contain other nondeclarative procedures but shall not contain a declarative. Neither declaratives nor nondeclarative procedures may contain programs. In other words, in COBOL the terms "procedure" and "program" are not synonyms.Further discussion of classes, factories, interfaces, methods, and objects can be found in D.19, Object oriented concepts.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1042 ©ISO/IEC 2023

Figure D.2, Compilation group sample structure example, illustrates the structure of a compilation group. NOTE All source elements are source units as well. This is only partially indicated in the example.
Figure D.2 — Compilation group sample structure

example

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1043

*> Compilation group start
*> Compilation unit F-1 start
*> Source unit F-1 start
FUNCTION-ID F-1. *> Source element start
...
END FUNCTION F-1. *> Source element end
*> Source unit F-1 end
*> Compilation unit F-1 end
*> Compilation unit P-1 start
*> Source unit P-1 start
PROGRAM-ID. P-1.
...
 PROGRAM-ID. P-1-1. *> Source element start
 ...
 END PROGRAM P-1-1. *> Source element end
*> Source unit P-1-2 start
 PROGRAM-ID. P-1-2.
 ...
*> Source element P-1-2-1 start
 PROGRAM-ID. P-1-2-1. *> Source element start
 ...
 END PROGRAM P-1-2-1. *> Source element end
 PROGRAM-ID. P-1-2-2. *> Source element start
 ...
 END PROGRAM P-1-2-2. *> Source element end
 END PROGRAM P-1-2.
*> Source unit P-1-2 end
END PROGRAM P-1.
*> Source unit P-1 end
*> Compilation unit P-1 end
*> Compilation unit C-1 start
*> Source unit C-1 start
CLASS-ID. C-1.
...
*> Source unit start
 FACTORY.
 ...
 METHOD-ID. OM-1. *> Source element start
 ...
 END METHOD OM-1. *> Source element end
 END FACTORY.
*> Source unit end
*> Source unit start
 OBJECT.
 ...
 METHOD-ID. IM-1. *> Source element start
 ...
 END-METHOD IM-1. *> Source element end
 METHOD-ID. IM-2. *> Source element start
 ...
 END-METHOD IM-2. *> Source element end
 END OBJECT.
*> Source unit end
END-CLASS C-1.
*> Source unit C-1 end
*> Compilation unit C-1 end
*> Compilation group end

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1044 ©ISO/IEC 2023

Figure D.3, Compilation group and run unit structures, shows schematically, in an example, the relationships between the components of a compilation group and their corresponding runtime entities. Note that runtime modules resulting from compilation units of the same compilation group need not be part of the same run unit, and runtime modules in the same run unit need not result from compilation units of the same compilation group.
Figure D.3 — Compilation group and run unit structures

Compilation Group

Legend

P-1

P-1-1 P-1-2

P-1-2-1 P-1-2-2

Compilation Unit

Source Unit

Source Element

Run Unit

Runtime Module

Runtime Element

To other run unit To other run unit

From other comp. group From other comp. group

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1045

D.6.1.2 Runtime level organizationAt runtime level, the most inclusive organizational unit is the run unit. A run unit contains one or more runtime modules, as well as other resources needed for the execution of the run unit.A runtime module results from compiling a compilation unit. Each runtime module contains one or more runtime elements, as well as other resources needed for the execution of those runtime elements.A runtime element results from the compilation of a function, method, or program.
D.6.1.3 EXAMPLE The following compilation group is an example of some of these concepts
FUNCTION-ID. factorial.
DATA DIVISION.
LINKAGE SECTION.
01 parm1 BINARY-LONG.
01 fact SAME AS parm1.
PROCEDURE DIVISION USING parm1 RETURNING fact.

IF parm1 = 0
COMPUTE fact = 1

ELSE
COMPUTE fact = parm1 * factorial (parm1 - 1)

END-IF
GOBACK.

END FUNCTION factorial.

PROGRAM-ID. program-1.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
 FUNCTION factorial.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 i BINARY-LONG.
PROCEDURE DIVISION.

COMPUTE i = factorial (10)
...

END PROGRAM program-1.

PROGRAM-ID. program-2.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
 FUNCTION factorial.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 i BINARY-LONG.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1046 ©ISO/IEC 2023

01 global-item PIC X(30) GLOBAL VALUE "The factorial is: "
PROCEDURE DIVISION.

COMPUTE i = factorial (11)
CALL display-it USING i
...

PROGRAM-ID. display-it.
LINKAGE SECTION.
01 n BINARY-LONG.
PROCEDURE DIVISION USING n.

DISPLAY global-item, n
END PROGRAM display-it.

END PROGRAM program-2.

This compilation group consists of three compilation units: the function factorial, the program program-1, and the program program-2. Each compilation unit is also a source unit. The source unit program-2 contains another source unit, the program display-it. Each of the four source units is also a source element. The difference between the source elements and the source units is that the source element program-2 does not include the nested program.From each of the 3 compilation units, a separate runtime module is created by the compiler. Typically, a linkage editor is used to combine runtime modules, from one or multiple compilations, into a run unit.The runtime module for the function factorial contains one runtime element, the function factorial. The runtime module for the program program-1 contains one runtime element. The runtime module for program-2 contains two runtime elements, one for program-2 and one for display-it.This example illustrates how the user-defined function factorial can override the intrinsic function factorial. The compiler would use the factorial intrinsic function if FUNCTION factorial INTRINSIC were specified in the REPOSITORY paragraph. However, since the INTRINSIC phrase is not specified in the example, the user-defined function is the function that is activated.
D.6.2 Recursive and initial programsEarly COBOL programs always had data in its last-used state and did not allow calling a program when the program was active. Initial and recursive programs allow data to be initialized on every invocation and recursive programs allow programs to be called when they are active. Functions and methods are always recursive.An initial program is one in which working-storage section internal data items and internal file connectors are set to their initial state whenever the program is called. Data items and file connectors declared as external are left in their last-used state. When the program exits (with EXIT PROGRAM or GOBACK), all programs that are contained in it are canceled (as if CANCEL were executed for each one) and any internal file connectors are closed. This type of program is most often used when it is not necessary to retain data from one invocation to the next. To retain specific data, external data items or file connectors can be used. In many implementations of initial programs, working-storage is allocated "on the stack", which can conserve space because it goes away when the program terminates.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1047

A recursive function, method, or program is one that can be called when it is already active. For example, program A can call B that can in turn call A again. Or, A can call A as illustrated in the example inD.6.1.3 where the function factorial calls itself. Typically, in a recursive program a local-storage section is specified for data that is initialized on each invocation of the program (this data is called automatic data). Working-storage data is static and is therefore in its last-used state on every invocation. The programmer should be aware of this because it can cause unexpected results. For example, if you had a counter "xyz" in the working-storage in one recursion of a program and you added to it, when you got back to another recursion it would be one more than it was before. You might or might not want this to happen.
D.6.3 Accessing data and files

D.6.3.1 GeneralSome data items have associated with them a storage concept determining where data item values and other attributes of data items are represented with respect to the runtime elements of a run unit. Likewise, file connectors have associated with them a storage concept determining where information concerning the positioning and status of a file and other attributes of file processing are represented with respect to the runtime elements of a run unit.
D.6.3.2 NamesA data-name names a data item. A file-name names a file connector. These names are classified as either global or local. A global name is established by coding a GLOBAL clause in a file description entry or a data description entry. The global name can then be used in the declaring source element and in any source element that is contained, directly or indirectly, within the declaring source element. All uses of a given global name reference the file description entry or data description entry described with that name and the GLOBAL clause in the declaring source element.A local name, however, may be used only to refer to the item with which it is associated from within the program in which the local name is declared. Some names are always global; other names are always local; and some other names are either local or global depending upon specifications in the program in which the names are declared.A data-name, file-name, or report-name described using a GLOBAL clause is a global name. All data-names subordinate to a global name are global names. All condition-names associated with a global name are global names. However, specific rules sometimes prohibit specification of the GLOBAL clause for certain data description, file description, or record description entries.A file-name is global if the GLOBAL clause is specified in the file description entry for that file-name. If a data-name, a file-name, or a condition-name declared in a data description entry is not global, the name is local.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1048 ©ISO/IEC 2023

D.6.3.3 Items overviewAccessible data items usually require that certain representations of data be stored. File connectors usually require that certain information concerning files be stored. The storage associated with a data item or a file connector may be external or internal to the runtime element in which the item is declared.
D.6.3.4 Item types

D.6.3.4.1 Working-storage recordsWorking-storage records are allocations of sufficient storage to satisfy the record description entries in that section. Each record description entry declares a different item. Renaming and redefining do not declare new items; they provide alternate groupings or descriptions for items that have already been declared.
D.6.3.4.2 File connectorsFile connectors are storage areas that contain information about a file and are used as the linkage between a file-name and a physical file and between a file-name and its associated record area.
D.6.3.4.3 Record areas for filesNo particular record description entry in the file section is considered to declare the storage area for the record. Rather, the storage area is the maximum required to satisfy associated record description entries. These entries may describe fixed- or variable-length records. In this presentation, record description entries are said to be associated in two cases. First, when record description entries are subordinate to the same file description entry, they are always associated. Second, when record description entries are subordinate to different file description entries and these file description entries are referenced in the same SAME RECORD AREA clause, they are associated. All associated record description entries are redefinitions of the same storage area.
D.6.3.4.4 Screen recordsA screen record is a conceptual entity that groups together one or more screen description entries. Each screen description entry declares a different screen item.A screen record provides the two-dimensional framework within which screen items may be positioned relative to each other and relative to the first line and first column of the terminal display. Positioning of screen items within the screen record is unaffected by how the screen record is referenced; it is the same whether the whole screen record is displayed or only a portion.
D.6.3.4.5 Other itemsExamples of other items declared in COBOL functions and programs are: report description entries and control information associated with the linkage and report sections.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1049

D.6.3.5 Item attributes

D.6.3.5.1 GeneralA data item or file connector may be an external item or internal item. The storage associated with an external item is associated with the run unit rather than with any particular runtime element within the run unit. An external item may be referenced by any runtime element that describes the item. References to an external item from different runtime elements using separate descriptions of the item are always to the same item. A literal may be used to specify the external name in environments where names are case-sensitive or do not conform to the rules for COBOL name formation.An item is internal if the storage associated with that item is associated with the runtime element in which it is specified. Internal items may be automatic, initial, or static. If it is automatic or initial, it is initialized every time the runtime element in which it is specified is activated. If it is static, it retains its contents between activations unless a CANCEL statement causes it to be reinitialized. The determination of whether or not an item is automatic or static is made by the section in which the item is described. A data item is initial when it is defined in the working-storage or file section of an initial program.External and internal items may have either global or local names.
D.6.3.5.2 Working-storage recordsA record described in the working-storage section is given the external attribute by the presence of the EXTERNAL clause in its data description entry. Any data item described by a data description entry subordinate to an entry describing an external record also attains the external attribute. If a record or data item does not have the external attribute, it is part of the internal data of the runtime element in which it is described.
D.6.3.5.3 File connectorsA file connector is given the external attribute by the presence of the EXTERNAL clause in the associated file description entry. If the file connector does not have the external attribute, it is internal to the runtime element in which the associated file-name is described.
D.6.3.5.4 Other itemsRecords, subordinate data items, and various associated control information described in the linkage, report, and screen sections of a runtime element are always considered to be internal to the runtime element describing that data. Special considerations apply to data described in the linkage section whereby an association is made between the records described and other data items accessible to other runtime elements. (See D.6.5.6, Passing arguments.)
D.6.3.6 Name resolutionCertain conventions apply when programs contained within other programs assign the same names to data items, conditions, and file connectors. Consider the situation when program A contains program B which itself contains program C; further, programs A and B, but not program C, contain data division entries for a condition-name, data-name, or a file-name named DUPLICATE-NAME.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1050 ©ISO/IEC 2023

1) If either DUPLICATE-NAME explicitly references an internal item, two different though identically named items exist. If both items identified as DUPLICATE-NAME explicitly reference an external item, only one item exists.2) Program A's explicit reference to DUPLICATE-NAME is always to the item that it declares. Program B's explicit reference to DUPLICATE-NAME is always to the item that it declares.3) If DUPLICATE-NAME is a local name in either program A or program B, program C cannot explicitly refer to that name.4) If DUPLICATE-NAME in program B is a global name, program C may explicitly access the item declared in program B, regardless of whether or not DUPLICATE-NAME is a global name in program A.5) If DUPLICATE-NAME in program A is a global name but in program B is a local name, program C's explicit reference to DUPLICATE-NAME is to the item declared in program A.6) Name resolution for any implicit reference to DUPLICATE-NAME is established with the explicit specification of that name in the ENVIRONMENT DIVISION or DATA DIVISION. The scoping rules for determining which DUPLICATE-NAME is used in processing the ENVIRONMENT DIVISION or DATA DIVISION clause are the same as those for explicit references in the PROCEDURE DIVISION. However, implicit references to DUPLICATE-NAME in the PROCEDURE DIVISION of Program A, Program B, or Program C are always to the DUPLICATE-NAME that was identified in the specification that established the implicit reference.It might not be possible for DUPLICATE-NAME to be referenced explicitly in program C even if it might be implicitly referenced in that program.
D.6.4 Program attributes

D.6.4.1 GeneralCOBOL programs that form part of a run unit may possess none, one, or more of the following attributes: common, initial, and recursive.
D.6.4.2 Common programsA common program is one that, despite being directly contained within another program, may be called by any program directly or indirectly contained in that other program. The common attribute is attained by specifying the COMMON phrase in a program's identification division. The COMMON phrase facilitates the writing of nested programs that are to be used by all the programs contained within a program.
D.6.4.3 Initial programsAn initial program is one whose program state is initialized when the program is called. Thus, whenever an initial program is called, its program state is the same as when the program was first called in that run unit. The initial attribute is attained by specifying the INITIAL phrase in the program's identification division.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1051

D.6.4.4 Recursive programsA recursive program is one that may be called while it is still active. It may call itself or it may be called by another program that the recursive program called directly or indirectly. The recursive attribute is specified with the RECURSIVE clause in the program’s identification division.
D.6.5 Inter-program communication

D.6.5.1 GeneralWhen the complete solution to a data processing problem is subdivided into more than one runtime element, the constituent runtime elements will be able to communicate with each other. This communication may take four forms: the transfer of control, the passing of parameters, the reference to common data, or the reference to common files. These four inter-program communication forms are provided both when the communicating runtime elements are separately compiled and when one of the communicating programs is contained within the other program. The precise mechanisms provided for the last two cases differ from those in the first two cases; for example, a program contained within another program may reference any data-name or file-name possessing a global name in the containing program. (See D.6.3.2, Names.)
D.6.5.2 Transfer of controlControl is transferred to a program with the CALL statement. Control is transferred to a function by referencing the function-identifier. Control is transferred to a method with either the INVOKE statement or with inline method invocation. The runtime element from which control is transferred is called the activating runtime element; the runtime element to which control is transferred is called the activated runtime element.
D.6.5.3 Transfer of control to a programThe CALL statement provides the means whereby control may be transferred to a program within a run unit. A called program may itself contain statements that transfer control to other runtime elements, for example other CALL statements. When control is transferred to a called program, execution proceeds from statement to statement beginning with the first nondeclarative statement of the called program. If control reaches a STOP statement, this signals the logical end of the run unit. If control reaches an EXIT PROGRAM statement, this signals the logical end of the called program only, and control then reverts to the next executable statement following the CALL statement in the calling runtime element. If control reaches a GOBACK statement and the program has been called, control continues as for the EXIT PROGRAM statement; otherwise, control continues as for the STOP statement. Thus the EXIT PROGRAM statement terminates only the execution of the program in which it occurs, the STOP statement terminates the execution of a run unit, and the GOBACK statement returns from whence it came, whether it was another program or the operating system.The CALL statement may be used to call a program that is not written in COBOL, but the return mechanism and inter-program data communication are not specified in this document. A COBOL program may also be called from a runtime element that is not written in COBOL, but the calling mechanism and inter-program data communication are not specified in this document. In both the above

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1052 ©ISO/IEC 2023

cases, only those parts of the parameter passing mechanism that apply to the COBOL program are specified in this document.
D.6.5.3.1 Names of programsIn order to call a program, a CALL statement identifies the program's name or its address. The names assigned to programs that directly or indirectly are contained within another program shall be unique within that other program.The names assigned to each of the outermost programs that constitute a run unit shall be unique within that run unit. A literal may be used in the REPOSITORY paragraph to specify the name known externally in environments where names are case-sensitive or contain characters that are not allowed in COBOL names.
D.6.5.3.2 Scope of the CALL statementAny runtime element may call an outermost program in the run unit, including itself if it is a recursive program.In addition:1) A program may call any program possessing the common attribute that is directly contained within a program that itself directly or indirectly contains the calling program, unless the calling program is itself contained within the program possessing the common attribute and that program is not a recursive program.2) A program may call a program that neither possesses the common attribute nor is separately compiled if, and only if, one of the following is true:a) the called program is directly contained within the calling program, orb) the called program is a recursive program that directly or indirectly contains the calling program.The calling program may possess any or none of the program attributes, it may either be separately compiled or not, and it may either be contained within programs or contain other programs.
D.6.5.3.3 Scope of names of programsCertain conventions apply when, within an outermost program, a name identical to that specified for another outermost program in the run unit is specified for a contained program.Consider the situation when program A contains program B and program DUPLICATE-NAME, program B contains program BB, and program DUPLICATE-NAME contains program DD.The name DUPLICATE-NAME has also been specified for an outermost program.1) If program A, but not any of the programs it contains, calls program DUPLICATE-NAME, the program activated is the one contained within program A.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1053

2) If either program B or program BB calls program DUPLICATE-NAME then:a) If the program DUPLICATE-NAME contained within program A possesses the common attribute, it is called.b) If the program DUPLICATE-NAME contained within program A does not possess the common attribute, the outermost program is called.3) If either program DD or program DUPLICATE-NAME contained within program A calls program DUPLICATE-NAME, the program called is the outermost program, except when DUPLICATE-NAME is a recursive program.4) If any other outermost program in the run unit or any other program contained within such a program calls the program DUPLICATE-NAME, the program called is the outermost program named DUPLICATE-NAME.
D.6.5.4 Transfer of control to a function

D.6.5.4.1 GeneralControl is transferred to a function when it is referenced as a function-identifier.When control is transferred to a function, execution proceeds from statement to statement beginning with the first nondeclarative statement of the activated function. If control reaches a STOP statement, this signals the logical end of the run unit. If control reaches a GOBACK statement, this signals the logical end of the function only and control reverts to the statement that activated the function. Thus the GOBACK statement terminates only the execution of the function in which it occurs, while the STOP statement terminates the execution of a run unit.A function may be activated that is not written in COBOL, but the return mechanism and inter-program data communication are not specified in this document. A COBOL function may also be activated from an element that is not written in COBOL, but the calling mechanism and inter-program data communication are not specified in this document. In both of these cases, only those parts of the parameter passing mechanism that apply to COBOL are specified in this document.
D.6.5.4.2 Names of functionsIn order to activate a function, a function-identifier identifies the function's name. A literal may be used in the REPOSITORY paragraph to specify the name known externally in environments where names are case-sensitive or contain characters that are not allowed in COBOL names.The names assigned to each of the functions within a run unit shall be unique.
D.6.5.4.3 Scope of a function-identifierAny runtime element may activate any function in a run unit. All functions are recursive. A function may activate itself and may be activated while it is active.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1054 ©ISO/IEC 2023

D.6.5.5 Transfer of control to a methodControl is transferred to a method with the INVOKE statement or with inline method invocation.When control is transferred to a method, execution proceeds from statement to statement beginning with the first nondeclarative statement of the activated method. If control reaches a STOP statement, this signals the logical end of the run unit. If control reaches a GOBACK statement, this signals the logical end of the method only and control reverts to the statement that activated the method. Thus the GOBACK statement terminates only the execution of the method in which it occurs, while the STOP statement terminates the execution of a run unit.A method may be activated that is not written in COBOL, but the return mechanism and inter-program data communication are not specified in this document. A COBOL method may also be activated from an element that is not written in COBOL, but the activating mechanism and inter-program data communication are not specified in this document. In both of these cases, only those parts of the parameter passing mechanism that apply to COBOL are specified in this document.All methods are recursive. A method may invoke itself and may be invoked while it is active.More details about invoking methods are given in D.19, Object oriented concepts.
D.6.5.6 Passing arguments

D.6.5.6.1 GeneralA function, program, or method is activated in order to perform, on behalf of the activating runtime element, some defined part of the solution of a data processing problem. In many cases it is necessary for the activating runtime element to make certain data values available to the activated runtime element, which are required for its part of the problem solution. One method for ensuring the availability of these data values is by passing arguments, as is described in this paragraph. Another method is to share the data. (See D.6.5.7, Sharing data.) The data values passed as arguments also may identify some data to be shared; therefore the two methods are not mutually independent.
D.6.5.6.2 Identifying argumentsA data item passed as an argument by a runtime element activating another runtime element is accessible in the activated runtime element. The activated runtime element contains a description of each of these arguments, called formal parameter, in the linkage section of the activated runtime element.In a source element describing the activating runtime element, the values of the arguments to be passed are identified by listing them in form of identifiers, literals, or arithmetic or boolean expressions in the CALL statement, INVOKE statement, inline method invocation, or function identifier, as applicable. In a source element describing the activated runtime element, the expected formal parameters are identified by listing them in that source element's procedure division header. These lists establish, on a positional basis at runtime, the correspondence between the values as they are known to each source element; that is, the first argument on the list of the activating source element corresponds to the first formal parameter on the list of the activated source element, the second argument to the second formal parameter, etc. For example, a program to be called may include:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1055

PROGRAM-ID. EXAMPLE.
PROCEDURE DIVISION USING NUM, PCODE, COST.and may be called by executing:
CALL "EXAMPLE" USING NBR, PTYPE, PRICE.thereby establishing the following correspondence:Called Program (Example) Calling runtime element

NUM NBR
PCODE PTYPE
COST PRICEOnly the positions of the data-names are significant, not the names themselves.

D.6.5.6.3 Argument passing mechanismsThere are three mechanisms for passing arguments: "by reference", "by content", or – when a prototype is available for the activated element (see below) – "by value". If the "by reference" or "by content" mechanism is specified (or implied), the location of an argument or of a copy of it is made available to the activated runtime element. If the "by value" mechanism is specified, a value, rather than a location, is made available to the activated runtime element.If an argument is passed by reference, the activated runtime element is allowed to access and modify the value of the data item referenced by an argument, except for the address-identifier. If an argument is passed by content or by value, the activated runtime element may access, but not modify, a data item in the activating runtime element. If a prototype is available, the value of the argument is evaluated and converted to the format of the corresponding formal parameter. If no prototype is available, a copy of the argument is presented to the activated runtime element as if it had been passed by reference. In either case, the value passed may be changed by the activated runtime element during the course of its execution, but the value of the argument in the activating runtime element is not modified. Thus an argument passed by reference may be used by an activated runtime element to return a result to the activating runtime element, whereas an argument passed by content or by value cannot be so used. In the source element describing the activated runtime element, the list of formal parameters specified in the procedure division header describes the mechanism for receiving the argument. A formal parameter for which BY REFERENCE is specified in this list may receive an argument that is passed either by reference or by content. A formal parameter for which BY VALUE is specified may receive only an argument that is passed by value.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1056 ©ISO/IEC 2023

D.6.5.6.4 Passing addressesPassing addresses is a special case, because unlike other identifiers that are not defined data items, address-identifiers may be passed in the non-prototype formats of the CALL statements, and with all three passing mechanisms. Note, however, that the address-identifier is not a valid receiving operand; therefore, it will never be updated even when passed by reference. It behaves like being passed by content.
D.6.5.6.5 Returning itemsA returning item is required for function calls and inline method invocation; it is optional for program calls and method invocation using the INVOKE statement. Just like arguments, the returning item is allocated in the activating runtime element. The source element describing the activated runtime element contains only a description of the data being returned in its linkage section, analogous to the formal parameters.In the source element describing the activated element, the returning item is identified by the RETURNING phrase of its procedure division header, which references its description in the linkage section. In the source element describing the activating element, it is either identified by the RETURNING phrase of the CALL or INVOKE statement, or it becomes the result of the evaluation of the function-identifier or the inline method invocation.
D.6.5.6.6 PrototypesProgram prototypes, function prototypes, and method prototypes specify the types of arguments and returning items that are expected by a program, function, or method. With this information the system can check that the arguments that are passed and the returning item match the formal parameters describing the data expected by an activated runtime element. The procedure division header shows the number of parameters that are expected and returned. The linkage section gives a description of the parameters and of the returned value. The prototype may also specify an entry-convention that is different from the default COBOL entry-convention on a system, in order to facilitate communication with functions, methods, and programs written in other programming languages.For programs, the CALL statement has formats for which a prototype is not used and a format in which the prototype is used. Function calls and method invocation always use a prototype. Use of the by content or by value mechanism along with a prototype allows the system to convert arguments during the activating process into the format expected by the activated function, method, or program. It also allows passing identifiers that do not reference data items and passing arithmetic and boolean expressions. A prototype may specify that a parameter can be omitted when the function, method or program is referenced. The OMITTED test allows a runtime element to determine whether a parameter is present.Prototype information may be available in the same compilation group or in an external repository. Prototype information for nested programs, identified by the NESTED phrase of the CALL statement, is extracted from the actual program to be called. Specification of a function-prototype-name or a program-prototype-name in the REPOSITORY paragraph causes the system to find the information not

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1057

specified in the compilation group in the external repository for prototypes. For methods, the prototype is provided through the class or interface in which the method is defined.
D.6.5.6.7 Defaults when no prototype is usedWhen no prototype is used (which can only occur with a program call), the passing mechanisms for the arguments are completely defined in the CALL statement. When neither BY REFERENCE nor BY CONTENT is specified for an argument, BY REFERENCE is assumed. When either is specified, this also applies to subsequent arguments as long as not superseded by another specification of either of these phrases; that is, the specification is "transitive".
D.6.5.6.8 Defaults when a prototype is usedWhen a prototype is used, the passing mechanisms are basically determined by the prototype specification. When none of the BY REFERENCE, BY CONTENT, or BY VALUE phrases are specified for an argument, the passing mechanism is determined as follows:— When BY VALUE is specified in the prototype, BY VALUE is assumed. — When BY REFERENCE is specified in the prototype and the argument is an item that is a valid receiving operand (other than an object property), BY REFERENCE is assumed.— When BY REFERENCE is specified in the prototype and the argument is an item that is not a valid receiving operand, BY CONTENT is assumed.The CALL and INVOKE statements allow override of the default outlined above by specifying the BY CONTENT phrase for an argument that is a valid receiving operand. In this case BY CONTENT is used rather than BY REFERENCE. Note that specifying BY REFERENCE or BY VALUE in an INVOKE statement or the prototype format of a CALL statement has no effect other than consistency checking and documentation.Also note that there is no transitivity for the passing mechanism when a prototype is used.
D.6.5.7 Sharing dataRuntime elements in a run unit may reference common data in the following circumstances:1) The data content of an external data record may be referenced from any runtime element in which that record is described as external. There is one instance of that record associated with the run unit. 2) If a program is contained within another program, both programs may refer to data possessing the global attribute declared either in the containing program or in any program that directly or indirectly contains the containing program. (See D.6.3.2, Names.)3) The mechanism whereby a parameter value is passed by reference from an activating runtime element to an activated runtime element establishes a common data item; the activated element, which may use a different identifier, may refer to that data item in the activating element.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1058 ©ISO/IEC 2023

4) The mechanism whereby a value is returned from a function, method, or program establishes a common data item, the returning data item. The activated runtime element, which may use a different identifier, may return a value in the returning data item in the activating runtime element.
D.6.5.8 Sharing filesFiles can be shared across run units, across runtime elements, or by different file connectors within a given runtime element as described in D.2.4, File sharing and record locking.Two runtime elements in a run unit may reference common file connectors in the following circumstances:1) An external file connector may be referenced from any runtime element that describes that file connector as external. There is one instance of that file connector associated with the run unit.2) If a program is contained within another program, both programs may refer to a common file connector by referring to an associated global file-name declared either in the containing program or in any program that directly or indirectly contains the containing program. (See D.6.3.2, Names.)
D.6.6 Run unit communication with other run unitsOne run unit can communicate with another run unit that is running concurrently or is initiated then runs concurrently. These run units can be in one processor or in completely different processors in the same or separate locations. Multiple requestors and servers communicating with each other may run simultaneously. This communication is accomplished with message exchanges between the run units. For simplification these run units are called processes.The simplest method is for a process (called a requestor) to send a message to another process (called a server) and the server responds to the requester with a reply. Meanwhile, the requestor wants to find out what the balance in an account is. It sends a message that contains the account name and the operating system returns a controlling item called a message tag that identifies the system information on where and what the server is and identifying information of what the message is. The server gets the message, does the processing needed to obtain the balance and, using the message tag, sends the response to the requestor. The requestor can be doing other processing and ask for the response later or can be waiting for the response immediately after sending the request. It then processes the return. Meanwhile, the server can quit running altogether or wait for messages from that requestor or any others. In the following example the-balance-provider is defined as a message server, and my-message-tag will contain implementor-defined information about the server and the message. This is a data item defined as USAGE MESSAGE-TAG somewhere in the requestor’s data division.The requestor sends the message.
SEND TO the-balance-provider FROM the-balance-provider-input RETURNING my-
message-tagAt this point, the requestor can go on processing and ask for the return right away or wait for the return later. My-message-tag will contain the information about the server and the message.
MOVE 0 TO bpo-length

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1059

RECEIVE FROM my-message-tag GIVING the-balance-provider-output bpo-lengthAfter requesting a return, one can wait forever or give a time limit by adding this adding this CONTINUE phrase to the end of the RECEIVE.
CONTINUE AFTER 23 SECONDS *> or MESSAGE RECEIVED

*> ON EXCEPTION can be added to see if something went wrong

If bpo-length is zero, no message was received, and you had a time out.The server gets the message with a RECEIVE. Receive-message-tag has to be NULL, so the system knows to accept messages from anywhere.
SET receive-message-tag TO NULL
RECEIVE FROM receive-message-tag GIVING the-balance-provider-input

This would wait until a message comes in. Or, use a CONTINUE phrase to do other processing until another run unit sends a message.
RECEIVE FROM receive-message-tag GIVING the-balance-provider-input
 CONTINUE AFTER 200 seconds
END-RECEIVE
IF the-balance-provider-input = SPACES
 *> here if nothing was received
ELSE
 *> here if a message was received
END-IFWhen it figures out the answer, it returns it.
SEND TO receive-message-tag FROM the-balance-provider-inputThe user can build on this to handle lots of messages from lots of processes and servers. It is not necessary for the server to return anything if the information sent in the-balance-provider-input indicates that the requestor does not want any return.
D.7 Intrinsic function facilityThe intrinsic function facility provides a means of returning a value that is derived from a specific algorithm or from an evaluation of one or more arguments provided to the function. The resulting value is considered to be a temporary data item, and can be a character string, a bit string, or a numeric value. Functions returning numeric values can be used in arithmetic expressions just like any numeric data item.The user invokes an intrinsic function by specifying the word FUNCTION followed by the name of the function optionally followed by arguments in parentheses. For example:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1060 ©ISO/IEC 2023

MOVE FUNCTION MAX (1, a) TO bIntrinsic-function-names are not reserved words and the word FUNCTION is used so they do not have to be reserved. However, the user can specify that one or more intrinsic-function-names are to be used without the word FUNCTION by using the intrinsic format of the function-specifier in the REPOSITORY paragraph. For example, if you do not want to use the word FUNCTION before any intrinsic-function-names in a source unit, you can specify the following repository paragraph:
REPOSITORY.

FUNCTION ALL INTRINSIC.and all of the intrinsic function names can be referenced without being preceded by the word FUNCTION. However, in this example none of the intrinsic function names could then be specified as user-defined words for the scope of that REPOSITORY paragraph. If you want to omit the word FUNCTION before one or more particular intrinsic function names, individual intrinsic function names can be specified, for example:
REPOSITORY.

FUNCTION CURRENT-DATE, DAY-OF-INTEGER INTRINSIC.Intrinsic functions differ from user-defined functions in that they are intrinsic to the language as opposed to being written by the user. The COBOL definitions of the intrinsic functions give the allowed arguments, their categories, their ranges, and the method that is used to determine the returned value.Some functions have no arguments because they provide a known quantity. An example is the CURRENT-DATE function, which provides information about the current date, time and difference from UTC. For example, you can specify
MOVE FUNCTION CURRENT-DATE TO the-date-infoor, if you are interested only in YYYYMMDD you can specify
MOVE FUNCTION CURRENT-DATE (1: 8) TO the-dateand you will get a date of the form yyyymmdd. Notice that you can reference modify any function that returns a string. An example of a function that may have an argument or not is the RANDOM function. It can have an argument to specify a seed value or no argument. In both cases it returns a pseudo-random number.Some functions that allow a variable number of arguments can be specified with a table as an argument, which means that the entire table is the series of arguments. An example is the MAX function where one may specify
MOVE FUNCTION MAX (a-table (ALL)) TO a-variableIf you are interested only in the first part of a return that is a string (assume a-table is a table of PIC X(10) items) you may specify

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1061

MOVE FUNCTION MAX (a-table (ALL)) (1: nbr-chars) TO a-variableThese will select the maximum value from all a-table items. You could use FUNCTION ORD-MAX (a-table (ALL)) to figure out which element of the table was the largest.There are exception conditions associated with evaluation of the arguments of functions that can indicate that the content of one or more arguments specified was incorrect or that some other exception occurred during the processing of the arguments. For example, where one of the arguments is an arithmetic expression and a size error occurred. If checking for an exception was enabled and the exception was raised during the execution of a function, you can use an EC-FUNCTION intrinsic function in a declarative procedure or a WHEN phrase of an exception-checking PERFORM statement to provide further details regarding what caused the exception. In the case where you wish execution to continue, a RESUME statement could be used. If an error occurs that would lead to an invalid result within a function and checking for it is not enabled, then according to 15.3, Arguments, the fatal EC-ARGUMENT-FUNCTION exception condition is set to exist if enabled. If checking for an exception is not enabled and the exception occurs during the evaluation of the arguments to the function or during the processing of the function, the results of the operation are undefined. This can result in an incorrect value being returned by the function or in some sort of run unit abort.
D.8 Types

D.8.1 GeneralA type is a template that contains all the characteristics of a data item and its subordinates. A type is declared and named by specifying the TYPEDEF clause. The essential characteristics of a type, which is identified by its type-name, are the:— relative positions and lengths of the elementary items defined in the type declaration— ALIGNED clause— BLANK WHEN ZERO clause— JUSTIFIED clause— PICTURE clause— SIGN clause— SYNCHRONIZED clause— USAGE clausespecified or implied for each of these elementary items, together with the presence or absence of the STRONG phrase and the presence or absence of the EXTERNAL clause at level 1 of the type declaration There are three different kinds of typed items:— weakly-typed elementary items — weakly-typed group items— strongly-typed group items Note that elementary items cannot be strongly-typed.A type – whether weak or strong – defines a certain data structure, which has a specific name, and, when used, is used with exactly that defined structure. This ensures that this structure is not affected by things

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1062 ©ISO/IEC 2023

like different alignment, or by changing the data representation by means of an ALIGNED, GROUP-USAGE, SIGN, or USAGE specification on a higher group level.
D.8.2 Weakly-typed itemsWeakly-typed items refer to a type declaration that does not include the STRONG phrase and are not subordinate to such a type declaration. Weakly-typed items can be either group items or elementary items.Other than preserving the data structure as described above, weakly-typed items can essentially be used just like any untyped items. Thus, the TYPEDEF can indeed be regarded as a "shorthand" for a series of data description entries.The following example illustrates the use of the TYPEDEF clause and the TYPE clause to define and use a type:
 1 Feature TYPEDEF. *> defines a type-name Feature
 2 Feature-name PIC X(15) OCCURS 10. *> with this description

 1 Equipment.
 2 Equipment-id OCCURS 100 TIMES.
 3 Feature-list TYPE Feature. *> uses type-name FeatureThis results in a record with the description:
 1 Equipment.
 2 Equipment-id OCCURS 100 TIMES.
 3 Feature-list
 4 Feature-name PIC X(15) OCCURS 10.The expansion of a type can create a hierarchy deeper than the 49 levels that can be directly coded in a data description entry.
D.8.3 Strongly-typed group itemsStrongly-typed group items are described by a type declaration that includes the STRONG phrase or are subordinate to a type declaration with the STRONG phrase. Only group items can be strongly-typed, because strong typing for elementary items would impose a large number of substantial restrictions on such items, which would make their use all but impractical.The main purpose of strong typing, beyond preserving the data structure defined by the type, is to protect the integrity of the data contents. Thus, proper usage of a strongly-typed group item should never yield "bad data", i. e., data contents that are incompatible with their data description. One important consequence of this is that any explicit or implicit redefinitions of such data items with less restrictive data descriptions are prohibited.A group item can be thought of as a kind of redefinition, specifically a "redefinition" of its subordinate data items as one item - an alphanumeric group item, a bit group item, or a national group item. This has the implication that operations on strongly-typed groups, or groups containing strongly-typed

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1063

group items, are restricted to those that don't affect the integrity of the data subordinate to the group. Thus, the only way to use strongly-typed group items as receiving operands is when the sending operand is of the same type, where "same type" is defined as a type declaration with the same name and the same essential characteristics, as described above.Note that there is no need to impose the same kind of restrictions on elementary items, because operations for elementary items in general do not corrupt the contents of the receiving operands.Addresses of strongly-typed group items and data-pointers containing such addresses are subject to restrictions as well, as described in D.9, Addresses and pointers.You should be aware that preserving the integrity of data makes sense only if the data is correct in the first place. The use of the COBOL exception handling facilities to detect any violations of the rules defined for the COBOL language assists a program in ensuring that the format of data is correct.A strongly-typed group item is either a level 1 group item or a group item subordinate to a type declaration with the STRONG phrase.The restrictions for strongly-typed group items are summarized as follows:1) The data description entry of a strongly-typed group item cannot contain a VALUE clause, nor can the item be a conditional variable.2) Strongly-typed group items and elementary items subordinate to strongly-typed group items cannot be any of the following:a) implicitly or explicitly redefinedb) renamed in whole or in partc) reference-modified, except for elementary items of category alphabetic, alphanumeric, boolean and national.3) A strongly-typed group item may be referenced as a receiving operand only in one of the following:a) a program, function or method activation as a formal parameter or returning itemb) an INITIALIZE statementc) a MOVE statementd) a READ statement e) a RELEASE statement with the FROM phrasef) a RETURN statement g) a REWRITE statement with the FROM phrase

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1064 ©ISO/IEC 2023

h) the data item referenced in the DESTINATION clause of an element of the operand of a VALIDATE statementi) the subject of a data description entry that contains a VALIDATE-STATUS clause that references the element of the operand of a VALIDATE statementj) a WRITE statement with the FROM phrase.4) A strongly-typed group item can be compared only with another strongly-typed group item of the same type.The following example illustrates the use of the TYPEDEF clause with the STRONG phrase and the TYPE clause to define and use a strongly typed group item:
1 DateDB2 TYPEDEF STRONG. *> defines a strong type-name DateDB2
 2 YYY PIC 9(04).
 88 Valid-year VALUE 1600 THRU 9999.
 2 filler PIC X VALUE '-'.
 2 MM PIC 9(02).
 2 filler PIC X VALUE '-'.
 2 DD PIC 9(02).

 1 Work-date TYPE DateDB2. *> uses strong type-name DateDB2This results in a strongly typed record with the description:
 1 Work-date TYPEDEF DateDB2.
 2 YYY PIC 9(04).
 88 Valid-year VALUE 1600 THRU 9999.
 2 filler PIC X VALUE '-'.
 2 MM PIC 9(02).
 2 filler PIC X VALUE '-'.
 2 DD PIC 9(02).5) In strong type definitions, VALUE clauses are permitted only for elementary items and elementary conditional variables.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1065

D.9 Addresses and pointers

D.9.1 GeneralAddresses and pointers relate to the computer storage and to addresses used to navigate in this storage. Normally, business applications will have no need for these features. However, the increasing use of any language for all purposes, including system programming, and the need for interoperability with other systems and languages have made it desirable to add these capabilities to the COBOL language as well.Note, however, that addresses and pointers should be used with great care and only where required by the application or the system environment, because they can easily lead to a programming style that makes applications hard to read and to maintain.There are three kinds of addresses, and correspondingly three kinds of pointers:— data-addresses and data-pointers— function-addresses and function-pointers— program-addresses and program-pointers
D.9.2 Data-addresses and data-pointers

D.9.2.1 GeneralA data-address is a conceptual entity identifying the location of a data item. It is referenced by specifying a data-address-identifier. A data-address-identifier cannot be a receiving operand. Note that the ADDRESS OF phrase in the receiving operand of a SET statement is not considered a data-address-identifier, but a syntactical notation for setting the address of a based item to the value specified by the sending operand.A data-pointer is a data item used to store a data-address.A data-address can be stored in a data-pointer. The data-address of a based item can be set from either a data-pointer or a data-address-identifier. Data-addresses and data-pointers can be passed to other source elements, and data-pointers can be received from another source element.
D.9.2.2 Restricted data-pointersA restricted data-pointer may contain only the predefined address NULL or the address of a data item of a specific type. A restricted data-pointer is defined in one of the following ways:1) by specifying a data description entry that contains a usage clause of the form USAGE POINTER TO type-name-1, or2) by specifying a data-address-identifier (ADDRESS OF identifier-1, where identifier-1 is a strongly typed group item or another restricted data-pointer).Use of restricted data-pointers provides type safety by precluding the treatment of data of one type as data of another type.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1066 ©ISO/IEC 2023

This is of special significance for strongly-typed group items. The address of a strongly-typed group item is considered a restricted data-pointer. Therefore, it can only be assigned to a data-pointer restricted to the same type, and in turn it can only be used to address a based item of the same type. Conversely, the address of a strongly-typed based item can only be set to the address of a data item of the same type. This way, the existing restrictions for enforcing the integrity of strongly-typed group items cannot be circumvented by the use of addresses, pointers, and based items.
D.9.2.3 ExamplesConsider the following program prototype for a program that returns a pointer to a record.
Program-id. Get-next-record is prototype. *> returns the address of a
record
Data division.
Linkage section.
01 ptr1 usage pointer.
Procedure division returning ptr1.
End program get-next-record.Suppose a client program has the following REPOSITORY paragraph and data declarations:
Repository.

Program Get-next-record.
...
01 p usage pointer.

01 my-wreck based.
 02 name pic x(30).
 02 addr pic x(30).The following procedure division statement calls the program described by the prototype:
Call get-next-record returning pThe data can be accessed via my-wreck because the pointer p contains the location of a record.
Set address of my-wreck to p
Move "SAM JONES" to name in my-wreckConsider a second example based on the fact that many Application Program Interfaces (APIs) require a pointer as a parameter. The data division contains the following declarations:

01 p2 usage pointer.

01 data-record. *> the full record layout is described
02 ...If you want to pass a pointer to the program process-record, you could code:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1067

Set p2 to address of data-record
Call "process-record" using p2Or, you could pass the address of data-record with the following single statement:
Call "process-record" using address of data-record

D.9.3 Program-addresses, function-addresses, program-pointers and function-pointers

D.9.3.1 GeneralA program-address identifies the location of a program. A function-address identifies the location of a function. A program-address is referenced by specifying a program-address-identifier. A function-address is referenced by specifying a function-address-identifier. Program-address-identifiers and function-address-identifiers cannot be used as receiving operands. A program pointer is a data item that is used to store a program-address. A function pointer is a data item that is used to store a function-address.A program-pointer or a program-address can be used to call a program. A function-pointer or function address can be used anywhere in a program that a function-identifier may be used. Program-addresses, function-addresses, program pointers, and function pointers can be passed to other source elements. Program and function pointers can be received from another source element.
D.9.3.2 Restricted program-pointers and function-pointersA restricted program-pointer may contain only the address of a program with the same "signature" as the program specified in the definition of the program-pointer; that is, any prototype information that exists for the specified program is applicable to the program identified by the address. A restricted program-pointer may only be defined in a type declaration.A function-pointer may only contain the address of a function with the same "signature" as the function specified in the definition of the function-pointer; that is, all explicit or implicit prototype information that exists for the specified function is applicable to the function identified by the address.
D.10 Boolean support and bit manipulationThe term boolean support encompasses all functionality defined for data items having category boolean and described with any of the usages BIT, DISPLAY, or NATIONAL. Bit manipulation can be accomplished by describing boolean items as usage BIT.Data items of category boolean, referred to as boolean items, are defined by picture character 1. They can be represented in storage either as bits or as characters, where each bit or character has a value of 0 or 1, where 0 is false or OFF, and 1 is true or ON.The usage specified in the data description of a boolean item can be BIT, DISPLAY, or NATIONAL. If picture symbol 1 is specified and a usage is not specified, the usage defaults to DISPLAY. Usages DISPLAY and NATIONAL are provided for ease of printing or displaying the value of boolean items. All three

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1068 ©ISO/IEC 2023

representations can be manipulated in the same manner. When storage is not an issue, usages DISPLAY and NATIONAL avoid the inconvenience of converting bits to characters for printing or displaying them.Boolean values can be specified in literals with an opening separator B", for example B"1110" where the value is expressed in bits, or opening separator BX", for example BX"E" where the value is expressed in hexadecimal notation.Boolean operators B-AND, B-OR, B-XOR, and B-NOT can be used to perform "and", "or", "exclusive or", and "negate" operations, respectively, on boolean items. Boolean operators B-SHIFT-L, B-SHIFT-R, B-SHIFT-LC, B-SHIFT-RC may be used to move the boolean digits comprising a boolean item to the left (towards the high order boolean digits) or to the right (low order boolean digits). In circular shift operations B-SHIFT-LC and B-SHIFT-RC the boolean digits that are shifted out of the boolean item are placed in the order that they occur in it the low order or high order positions respectively. In shift operations B-SHIFT-L and B-SHIFT-R the low order or high order positions are filled with boolean ZEROES. Boolean operators are used in boolean expressions; for example:
01 My-flag PIC 1111 USAGE BIT VALUE B"0000".
01 My-flag-2 PIC 1111 USAGE BIT.
...
MOVE B"0011" to My-flag-2 *> Initialize My-flag-2
...
COMPUTE My-flag = B-NOT My-flag-2 *> set the bits in My-flag to the
 *> reverse of My-flag-2, 1100.
...
COMPUTE My-flag = My-flag B-AND B"0000" *> turn off all the bits in
My-flag.
...
COMPUTE My-flag = My-flag B-SHIFT-L 2 *> Move all bits of My-flag
*> left 2 positions giving 1100
...
COMPUTE My-flag = My-flag B-SHIFT-RC 3 *>Move all bits of My-flag
 *>right 3 positions giving 1001
...
COMPUTE My-flag-2 = My-flag-2 B-OR BX"8" *> set bit 1 ON in My-
flag-2, keeping
 *> other bits unchanged.
...

Alternatively, the last COMPUTE statement could be replaced by:
MOVE B"1" to My-flag-2(1:1) *> set bit 1 ON using reference
 *> modificationTable A.2, Examples of boolean operations, illustrates the result of boolean operations for each of the boolean operators.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1069

Table A.2 Examples of boolean operations

Boolean items can be tested in two ways:1) as a boolean condition, if the length of an item is 1 bit position or 1 character position; for example:

 01 Single-bit-item pic 1 usage bit.
 01 Multiple-bit-item pic 1(7) usage bit.
 ...
 IF Single-bit-item = b"1"
 THEN CALL a-program *> calls if Single-bit-item is true (1)or, using reference modification; for example:
 IF Multiple-bit-item (4:1) = b"1"
 THEN CALL a-program *> calls if rightmost bit in
 *>Multiple-bit-bit-item is true(1)2) as a relation condition, testing for equal or not equal; for example:
 IF My-flag-2 EQUAL B"1000" THEN CALL a-programBoolean items can be converted to integer with the INTEGER-OF-BOOLEAN intrinsic function, and integer items can be converted to boolean with the BOOLEAN-OF-INTEGER intrinsic function. For example:
01 bit-item PIC 1(8) usage BIT.
01 integer-item PIC 9(5) VALUE 544.
01 integer-item-2 PIC 9(3).
...
MOVE FUNCTION BOOLEAN-OF-INTEGER (integer-item , 6) TO bit-item.

Boolean
operation

Value of
operand

Operator Value of
operand

Result

Conjunction 1100 B-AND 0101 0100Inclusive disjunction 1100 B-OR 0101 1101
Exclusive disjunction 1100 B-XOR 0101 1001
Negation B-NOT 1100 0011Shift left 1100 B-SHIFT-L 3 0000Shift right 1100 B-SHIFT-R 3 0001Shift left circular 1100 B-SHIFT-LC 3 0110Shift right circular 1100 B-SHIFT-RS 3 1001

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1070 ©ISO/IEC 2023

 *> the function returns the low order 6 bits of the binary
 *> representation of the integer value, and MOVE stores it in bit-item,
 *> padding on the right with 0's

COMPUTE integer-item-2 = FUNCTION INTEGER-OF-BOOLEAN (bit-item (1:6)).

 *> the function returns the numeric value of the leading 6 bits, 32, and
 *> COMPUTE puts 032 in integer-item-2The rules of COBOL use the terms "character position" or "boolean position". Because it is important to understand how bits are aligned in storage, the following explanation uses the term "byte", which usually corresponds to one alphanumeric character position.The alignment of items of usage bit depends on how the data description entry is written. If items of usage bit are redefined, or if they redefine an item with a different usage, correct redefinition could depend on knowing the alignment as well as the characteristics of storage in the processor being used, just as it can for items of other representations. The following examples illustrate bit alignment, making the assumption that the bits of a byte are numbered left to right from 1 to 8, assuming an 8-bit byte.The simplest case is that of a single elementary data item. The first bit is aligned on a byte boundary and subsequent bits are mapped contiguously, continuing across byte boundaries if necessary. Filler bits are not used to fill up a partially-used byte. The following example illustrates this, where a '1' indicates an assigned bit position.

Bit position Byte # in data item
1 2 3 4 5 6 7 8

77 Item-1 PIC 111 USAGE BIT.1 1 1 1

 1 Item-2 PIC 1(10) USAGE BIT.1 1 1 1 1 1 1 1 1
1 1 2The length of Item-1 is 3 boolean positions; the length of Item-2 is 10 boolean positions. The unused bits are not accessible except with REDEFINES of a level 1 item.Bits can be defined within an alphanumeric group item, within a national group item, within a strongly-typed group item, or within a group described with the GROUP-USAGE BIT phrase. The GROUP-USAGE BIT phrase defines a bit group, which is treated as an elementary bit data item in COBOL operations, except in operations designed for specific group processing, such as the INITIALIZE statement and MOVE CORRESPONDING.Within an alphanumeric group item, a national group item, a bit group item, or a strongly-typed group item, the first bit data item is aligned on a byte boundary and bits are assigned consecutively until — a non-bit item or non-bit group item is encountered;— an item is reached that is defined with an ALIGNED clause; or— the end of the group is reached.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1071

The following example illustrates the generation of implicit filler to align on a byte boundary in an alphanumeric group item:
Bit position Byte # in data item
1 2 3 4 5 6 7 8

01 group-1. 1-6
02 item-1 pic 11 usage BIT. 1 1 1
02 item-2 pic 1 usage BIT. 1 1
 *> implicit filler ...1 1 1 1 1 1 1 02 PIC 1(5)
02 item-3 PIC X(3). 2-4
02 item-4 pic 1 usage BIT. 1 5
 *> implicit filler ... 1 1 1 1 1 1 1 5 02 PIC 1(7)
02 group-2. 6
 03 item-5 pic 1 usage BIT. 1 6
 03 item-6 pic 1(4) usage BIT. 1 1 1 1 6
 *> implicit filler ... 1 1 1 6 02 PIC 1(3)The generated filler is not part of the preceding data, but is part of any groups that contain the item. For example, the filler generated after item-6 is included in group-2 and group-1, but not in item-6. The filler after item-6 is added to make the group end at a byte boundary.If group-2 were described with the GROUP-USAGE BIT phrase, the alignment would be different, because there is no automatic alignment for a bit group following a bit item:

Bit position Byte # in data item
1 2 3 4 5 6 7 8

01 group-1. 1-5
02 item-1 pic 11 usage BIT. 1 1 1
02 item-2 pic 1 usage BIT. 1 1
 *> implicit filler ... 1 1 1 1 1 1 02 PIC 1(5)
02 item-3 PIC X(3). 2-4
02 item-4 pic 1 usage BIT. 1 5
02 group-2 GROUP-USAGE BIT. 5
 03 item-5 pic 1 usage BIT. 1 5
 03 item-6 pic 1(4) usage BIT. 1 1 1 1 5
 *> implicit filler ... 1 1 5 02 PIC 1(2)The ALIGNED clause can be used to override the default bit alignment; in the following example:

Bit position Byte # in data item
1 2 3 4 5 6 7 8

01 group-1. 1-2
02 item-1 pic 11 usage BIT. 1 1 1
 *> implicit filler ... 1 1 1 1 1 1 1 02 PIC 1(6)
02 item-2 pic 1 ALIGNED

 usage BIT. 1 2
 *> implicit filler 1 1 1 1 1 1 1 2 02 PIC 1(7)the use of the ALIGNED clause caused item-2 to be aligned on a byte boundary.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1072 ©ISO/IEC 2023

It is necessary that the programmer ensure alignment on a byte boundary for bit strings being used as arguments for CALL, INVOKE, a function reference, or an inline method invocation, and when using the ADDRESS OF identifier for bit strings. These operations require that the bit item be aligned on a byte boundary so that it is directly addressable. The ALIGNED clause can be used to ensure byte boundary alignment. When filler bits are needed at the end of a record, the level number of the filler will depend on the hierarchical structure of the record. The filler level number is the same as the highest hierarchical level superordinate to the last data item, excluding level 1, or, if there is no such superordinate item, the same as the last data item in the record. This is illustrated by the following two examples:*> filler at the same level as the last data item in the record
1 G1.

2 G1-a USAGE BIT PIC 1.
2 G1-b USAGE BIT PIC 11.

> 2 implicit filler USAGE BIT PIC 1(5).> filler at the level of the highest level superordinate item
1 G2.

2 Fld-1 PIC X.
2 Fld-2 GROUP-USAGE BIT.

3 G2-A.
5 B-1 PIC 1 USAGE BIT.
5 B-2 PIC 1 USAGE BIT.

*> 2 implicit filler USAGE BIT PIC(6).

D.11 Character sets

D.11.1 GeneralCOBOL has these character set concepts:1) the COBOL character repertoire,2) the computer's coded character set, and3) alphabets. The COBOL character repertoire defines the characters that are used to write the COBOL words and separators that form a compilation group. The repertoire consists of the characters as abstract entities, independent of their encoding. The implementor maps the COBOL character repertoire to an encoding, such that each character of the repertoire is assigned to one or more bit patterns. The resultant encoding is called a coded character set, or sometimes just character set.At compile time, comments and the non-hexadecimal format of alphanumeric and national literals may contain any of the characters that the implementor has defined in the coded character set, except any used to end a free-form line. COBOL words and separators are limited to characters in the COBOL

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1073

character repertoire. This is the significant difference between the COBOL character repertoire and the compile-time computer's coded character set used.At runtime, data is represented in the storage in the computer's runtime coded character set, which may be the same coded character set used at compile time or may be a different one. If the coded character sets used at compile time and runtime are different, the content of alphanumeric and national literals are translated from the compile-time coded character set to the runtime coded character set.Data on external media may be represented in the computer's runtime coded character set or may be represented in a different coded character set. When the coded character sets are different, a CODE-SET clause specified in the file control entry causes data to be converted between the two coded character sets on input and output.Alphabets refer to character sets programmed in the compilation group, or provided by the implementor, or specified by national or international standards. A runtime element may use alphabets for selecting collating sequences or for specifying coded character sets to be used in conversion of data on input or output. The ALPHABET clause in the SPECIAL-NAMES paragraph is used to identify alphabets that may be used in the compilation unit.
D.11.2 Character set representationsThe representation of a character set is the encoding used to record characters for processing by the computer or for storage on external media. COBOL supports two types of character set representation — alphanumeric and national, corresponding to usages display and national, respectively. These two representations may be implemented as: — a single character set logically viewed as separate alphanumeric and national coded character sets, or— two separate coded character sets, one alphanumeric and one national.The term "computer's coded character set" refers to either character set or both, depending on context.COBOL uses the term alphanumeric typically to refer to character sets used in information technology to represent a minimal set of characters, usually 128 or 256. An example of this type of character set is ISO/IEC 646. The term national refers to character sets used to represent very large sets of characters. One national character set is the Universal Coded Character Set (UCS) defined in ISO/IEC 10646, which includes the characters used in the written form of most of the languages of the world. However, there are many alphanumeric character sets and many national character sets that may be used with COBOL. The implementor specifies which are supported for a specific COBOL implementation. For purposes of the COBOL character repertoire used in the syntax of a compilation group, a character is a character regardless of its type of representation. The letter 'A' has the same meaning whether it is represented in an alphanumeric character set or a national character set, just as lowercase 'a' has the same meaning as uppercase 'A'.
D.11.3 Programming to use alphanumeric and national character data

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1074 ©ISO/IEC 2023

COBOL provides two classes of character data -- alphanumeric and national. Data of class alphanumeric is held in data items described with usage DISPLAY. Data of class national is held in data items described with usage NATIONAL.Most programmers are already familiar with usage DISPLAY, so these concepts will address usage NATIONAL.The following categories of data can be represented in usage national:— national, described with picture symbol N;— national-edited, described with picture symbols N, B, 0, or /, with at least one N and one other symbol in the picture character-string;— numeric, described with picture symbols 9, P, S and V, the same as any numeric picture;— numeric-edited, described with any of the picture symbols that define a fixed-point numeric-edited item (0, 9, V, Z, ...);— boolean, described with picture symbol 1.The following illustrates data description entries for defining data items with usage national:
 01 a-rec usage national.
 02 nat-item picture N(10). *> category national
 02 nat-ed-item picture NN/NN/NNNN. *> category national edited
 02 num-item picture 9(5). *> category numeric
 02 num-edited-item picture +99.99. *> category numeric-edited
 02 bool-item picture 1111. *> category booleanAlthough the amount of storage needed for each national character may be greater than the amount of storage needed to hold an alphanumeric character, the length of a national item is counted as the number of character positions in the item, and not the number of bytes needed to hold the item. In this example, if national data is represented in 16-bit characters, such as UTF-16, the length of nat-item is 10, although 20 bytes of storage are allocated for the data item. A literal of class national is identified by the opening literal delimiter N", or for hexadecimal literals, NX"; for example:NX"02A102A2"A data item with usage national can be moved, compared, inspected, written, read, displayed, used in computation if its category is numeric, and treated in nearly every respect in every language construct just the same as a data item of usage DISPLAY. One of the differences is that data items of usage national can be moved to data items of usage display only by explicit conversion with the DISPLAY-OF function.The default class and category of a group item containing data items of usage national is alphanumeric, just as it is for a group item containing other data items. A group can be explicitly given class and category national by coding the GROUP-USAGE NATIONAL phrase at the group level of a data description

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1075

entry when all subordinate data items in the group, and in any contained groups, are of class and category national. For example:
01 Group-1 GROUP-USAGE NATIONAL.

02 subgroup-1.
03 elem-2 PIC NNN.
03 elem-3 PIC NN.

02 sub-group-2.
05 elem-4 PIC NNN.
05 elem-5 PIC N(5).Then, when a national group item is used, in general it is treated the same as an elementary national data item instead of being treated as an alphanumeric group item. Operations such as MOVE CORRESPONDING that operate on the individual elements of a group item will operate on the individual elements of a national group. Statements such as INSPECT, which could not be used correctly on alphanumeric groups containing national data, will operate correctly by treating the group as an elementary national data item.When you move a data item of category alphanumeric to a data item of category national, or compare the two of them, the alphanumeric data item is automatically converted from usage DISPLAY to usage NATIONAL. The reverse is not true: to move a national item to an alphanumeric item, you need to use the DISPLAY-OF intrinsic function to convert the data. This results from an assumption that a national character set will typically include all the characters of an alphanumeric character set, but normally an alphanumeric character set will not include all the characters of a national character set.

D.11.4 Source code portability Source code written in free-form reference format may be ported across systems utilizing character sets of differing character widths and different control function encodings with character set conversion, while source code written in fixed-form reference format might be more difficult to port because of its column-dependent specification.
D.12 COBOL-WORDS directive

D.12.1 GeneralThe COBOL-WORDS directive allows a programmer to modify the compiler’s syntax to conform to previously existing implementor extensions by altering or replacing interpretation of reserved words, context sensitive words, and function names.The COBOL-WORDS directive is specified prior to the IDENTIFICATION division, and applies to the entire compilation group. There is no limit to the number of COBOL-WORDS directives that can appear in a compilation group. However the same COBOL word may not be contained more than once within the COBOL-WORDS directives in that compilation group, nor may any of the substituted words.There are four options in the COBOL-WORDS directive, EQUATE, UNDEFINE, SUBSTITUTE, and RESERVE.
D.12.2 EQUATE

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1076 ©ISO/IEC 2023

The EQUATE option allows a programmer to create a synonym for a particular reserved word, context-sensitive word, or function name, allowing that new word to be used elsewhere in the program as if it were the original word. For example:
COBOL-WORDS EQUATE MOVE-IT WITH MOVE

.

.

.
MOVE a TO b
MOVE-IT a TO b *> this is now the same as the prior
 *> move statement

D.12.3 UNDEFINEThe UNDEFINE option removes the specified word from the lists of reserved words, context-sensitive words, or function names, allowing that word to be used as a user-defined word within the program. This can be useful when a change of compiler that includes new reserved words that conflict with existing code. For example:
COBOL-WORDS UNDEFINE MOVE

.

.

.
01 move PIC 9.

.

.

.
ADD 1 TO 2 GIVING move *> this is ok
MOVE a TO b *> This is now a syntax error because
 *> MOVE has been undefined

D.12.4 SUBSTITUTEThe SUBSTITUTE option redefines a reserved word, context-sensitive word, or function name, allowing the redefined word to be used as a user-defined word within the program, and the substituted word to be used in its place. For example:
COBOL-WORDS SUBSTITUTE MOVE BY MOVE-IT

.

.

.
01 move PIC 9.

.

.

.
ADD 1 TO 2 GIVING move *> this is ok
MOVE a TO b *> This is now a syntax error
MOVE-IT 1 TO move *> this will act like a COBOL move

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1077

D.12.5 RESERVEThe RESERVE option creates a new reserved word. This is useful when planning to migrate to a different COBOL compiler that already has this word as either reserved, context-sensitive, or as an intrinsic function name. It can be also useful to reserve a data-name for future use.
COBOL-WORDS RESERVE MOVE-IT

.

.

.
01 move-it PIC 9. *> This will now cause a syntax error

D.13 Collating sequences

D.13.1 GeneralCollating sequences are used by the compiler during processing of a compilation-group and by the application at runtime. Traditionally, the same collating sequence was used in both cases and was typically defined by the bit pattern of characters in a coded character set. Now, it is becoming more widespread that the collating sequence used at runtime is not known at compile time. One reason for this is the development of applications that run in more than one country or culture. Users need collating sequences that are appropriate for their own language or culture. To meet this need, new features are provided in COBOL for selection of collating sequences at compile time and at runtime.COBOL has two classifications of collating sequences:— alphanumeric, and— national.An alphanumeric collating sequence applies to data described with usage DISPLAY. This name was chosen for its association with data of category alphanumeric, although some of the characters may be special characters or codes with no assigned graphic character. Alphanumeric data is typically, though not necessarily, represented in a 7-bit or 8-bit coded character set. To choose a collating sequence for data items described with usage DISPLAY, code the phrase COLLATING SEQUENCE FOR ALPHANUMERIC in various COBOL language constructs. A national collating sequence applies to data described with usage NATIONAL. This name was chosen for its association with a 'national' language from the perspective of users in a given country (nation) or culture. This data is typically, though not necessarily, represented in a 16-bit coded character set. To choose a collating sequence for data items described with usage NATIONAL, code the phrase COLLATING SEQUENCE FOR NATIONAL in various COBOL language constructs.These two classifications of collating sequences do not require two physically-separate collating sequence tables or implementations. A single collating sequence, such as the one associated with UCS-4, can be referenced as both an alphanumeric and a national collating sequence, and used to support both collating sequences. Similarly, a single locale can provide the collating sequence for the character repertoires of usage DISPLAY and usage NATIONAL.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1078 ©ISO/IEC 2023

D.13.2 Methods of defining collating sequencesCollating sequences for use in COBOL are defined in various ways:1) the COBOL implementor may define collating sequences and give them a code-set name, and then a programmer can associate the code-set name with an alphabet-name in the SPECIAL-NAMES paragraph;2) the COBOL programmer may define collating sequences in the SPECIAL-NAMES paragraph and give them an alphabet name;3) collating sequences may be specified by a 'locale' outside COBOL and made available by the operating environment, and referenced by associating 'LOCALE' with an alphabet-name in the SPECIAL-NAMES paragraph;4) a collating sequence may be defined by an international standard recognized by COBOL, and associated with an alphabet-name in the SPECIAL-NAMES paragraph; these are STANDARD-1 or STANDARD-2 for ISO/IEC 646, a 7-bit coded character set.ISO/IEC 646 does not define a collating sequence itself; COBOL specifies that the collating sequence is the order in which characters are defined in that coded character set.5) collating sequences may be defined by the architecture of the processor used for compilation or execution of the application, and referenced by associating 'NATIVE' with an alphabet-name in the SPECIAL-NAMES paragraph.Regardless of who defines a collating sequence and how it is defined, the common mechanism for identifying one is an alphabet-name. To use a collating sequence, the COBOL programmer gives it an alphabet-name in the SPECIAL-NAMES paragraph. The alphabet-name is then used in procedural code to reference the collating sequence.
D.13.3 Methods of selecting a collating sequence

D.13.3.1 Using the defaultsIf you do nothing, the default alphanumeric and national collating sequences for comparisons and ordering are the NATIVE collating sequences, specified by the implementor and typically based on the bit pattern of characters in the coded character set used in the processor.In some environments, that collating sequence may be culturally acceptable — the application might never need to be ported to another processor and the native collating sequences might be suitable for the users.If the application is to be ported to other processors or is designed for users of differing cultures, the default collating sequences are unlikely to be suitable and you will need to design the application to use COBOL features that allow for selection of specific collating sequences or runtime determination of collating sequences.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1079

D.13.3.2 Using a specific collating sequenceIf you simply want to select a single alphanumeric collating sequence or a single national collating sequence, or one of each, for use throughout the entire compilation unit, code a PROGRAM COLLATING SEQUENCE clause in the OBJECT-COMPUTER paragraph. This is illustrated in the following code fragment, using standard collating sequences:
PROGRAM-ID. OrderParts.
 ...
ENVIRONMENT DIVISION.
 ...
OBJECT-COMPUTER.
PROGRAM COLLATING SEQUENCE FOR ALPHANUMERIC IS ASCII-Sort
 FOR NATIONAL IS UCS-Sort.
 ...
SPECIAL-NAMES.
ALPHABET ASCII-Sort FOR ALPHANUMERIC IS STANDARD-1
ALPHABET UCS-Sort FOR NATIONAL IS UCS-4.Nothing else is needed to use these collating sequences for comparisons, SORT, and MERGE throughout the OrderParts program.
D.13.3.3 Using a localeThe use of a locale for runtime selection of collating sequences is described in D.14.3.4, Locale-based collating sequences and in D.14.3.2.2, Switching locales in a COBOL runtime module.
D.13.3.4 Selecting a collating sequence for indexed filesThe default collating sequence for primary and alternate record keys of indexed files is the native program collating sequence for the runtime module that created the file. A specific collating sequence can be selected by coding a COLLATING SEQUENCE clause in the file control entry for file creation and later access. Different collating sequences can be used for different keys; however, this capability is not widely supported by implementors.The following code fragment illustrates a file control entry for specifying multiple alternate indexes, some having a unique collating sequence and others having the native collating sequence:
...
INPUT-OUTPUT SECTION.
FILE CONTROL.
 SELECT File-1
 ACCESS MODE IS RANDOM
 ALTERNATE RECORD KEY IS altkey_1
 ALTERNATE RECORD KEY IS altkey_2
 ALTERNATE RECORD KEY IS altkey_3
 ALTERNATE RECORD KEY IS altkey_4
 RECORD KEY IS prim-key
...
COLLATING SEQUENCE OF altkey_1 altkey_2 FOR ALPHANUMERIC IS Universal-order

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1080 ©ISO/IEC 2023

COLLATING SEQUENCE OF prim-key FOR NATIONAL IS Universal-order
...

This example is for a primary key described as usage NATIONAL and alternate keys described as usage DISPLAY. The collating sequence of the primary key and alternate record keys altkey_1 and altkey_2 is the one associated with alphabet-name Universal-order. Since there is no COLLATING SEQUENCE clause specifying altkey_3 or altkey_4, those keys are sequenced using the native collating sequence.Selection of a collating sequence that equates two or more characters can be used to make keys match when the actual binary coding differs. For example, if lowercase letters were equivalenced to uppercase letters, a key containing "ABC" would be equal to "abc".
D.13.4 Compile-time collating sequences The collating sequence known at compile-time is usually the native collating sequence of the processor for which the runtime module is being compiled. When THROUGH phrases are specified in a VALUE clause or in an EVALUATE statement, evaluation of the range of values might occur at compile time or at runtime, depending on the implementation. When the evaluation occurs at compile time, the actual range of values at runtime might not include the expected values because the runtime collating sequence might be different from the compile-time sequence. To deal with this, an alphabet-name can be specified in THROUGH phrases to ensure that the range of values at runtime is a specific set of values. For example:

ENVIRONMENT DIVISION.
...
SPECIAL-NAMES.
ALPHABET normal-range IS STANDARD-1.
...
DATA DIVISION.
...
1 a-condition PIC X.
88 ok VALUES ARE "1" THROUGH "G" IN normal-range.results in a range of values specified by the collating sequence associated with STANDARD-1 (coded character set ISO/IEC 646) — in this case, 0-9, some special-characters, and uppercase A through G. The characters defined by this range of values will satisfy the condition 'ok' at runtime, regardless of the coded character set and collating sequence in use. This enhances portability of applications.STANDARD-1 and UCS-4 are predefined alphabet-names that can be used to specify a useful portable range of values.If you do not specify an alphabet-name, the range of values can be empty or can vary across processors because the default collating sequence chosen by the implementor is probably different across processors.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1081

D.13.5 Intrinsic functions for comparisonsIf there is no need for a culturally-appropriate collating sequence for all comparisons, but there is occasional need for it, use the comparison intrinsic function LOCALE-COMPARE, which compares two arguments using either the current locale or a specified locale.If a sophisticated comparison suitable for multiple cultures is needed, use the comparison intrinsic function STANDARD-COMPARE, which compares two arguments using a cultural ordering table that complies with ISO/IEC 14651. A default cultural ordering table is described in Annex A of ISO/IEC 14651. That ordering standard is not widely implemented at this writing, but support for it is expected to become more available over time.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1082 ©ISO/IEC 2023

D.14 Culturally-specific, culturally-adaptable, and multilingual applications

D.14.1 GeneralCulturally-specific applications are designed for the needs of one specific language or culture.Culturally-adaptable applications are designed and coded once for users of many diverse languages and cultures, and are tailored at runtime to behave in ways suitable for a given language or culture.Multilingual applications are designed and coded once to handle more than one language or culture in any given execution.
D.14.2 Culturally-specific applications

D.14.2.1 GeneralFeatures in this Working Draft International Standard that make it easier to develop applications for one specific language or culture are:— multiple-character currency strings and mixed-case currency strings;— a class test for characters in a particular alphabet;— support for selecting and using a specific locale.
D.14.2.2 Currency string and currency symbolThe currency string is used at runtime in input and output data to represent the monetary units associated with a numeric value.The currency string is always specified as the object of the CURRENCY SIGN clause. It is used exactly as specified therein, subject only to any conversion from the computer's compile time character set to the computer's runtime character set that might occur.The currency symbol is used at compile time in PICTURE character-strings to indicate where and how to place the currency string in output data and where and how to expect it in input data.When the PICTURE SYMBOL phrase is specified, the object of that phrase is the currency symbol. When the phrase is not specified, the object of the CURRENCY SIGN clause is the currency symbol (as well as the currency string).When comparing currency symbols, uppercase and lowercase basic letters are equivalent, uppercase and lowercase extended letters may be equivalent, and basic and extended letters may be equivalent.Consider the following program elements:EXAMPLE 1 CURRENCY SIGN 'm'. … PICTURE mMm,MmM,mM9.99-.EXAMPLE 2 CURRENCY SIGN '$' PICTURE SYMBOL 'q'. …

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1083

 PICTURE QqQ,qQq,Qq9.99-.In example 1, 'm' is both the currency string and the currency symbol. The value -123,456.78 would appear as ' m123,456.78-' in data associated with that picture clause.In example 2, '$' is the currency string and 'q' is the currency symbol. The value -876,543.21 would appear as ' $876,543.21-' in data associated with that picture clause.
D.14.2.3 Class test for characters in a particular alphabet.To define a multiple-character currency string, the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph needs to be coded; for example:
SPECIAL-NAMES.
CURRENCY-SIGN IS "EUR " WITH PICTURE SYMBOL "u". *> note the space after
EURThen the letter "U" can be used in picture character strings; for example: PIC U99.99 (which defines an item of length 9). For the value 10.00, the edited data item would contain 'EUR 10.00'.The following code fragment illustrates a class test using the coded character set associated with the name CYRILLIC, assuming the implementor has defined the name CYRILLIC and the associated coded character set:
SPECIAL-NAMES.
ALPHABET ok-data FOR ALPHANUMERIC IS CYRILLIC.
...
DATA DIVISION.
01 the-input-stream USAGE DISPLAY PIC N(80).
...
PROCEDURE DIVISION.
...
IF the-input-stream IS ok-data THEN ...
...This class test is true if all characters in the-input-stream are characters specified in the coded character set CYRILLIC.
D.14.3 Culturally-adaptable applications

D.14.3.1 GeneralThe nature of a culturally-adaptable application is that it is written once and there is no need to recompile the source code in order for the application to be used on the same type of processor in different cultures. COBOL supports cultural adaptability for the following cultural elements:— monetary formatting— number formatting— collating sequences of file indexes, sort/merge, and comparisons

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1084 ©ISO/IEC 2023

— case classification of letters— date and time formattingTo make an application culturally-adaptable, the details of these cultural elements are specified outside of COBOL where they can be easily selected at runtime. The details are specified in a "locale", which contains a set of cultural conventions typically constructed by a utility in the operating environment, supplied by the COBOL implementor, or supplied with the operating environment. The implementor may provide such a utility, it may come with the operating environment, or it may have to be purchased. The implementor may also provide some pre-built locales. Then, in each operating environment that supports locales, there is a system locale defined for the local culture and, typically, the capability for each application to have a user locale and even a variety of locales that can be selected during execution of the application.This Working Draft International Standard requires that at least one locale be provided by COBOL implementors in cases where the operating environment does not support locales. The user will need to know which locales are available to the application.In designing an application for cultural adaptability, there is much more to consider than just the cultural elements supported by COBOL. For example, it may be necessary to choose field sizes that accommodate a variety of monetary values. It will help if message text is isolated in tables or files that can be easily substituted. It is necessary to think about the elements that can vary across the cultures for which you are designing, and about how the details of those elements can be determined at runtime rather than at compile time.
D.14.3.2 Locale selection

D.14.3.2.1 GeneralAt startup, a user-default locale is available to the run unit and will be used for locale-based processing for all locale categories in every COBOL runtime module in that run unit -- unless a specific locale is indicated for a given data element, function, or statement — until a SET statement is executed to switch to another locale.A SET statement can be used to switch locales for a single locale category or for all categories at once. For example, if the SYSTEM-DEFAULT locale is to be used just for numeric formatting, a SET statement can be coded as follows:
SET LOCALE LC_MONETARY TO SYSTEM-DEFAULTOther examples of locale selection are given below.
D.14.3.2.2 Switching locales in a COBOL runtime moduleIf a specific locale or multiple specific locales are to be used in an application, instead of the system default or user default locales, the locale needs to be identified in the SPECIAL-NAMES paragraph and a locale-name assigned for use in COBOL procedural code. The details of how to identify a locale are specified by the COBOL implementor. A library of named locales might be provided, or an implementor could accept a data set location in a literal -- these are examples; see the user documentation for your COBOL compiler to find out what your implementor has provided.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1085

The following code fragment illustrates the code for identifying and switching locales, assuming the implementor has provided locales named French-1 and Swiss-2:
PROGRAM-ID. IndexParts.
ENVIRONMENT DIVISION.
OBJECT-COMPUTER.
PROGRAM COLLATING SEQUENCE FOR NATIONAL IS Locale-Sort.
*> This causes the national collating sequence to be determined at runtime
*> by the current locale -- the user-default unless a SET LOCALE statement
*> has switched to another locale.
 ...
SPECIAL-NAMES.
*> Name some locales for use later in SET LOCALE statements:
 LOCALE French IS "D:\LocaleLib\French-1" *> library example
 LOCALE Swiss-2 IS Swiss *> another example, a named locale
 ...
*> Associate the alphabet-name "Locale-Sort" with the locale facility:
 ALPHABET Locale-Sort FOR NATIONAL IS LOCALE.
...
DATA DIVISION.
...
01 default-locale-pointer USAGE POINTER. *> for saving the default locale
...
PROCEDURE DIVISION.
*> The user-default locale is in effect initially. If you will need it
*> again, save a pointer identifying the user-default locale:
 SET LOCALE default-locale-pointer TO LOCALE USER-DEFAULT.
 ...
*> Now, switch to the locale you want to use.
*> If you don't want to switch locales for all locale
*> categories, specify a SET statement for each category you want to
*> switch:
 SET LOCALE LC_COLLATE TO Swiss. *> switch program collating sequence
 SET LOCALE LC_MONETARY TO French *> switch monetary formatting
...
*> Suppose now you have completed processing with the two locales and you
*> want to use the user default for a while:
 SET LOCALE LC_COLLATE TO USER-DEFAULT
 SET LOCALE LC_MONETARY TO USER-DEFAULT
 ...
*> Now, suppose you want to switch the user default to one of your locales:

 SET LOCALE USER-DEFAULT TO Swiss
 ...
*> Now, having finished your work with the Swiss locale, restore the
*> previous USER-DEFAULT locale:

 SET LOCALE USER-DEFAULT TO default-locale-pointer.
 ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1086 ©ISO/IEC 2023

It is always a good idea to save the address of the current locale before switching to a new one, unless it is known that no further processing will need that locale.
D.14.3.2.3 Switching locales outside of COBOLThe implementor may, but is not required to, support inter-operation of COBOL with other programming languages; one example is the C programming language. When support is provided, the implementor decides whether a locale switch for the user-default locale in an activated non-COBOL runtime module is capable of being recognized on return to COBOL. If supported, recognition in COBOL is not automatic; execution of a SET statement specifying the user-default locale is required in COBOL; for example, to access all categories of the new locale:
SET LOCALE LC_ALL TO USER-DEFAULT.

D.14.3.3 Locale-based monetary and numeric formattingLocale-based monetary or numeric formatting is done by specifying the LOCALE phrase in the PICTURE clause in the data description entry of a data item.To have an item edited entirely in accordance with the locale specification, include a LOCALE phrase in the PICTURE clause. When using the LOCALE phrase, the picture character string is not an indication of the field size needed to hold the edited item. The programmer should design for the largest size needed and code a SIZE phrase in the PICTURE clause.For example:
01 US-amount PICTURE +$9.9 LOCALE SIZE IS 10.results in a signed numeric-edited field 10 characters long that will be edited in accordance with locale category LC_MONETARY. The currency string and its placement, the sign convention, the grouping separator and placement, and the decimal separator and placement will be determined from the locale that is current at the time of editing. The locale category LC_MONETARY is used for all numeric formatting, both for monetary and non-monetary formatting.If a specific locale is to be used for editing, a locale-name needs to be assigned to it in the SPECIAL-NAMES paragraph, for example, my-locale in the following:
SPECIAL-NAMES.
 LOCALE my-locale is USA-1.
*> assuming the implementor has given you a way to define or reference a
*> locale named USA-1
...
DATA DIVISION.
...
01 US-amount PICTURE +$9.9 LOCALE my-locale SIZE IS 10.Multiple locales may be used; for example, if a report had US currency in one column and Italian currency in another, one could define:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1087

LOCALE my-US-locale is USA-1.
LOCALE my-Italian-locale is Italian-1. *> assuming locales named USA-1 and
 *> Italian-1
...
DATA DIVISION.
01 REPORT-DETAIL.
...
05 US-amount PICTURE +$9.9 LOCALE my-US-locale SIZE IS 8.
...
05 Italian-amount PICTURE +$9.9 LOCALE my-Italian-locale SIZE IS 18.
...

D.14.3.4 Locale-based collating sequencesTo use a collating sequence specified by a locale throughout the entire compilation unit, include a PROGRAM COLLATING SEQUENCE clause that specifies an alphabet-name that is associated with the locale facility. The following code fragment illustrates the selection of a locale for a national collating sequence and the selection of a standard alphanumeric collating sequence:
OBJECT-COMPUTER.
 PROGRAM COLLATING SEQUENCE FOR ALPHANUMERIC IS ASCII-Sort
 FOR NATIONAL IS UCS-Sort.
 ...
SPECIAL-NAMES.
 ALPHABET ASCII-Sort FOR ALPHANUMERIC IS STANDARD-1
 ALPHABET UCS-Sort FOR NATIONAL IS LOCALEThis causes the runtime national collating sequence to be the collating sequence specified by locale category LC_COLLATE in the locale current during execution. The alphanumeric collating sequence is the collating sequence associated with STANDARD-1.The following code fragment illustrates use of a single locale-based collating sequence in the SORT statement:
PROGRAM-ID. IndexParts.
...
SPECIAL-NAMES.
 ALPHABET ucs-sort-a FOR ALPHANUMERIC IS LOCALE
 ALPHABET ucs-sort-n FOR NATIONAL IS LOCALE
. . .
PROCEDURE DIVISION.
...
*> Sort a file using the current locale for both alphanumeric and
*> national keys
 SORT SortFile ASCENDING KEY key-item-a, key-item-n
 COLLATING SEQUENCE
 FOR NATIONAL IS ucs-sort-n
 FOR ALPHANUMERIC IS ucs-sort-a
 USING A-file

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1088 ©ISO/IEC 2023

 GIVING Another-file.
...The switching of locales used for collating sequences is illustrated in D.14.3.2.2, Switching locales in a COBOL runtime module.
D.14.3.5 Locale-based case classification of lettersIt is possible to have the case classification of letters determined by locale category LC_CTYPE, which defines character classification, case conversion, and other character attributes. To do this, include a CHARACTER CLASSIFICATION clause in the OBJECT-COMPUTER paragraph. For example:
OBJECT-COMPUTER.
 CHARACTER CLASSIFICATION IS GERMAN, JAPANESE.
 *> GERMAN applies to USAGE DISPLAY, JAPANESE to USAGE NATIONAL
...
SPECIAL-NAMES.
 LOCALE GERMAN IS "GER046"
 LOCALE JAPANESE IS Japan-123.This results in runtime use of the specified locales for determining— whether characters are ALPHABETIC, ALPHABETIC-UPPER, or ALPHABETIC-LOWER in a class test;— whether the content of a data item is consistent with its picture character-string when checked with a VALIDATE statement;— the case of characters for conversion using the UPPER-CASE intrinsic function or the LOWER-CASE intrinsic function.Locale-based case conversion with the UPPER-CASE function or the LOWER-CASE function can result in the return of more or fewer characters than the argument, although the use of these functions without a locale always returns a string that is the same length as the argument.
D.14.3.6 Date and time formattingLocale-based date and time formatting are provided by the intrinsic functions LOCALE-DATE and LOCALE-TIME, respectively.To convert a given date field to a locale-based format in accordance with a specific locale, use the LOCALE-DATE function and specify the locale's locale-name as the second argument; for example:
MOVE FUNCTION LOCALE-DATE (some-date-field, my-italian-locale) TO a-date-
fieldTo obtain the current date in a locale-based format in accordance with the current locale, use the LOCALE-DATE function without specifying a locale as the second argument; for example:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1089

MOVE FUNCTION LOCALE-DATE (CURRENT-DATE (1:8)) TO a-date-field.Similarly, you can obtain locale-based time using the LOCALE-TIME function.
D.14.4 Multilingual applicationsMultilingual applications are more easily developed if an implementor supports one of the formats of the UCS as a runtime coded character set. The UCS supports most languages of the world, and characters for more languages are being added as development of the UCS continues.The user needs to check the implementor's documentation to determine whether the UCS is used as a runtime coded character set, either for usage DISPLAY or for usage NATIONAL. Typically, it will be used for usage NATIONAL.Support for Unicode® is synonymous with support for the UCS.Use of UCS-4 or UTF-16 alone is not always sufficient for developing multilingual applications. If the application requires culturally-correct ordering, monetary or number formatting, date and time formatting, or case classification of letters, use of the locale-based features described in D.14.3, Culturally-adaptable applications, may be necessary.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1090 ©ISO/IEC 2023

D.15 External switchesAn external switch is a hardware or software device, defined and named by the implementor, that is used to indicate that one of two alternate states exists. These alternate states are referred to as the on status and the off status of the associated external switch.The status of an external switch may be interrogated by testing condition-names associated with that switch. The association of a condition-name with an external switch and the association of a user-specified mnemonic-name with the switch-name of an external switch is established in the SPECIAL-NAMES paragraph of the environment division.The status of certain switches may be altered by the SET statement.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1091

D.16 Common exception processing

D.16.1 GeneralException processing is a method for detecting and processing exceptions that occur during the execution of COBOL statements.
D.16.2 Exception processing methodsThere is more than one method of exception processing. The classical methods are: specifying exception phrases on various statements, such as AT END, INVALID KEY, ON EXCEPTION, and so on; checking status values using FILE STATUS; and invoking USE statements based on I-O status codes, open modes, and file-names. All of the classical methods are always enabled, take precedence over common exception processing, and work in exactly the same way they have in earlier COBOL standards. The other method of exception processing is called common exception processing. It is based on exception conditions and can be enabled and disabled, depending on a compiler directive or exception checking PERFORM statements. In addition common exception processing is exception object processing. The concepts of exception objects are given in D.19.10, Exception objects. Common exception processing is described in the following paragraphs.
D.16.3 Predefined, user-defined, or implementor-defined exception processingAn exception may be due to an error or due to some condition arising during the processing of a statement. When an exception condition exists, further processing takes place as described in the following paragraphs.
D.16.4 Raising and checking for exceptionsAssociated with each exception condition is an exception-name or an exception object. The concepts of exception objects are given in D.19.10, Exception objects. The following refers to the predefined exception conditions represented by exception-names. Syntax for processing exception conditions uses these exceptions. They may be specified only in the WHEN phrase of the PERFORM statement, the TURN compiler directive, the RAISING phrase of the EXIT or GOBACK statement, the RAISE statement, and the USE statement. There are three levels of exception-names. Level-1 is one all-inclusive exception name, EC-ALL. Level-2 identifies exceptions associated with a specific type of exception. The level-2 exception-names are: EC-ARGUMENT, EC-BOUND, EC-CONTINUE, EC-DATA, EC-EXTERNAL, EC-FLOW, EC-FUNCTION, EC-I-O, EC-IMP, EC-LOCALE, EC-MCS, EC-OO, EC-ORDER, EC-OVERFLOW, EC-PROGRAM, EC-RAISING, EC-RANGE, EC-REPORT, EC-SCREEN, EC-SIZE, EC-SORT-MERGE, EC-STORAGE, EC-USER, and EC-VALIDATE. The level-3 exceptions are the level-2 exceptions suffixed by a descriptive character-string that identifies that actual exception condition. When a level-3 exception condition is raised, the associated level-2 and EC-ALL can be used to process the exception, if desired.The user can define exceptions by suffixing EC-USER-. For example, EC-USER-OVERDRAWN might mean that an account is overdrawn. By executing 'RAISE EC-USER-OVERDRAWN' the user could cause a declarative or inline exception processing code to be executed.In a similar fashion, the implementor can suffix EC-IMP- to define exceptions. In this case the implementor defines the fatality, what causes the exception and so on.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1092 ©ISO/IEC 2023

Checking for exceptions is initially disabled for all exception conditions with the exception of some of the input-output exceptions and can be enabled at compile time with the use of the TURN compiler directive or the implicit TURN compiler directives created by the WHEN phrase of the PERFORM statement. If checking for an exception condition is enabled, it can also be disabled by the TURN compiler directive. The TURN compiler directive or the WHEN phrase may specify the level-3 exception-name, the associated level-2 exception-name, or EC-ALL. Enabling checking for exceptions normally causes a significant amount of code to be generated. This means slower execution and larger object program size. One of the primary uses of this type of exception checking is to “debug” a program. When EC-ALL is enabled, problems that could cause trouble during production can be found more easily. Once the program is OK, remove the TURN ON directive or use an IF directive to turn it on and off. The use of PUSH and POP compiler directives allows manipulation of the TURN directives, but they shall not be specified within an exception-processing PERFORM statement.Checking for an exception condition is locally disabled by the presence of an explicit phrase. For example, if the SIZE ERROR phrase is specified on an arithmetic statement, the raising of the EC-SIZE exception condition is disabled for that statement, except during item identification.When an exception condition exists and checking for that exception condition is enabled, the exception condition is raised and the last exception status is set to indicate that exception condition. Subsequent processing depends on the presence of explicit phrases, applicable statements within a WHEN phrase, any declarative, or default action. If there is an explicit phrase, that phrase takes precedence over any statements within a WHEN phrase, any declaratives, or default action. For example, when an arithmetic size error occurs, if an explicit SIZE ERROR phrase is specified, that phrase takes precedence and the EC-SIZE exception condition is not raised. If there is no such phrase, any code in the imperative statement following a WHEN EC-ALL, WHEN EC-SIZE, or WHEN OTHER would be executed. If there is no such WHEN phrase applicable to the statement that raised the exception condition, any applicable USE AFTER EXCEPTION EC-SIZE or EC-ALL would be executed. The SIZE ERROR and NOT SIZE ERROR phrases will function even if checking for EC-SIZE is not enabled.If an exception declarative or a WHEN phrase in an exception-checking PERFORM statement is executed, there are several ways to terminate execution of the exception processing statements:1) Propagate an exception to the activating function, method, or program.2) Execute the EXIT or GOBACK statement with the RAISING phrase. To propagate the exception that caused the execution of the exception processing statements, specify the LAST phrase. To propagate a different exception, specify either an exception object or the EXCEPTION phrase with a specific exception-name in the RAISING phrase. Either approach sets the desired exception condition to exist in the activating runtime element.3) In an exception-checking PERFORM statement, execute a RESUME statement with the NEXT phrase to continue execution at an implicit CONTINUE statement following the statement that caused the exception processing statements to be executed within imperative-statement-1 of the PERFORM statement.4) In a declarative, either:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1093

a) execute a RESUME statement with the NEXT phrase to continue execution at an implicit CONTINUE statement following the statement that caused the exception processing statements to be executed, orb) execute a RESUME statement that specifies a procedure name to continue execution at the first statement in that procedure, orc) allow the exception declarative to terminate after the last statement in the declarative.Unless the exception occurs in a MERGE statement, a SORT statement, or an I-O statement for which the implementor specifies otherwise, one of the following occurs.1) If the exception that caused the execution of the exception processing statements was a fatal exception, the run unit will be terminated if none of the above steps were taken.2) If the exception that caused the execution of the exception processing statements was a nonfatal exception, execution will continue at an implicit CONTINUE statement following the statement that caused the exception processing statements to be executed.The default action taken when an exception condition is enabled, the exception exists, no applicable exception processing statements exist, and no explicit phrase is specified on the statement depends on the specific exception condition and other factors. If the exception condition is defined to be nonfatal, execution continues as specified in the rules for the statement. For example, EC-I-O-AT-END will cause execution to continue at the next executable statement following the READ statement. If the exception condition is defined to be fatal, further processing depends on the PROPAGATE compiler directive. If PROPAGATE ON is in effect, execution of the current runtime element is terminated and the exception that occurred is propagated to the activating runtime element, as if an EXIT statement or GOBACK statement with the RAISING LAST EXCEPTION phrase were specified. If PROPAGATE ON is not in effect, execution of the run unit is terminated.The user can cause an exception to be raised by executing the RAISE statement, primarily for user-defined exceptions.Additional information about an exception condition is obtained through the use of a series of functions. These functions return detailed information about the last exception status. The functions and their returned values are:EXCEPTION-FILE returns an alphanumeric character string that contains information about the last I-O status value and any file connector that was associated with the last exception status.EXCEPTION-FILE-N returns a national character string that contains information about the last I-O status value and any file connector that was associated with the last exception status.EXCEPTION-LOCATION returns an alphanumeric character string that indicates the location of the statement in which the exception condition associated with the last exception status was raised. Part of the string is implementor-defined.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1094 ©ISO/IEC 2023

EXCEPTION-LOCATION-N returns a national character string that indicates the location of the statement in which the exception condition associated with the last exception status was raised. Part of the string is implementor-defined.EXCEPTION-STATEMENT returns the name of the statement in which the exception condition associated with the last exception status was raised.EXCEPTION-STATUS returns the exception-name associated with the last exception status.Some latitude is given to implementors to specify alternative treatment of fatal exceptions, in particular for input-output exceptions and for exception conditions that are not enabled.
D.16.5 Inline exception processingInline processing takes precedence over declarative processing when there is no specific phrase exception processing phrase (like SIZE ERROR) in the statement that caused the exception. The inline process might look like this:
PERFORM
 COMPUTE something
 >* next statement
 >* more statements
 >* execution goes to FINALLY
 WHEN EC-SIZE
 >* it will come here if a size error occurred
 Some statements
 WHEN OTHER
 >* come here if some other error occurred
 Some statements
 WHEN COMMON
 >* come here if either WHEN phrase was entered
 Some statements
 >* exception fatal: run unit terminates
 >* exception nonfatal: control is passed
 >* to next statement
 FINALLY
 *> come here for no matching exceptions
 *> of if an EXIT PERFORM was in a WHEN
 Some statements
END-PERFORMYou could avoid termination with something like this:
PERFORM
 COMPUTE something >* results in a size error

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1095

 >* next statement
 >* more statements
 >* execution goes to FINALLY
 WHEN EC-SIZE
 >* here when the size error occurred
 Some statements
 RESUME AT NEXT STATEMENT >* go to next statement
 WHEN OTHER
 >* come here if some other error occurred
 Some statements
 WHEN COMMON
 >* come here if either WHEN phrase was entered
 Some statements
 >* exception fatal: run unit terminates
 >* exception nonfatal: control is passed
 >* to next statement
 FINALLY
 *> come here for no matching exceptions
 >* or a nonfatal was processed
 Some statements
END-PERFORMYou are not allowed to do RESUME AT some-procedure. This could cause lots of problems.If you specified EXIT PERFORM in a WHEN, execution would proceed at FINALLY.
D.17 Rounding

D.17.1 GeneralCOBOL provides the capability of specifying rounding in arithmetic statements and expressions at various points in the evaluation process and as values are prepared for storing into receiving data items.The following forms of rounding are provided (examples presume an integer destination):— AWAY-FROM-ZERO: Rounding is to the nearest value farther from zero.— NEAREST-AWAY-FROM-ZERO: Rounding is to the nearest value. If two values are equally near, the value farther from zero is selected. This mode has historically been associated with the ROUNDED clause in earlier versions of standard COBOL.— NEAREST-EVEN: Rounding is to the nearest value. If two values are equally near, the value whose rightmost digit is even is selected. This mode is sometimes called "Banker's rounding".— NEAREST-TOWARD-ZERO: Rounding is to the nearest value. If two values are equally near, the value nearer to zero is selected.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1096 ©ISO/IEC 2023

— PROHIBITED: No rounding is performed. If the value cannot be represented exactly in the desired format, the EC-SIZE-TRUNCATION condition is set to exist and the results of the operation are undefined.— TOWARD-GREATER: Rounding is toward the nearest value whose algebraic value is larger.— TOWARD-LESSER: Rounding is toward the nearest value whose algebraic value is smaller.— TRUNCATION: Rounding is to the nearest value that is nearer to zero than the algebraic value. This mode has historically been associated with the absence of the ROUNDED clause as well as for the formation of intermediate results in the prior COBOL standard.Table A.3, ROUNDED MODE examples, illustrates the effect of the various rounding modes with various values. The ellipses in the column heading values indicate repetitions of the last digit in the intermediate result. The column contents indicate the result expected when rounding that intermediate result value to an integer.
Table A.3 ROUNDED MODE examples

The programmer may specify how individual intermediate values are rounded when they are stored into receiving data items through the ROUNDED clause; may select a default mode of rounding to be used when the ROUNDED clause appears with no further qualification on a receiving data item through the DEFAULT ROUNDED MODE clause of the OPTIONS paragraph of the IDENTIFICATION DIVISION; and may specify how arithmetic operations and conversions to and from intermediate forms are rounded through the INTERMEDIATE ROUNDING clause.
D.17.2 Intermediate roundingIntermediate rounding applies when data items are retrieved for inclusion in an arithmetic operation and during the execution of arithmetic operations to produce an intermediate result.The default for standard-binary and standard-decimal arithmetic for multiplication and division is a default mode of rounding for inexact results to truncation to 32 significant digits.

+2.49 -2.49 +2.50 -2.50 +3.49 -3.49 +3.50 -3.50 +3.510 -3.510Away-from-zero +3 -3 +3 -3 +4 -4 +4 -4 +4 -4Nearest-away-from-zero +2 -2 +3 -3 +3 -3 +4 -4 +4 -4
Nearest-even +2 -2 +2 -2 +3 -3 +4 -4 +4 -4Nearest-Toward-Zero +2 -2 +2 -2 +3 -3 +3 -3 +4 -4
Toward-Greater +3 -2 +3 -2 +4 -3 +4 -3 +4 -3Toward-Lesser +2 -3 +2 -3 +3 -4 +3 -4 +3 -4Truncation +2 -2 +2 -2 +3 -3 +3 -3 +3 -3

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1097

When the intermediate value can be represented exactly in the appropriate intermediate format, the exact value is used.In the event the value cannot be exactly represented, the user may now specify other modes of rounding for arithmetic operations and for the conversions to and from intermediate forms used in the arithmetic operations through the optional INTERMEDIATE ROUNDING clause of the OPTIONS paragraph of the IDENTIFICATION DIVISION.Specifically, the following options are available in the INTERMEDIATE ROUNDING clause:— NEAREST-AWAY-FROM-ZERO— NEAREST-EVEN— PROHIBITED— TRUNCATIONfor which the descriptions are found in D.17, Rounding.If the INTERMEDIATE ROUNDING clause is not specified, INTERMEDIATE ROUNDING IS TRUNCATION is implied. The implicit intermediate rounding specified in this Working Draft International Standard is unchanged from earlier editions of Standard COBOL.
D.17.3 Final rounding (the ROUNDED clause)Final rounding applies to the formation of the final result of the expression or statement immediately before the result is placed in the destination. This form of rounding is that which is associated with the ROUNDED clause.In earlier COBOL standards, only two methods of "final" rounding were provided:— Rounding toward zero (truncation, signaled by the absence of the ROUNDED clause)— Rounding to the nearest value; if two values were equally near, the value farther from zero was chosen (signaled by the presence of the ROUNDED clause).The ROUNDED clause has been enhanced to provide explicit selection of rounding modes, for example, ROUNDED MODE IS NEAREST-EVEN. The rounding modes available in the ROUNDED clause are described in D.17, Rounding.If the ROUNDED clause is not present for a given result, the rules for ROUNDED MODE IS TRUNCATION apply. This provides the same behavior as specified in the earlier COBOL standard.The optional DEFAULT ROUNDED MODE clause in the OPTIONS paragraph of the IDENTIFICATION DIVISION is provided to allow the user to specify the mode of rounding for any operation for which the ROUNDED phrase is specified without the MODE phrase. The default rounding modes that may be specified are described in D.17, Rounding.If the DEFAULT ROUNDED MODE clause is not specified in the program, the effect of the ROUNDED phrase without the MODE phrase is as if ROUNDED MODE IS NEAREST-AWAY-FROM-ZERO had been specified. This provides the same functionality for rounding as was provided in prior COBOL standards,

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1098 ©ISO/IEC 2023

and is also the same functionality provided by DEFAULT ROUNDED MODE IS NEAREST-AWAY-FROM-ZERO.If the DEFAULT ROUNDED MODE clause appears, ROUNDED phrases without MODE phrases are treated as if they had been specified with the rounding mode specified in the DEFAULT ROUNDED MODE clause.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1099

D.18 Forms of arithmetic

D.18.1 GeneralCOBOL provides three basic forms of arithmetic: native, standard-binary and standard-decimal.Native arithmetic allows the implementor to use intermediate data item formats and computational techniques that the implementor deems most efficient for a particular operating environment.Standard-binary arithmetic provides most of the advantages of standard arithmetic, slightly greater inherent precision, a specific format for arithmetic operands and intermediate results, and arithmetic rules and formats explicitly described in a platform-independent, language-independent standard. In standard-binary arithmetic, the arithmetic operand format is a binary floating-point format, and for decimal operands there is some risk of precision loss during the conversion from binary floating-point form to decimal and vice versa.NOTE The STANDARD-BINARY mode of arithmetic is an obsolete feature.Unlike other obsolete features, it is intended that interest in this facility will be reevaluated during the next revision of standard COBOL and before any final decision is made on whether or not to remove it from the next revisionStandard-decimal arithmetic provides all of the advantages of standard-binary arithmetic, and in addition provides a platform-independent, language-independent decimal floating-point format, thereby avoiding the conversion precision loss that might be entailed for decimal operands in standard-binary arithmetic.The ARITHMETIC clause in the identification division determines the mode of arithmetic for the source unit: native arithmetic, standard-decimal arithmetic or standard-binary arithmetic. If the ARITHMETIC clause is not specified, native arithmetic is the mode of arithmetic for the source unit.Most numeric operands in COBOL have historically been in some decimal format.When standard-decimal arithmetic is in effect, intermediate results are in decimal format and are converted to a binary format before they are stored in data items described with standard binary floating-point usages. Similarly, when standard-binary arithmetic is in effect, intermediate results are in binary format and are converted to a decimal format before they are stored in data items described with standard decimal floating-point usages.Radix conversions can cause precision loss and may be costly in performance. Results using decimal sending and receiving operands are likely to be more precise using standard-decimal arithmetic than standard-binary arithmetic precisely because radix conversions are avoided.The following characteristics are common to standard-binary arithmetic, and standard-decimal arithmetic:1) A single format appropriate to the specified arithmetic mode is used for each operand in an arithmetic expression and the result of every arithmetic operation, arithmetic expression, and integer and numeric intrinsic functions.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1100 ©ISO/IEC 2023

2) The binary arithmetic operators +, -, * and / and the SQRT function are defined to give results that are accurate to the precision of the format appropriate to the arithmetic mode. Exponentiation is defined to give results that are accurate to the precision of that format for exponents with the values –4, -3, -2, -1, 0, 1, 2, 3, and 4.3) The size error condition exists when the result of any single arithmetic operation cannot be contained in the format appropriate to the arithmetic mode.The size error condition exists when certain division and exponentiation errors occur and when the resultant identifier of an arithmetic statement cannot contain the value in the intermediate result.Whichever type of arithmetic is in effect, the ordering, precision and magnitude of operands can affect the results of calculations, when the mathematical intermediate or final values exceed the precision available.
D.18.2 Standard-decimal arithmetic

D.18.2.1 GeneralStandard-decimal arithmetic is preferred over standard-binary arithmetic (described at D.18.3, Standard-binary arithmetic).Standard-decimal arithmetic specifies that arithmetic operations are performed, and intermediate results produced, in a decimal floating-point format, which is an advantage because most numeric operands in COBOL have historically been in some decimal format, and the performing of arithmetic operations using a floating-point decimal format eliminates conversion from and to binary forms, with the possibility of precision loss in that process, when the operands themselves are decimalThe format or formats for a standard-decimal intermediate data item (SDIDI) are defined by the implementor. In all respects the numeric values of operands, the results of numeric operations on those values, and the exception conditions raised are those that would be obtained if the form of an SDIDI had been that of a data item declared USAGE FLOAT-DECIMAL-34 in the particular implementation.The rules for addition, subtraction, multiplication and division and the SQRT intrinsic function are explicitly defined in ISO/IEC 60559, and COBOL uses the definitions in that industry standard rather than relying on language-specific rules for these operations.Likewise, the specifications as to how intermediate and final rounding is performed either explicitly cite the corresponding rules in ISO/IEC 60559 or use them as their basis.The major motivation for this enhancement was to improve the potential portability of COBOL applications by having COBOL produce results consistent with existing, platform-independent, language-independent standards, specifically, ISO/IEC 60559. Results produced in conformance with that standard are well-defined. It is anticipated that vendors will implement efficient means of storing and operating upon data items in ISO/IEC 60559 formats, leading to the expectation that such implementations will also be efficient.The use of ISO/IEC 60559 specifications in support of COBOL data types, arithmetic rules, and rounding and truncation algorithms, helps the user to control and minimize imprecision.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1101

The primary advantage of standard-decimal arithmetic over standard-binary arithmetic in environments in which both are available is that no radix conversion is needed for decimal sending and receiving operands, and thus no associated precision loss occurs.
D.18.2.2 SpecificationThe STANDARD-DECIMAL phrase in the ARITHMETIC clause in the options paragraph of the identification division specifies that the mode of arithmetic for the source unit is standard-decimal arithmetic.
D.18.2.3 ExamplesThese examples demonstrate a few of the features and requirements of standard-decimal arithmetic.In the following examples, "sbidi" stands for standard-binary intermediate data item, "sdidi" stands for standard-decimal intermediate data item, "ulp" is an abbreviation for "unit in last position", and "ir-n" stands for the "nth intermediate result".'Rounding' in the examples below implies the application of the rules of the INTERMEDIATE ROUNDING clause. The application of the ROUNDED phrase is explicitly described in the examples.
1 A pic s9(4) value +8000.
1 B pic s9(4) value +3000.
1 C pic s9(4) value –4001.
1 D pic s9(4) value is zero.
1 E pic s99V99 value is +56.79.
1 F usage float-binary-128.
1 G usage float-decimal-34.

COMPUTE D = A + B + C
 *> begin
 *> convert A to sdidi as ir-1
 *> convert B to sdidi as ir-2
 *> add ir-1, ir-2 with rounding, result in ir-1
 *> convert C to sdidi as ir-2
 *> add ir-1, ir-2 with rounding, store in ir-1
 *> move ir-1 to D (truncating fractional digits)
 *> end

COMPUTE D ROUNDED = D + E
 *> begin
 *> convert D to sdidi as ir-1
 *> convert E to sdidi as ir-2
 *> add ir-1, ir-2 with rounding, store in ir-1
 *> align decimal point of ir-1 to that of D
 *> adjust ulp according to DEFAULT ROUNDED MODE clause

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1102 ©ISO/IEC 2023

 *> move adjusted ir-1 to D
 *> end

COMPUTE F = A + B + C
 *> begin
 *> convert A to sdidi as ir-1
 *> convert B to sdidi as ir-2
 *> add ir-1, ir-2 with rounding, store in ir-1
 *> convert C to sdidi as ir-2
 *> add ir-1, ir-2 with rounding, store in ir-1
 *> convert ir-1 to sbidi format with rounding as ir-2
 *> move ir-2 to F (ir-2 and F are in the same format)
 *> end

COMPUTE G ROUNDED = G + E
 *> begin
 *> retrieve G (it is already in sdidi format) as ir-1
 *> convert E to sdidi as ir-2
 *> add ir-1, ir-2 with rounding, store in ir-1
 *> align decimal point of ir-1 to that of G
 *> adjust ulp according to DEFAULT ROUNDED MODE clause
 *> move adjusted ir-1 to G
 *> end

D.18.3 Standard-binary arithmetic

D.18.3.1 GeneralStandard-binary arithmetic is provided as an alternative and as an adjunct to standard-decimal arithmetic, described at D.18.2, Standard-decimal arithmetic.NOTE The STANDARD-BINARY mode of arithmetic is an obsolete feature.Standard-binary arithmetic operations will produce results that are predictable, reasonable, and portable. In addition, the format of the intermediate results and the rounding rules associated with intermediate operations are defined in an external standard. This feature provides for arithmetic results that are not only identical from implementation to implementation but also are defined by an international standard intended for platform-independent implementation. Standard-binary arithmetic shares these advantages with standard-decimal arithmetic.The format or formats for a standard-binary intermediate data item (SBIDI) are defined by the implementor. In all respects the numeric values, the results of numeric operations on those values, and the exception conditions raised are those that would be obtained if the form of an SBIDI had been that of a data item declared USAGE FLOAT-BINARY-128 in the particular implementation.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1103

D.18.3.2 SpecificationThe STANDARD-BINARY phrase in the ARITHMETIC clause in the options paragraph of the identification division specifies that the mode of arithmetic for the source unit is standard-binary arithmetic.
D.18.3.3 ExamplesThese examples demonstrate a few of the features and requirements of standard-binary arithmetic.In the following examples, "sbidi" stands for standard-binary intermediate data item, "sdidi" stands for standard-decimal intermediate data item, "ulp" is an abbreviation for "unit in last position", and "ir-n" stands for the "nth intermediate result".'Rounding' in the examples below implies the application of the rules of the INTERMEDIATE ROUNDING clause according to the rules of the floating-point standard. The application of the ROUNDED phrase is explicitly described in the examples.
1 A pic s9(4) value +8000.
1 B pic s9(4) value +3000.
1 C pic s9(4) value –4001.
1 D pic s9(4) value is zero.
1 E pic s99V99 value is +56.79.
1 F usage float-binary-128.
1 G usage float-decimal-34.

COMPUTE D = A + B + C
 *> begin
 *> convert A to sbidi as ir-1
 *> convert B to sbidi as ir-2
 *> add ir-1, ir-2 with rounding, store in ir-1
 *> convert C to sbidi as ir-2
 *> add ir-1, ir-2 with rounding, store in ir-1
 *> Convert ir-1 to sdidi format with rounding as ir-2
 *> move ir-2 to D (truncating fractional digits)
 *> end

COMPUTE D ROUNDED = D + E
 *> begin
 *> convert D to sbidi as ir-1
 *> convert E to sbidi as ir-2
 *> add ir-1, ir-2 with rounding, store in ir-1
 *> convert ir-1 to sdidi format with rounding as ir-2
 *> align decimal point of ir-2 to that of D
 *> adjust ulp of ir-2 according to DEFAULT ROUNDED MODE clause
 *> move adjusted ir-2 to D
 *> end

COMPUTE F = A + B + C
 *> begin

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1104 ©ISO/IEC 2023

 *> convert A to sbidi as ir-1
 *> convert B to sbidi as ir-2
 *> add ir-1, ir-2 with rounding, store in ir-1
 *> convert C to sbidi as ir-2
 *> add ir-1, ir-2 with rounding, store in ir-1
 *> move ir-1 to F (ir-2 and F are in the same format)
 *> end

COMPUTE G ROUNDED = G + E
 *> begin
 *> convert G from sdidi to sbidi format as ir-1
 *> convert E to sbidi format as ir-2
 *> add ir-1, ir-2 with rounding, store in ir-1
 *> convert ir-1 from sbidi to sdidi format as ir-2
 *> NOTE no rounding applies; ir-2 and G are in the same format
 *> move ir-1 to G
 *> end

D.19 Object oriented concepts

D.19.1 GeneralObject oriented programming is about developing and implementing application systems as sets of interacting software objects. A software object, like most objects in everyday life, such as an automobile, has a unique identity, and certain attributes and behaviors. The automobile has a unique identity, in the US the VIN (Vehicle Identification Number). It also has many attributes such as color, number of doors, and weight. It also has such behaviors as forward, reverse, accelerate, shift, and the like. Software objects are used to model real world objects and as such they abstract the key concepts of the real world object in software. A software object used to model an automobile would for example, have a unique identity, and attributes such as color, weight, and length, as well as such behaviors as forward and reverse.Software objects can be used to model any of the concepts germane to a given problem domain. For example they can represent bank accounts, employees, parts, processes, programs, fields, files, structures and the like.Therefore, we can say a software object is an entity that has a unique identity, specific data values, and specific behaviors or program code. The program code is organized into relatively small modules. In object oriented terminology these modules are called methods. Data is encapsulated within each object and can only be accessed by using one or more of the object's methods.
D.19.2 ClassesTo facilitate dealing with the hundreds or even thousands of different software objects that can exist in an application system, objects are organized into classes. A class is a group of objects that have a common data structure and that all use the same methods. This means that the data structure can be defined for the class. Each object within the class has a unique set of data values that correspond to the

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1105

class structure. It also means that the methods are defined once at the class level and are used by each of the objects of the class.EXAMPLE:A banking application will require many individual accounts. Each account will have data associated with it, for example account-balance and date-opened. Each account will have methods that allow other parts of the application to access an individual account such as deposit, withdraw and current-balance. The checking account class defines the data layout and methods for all of the individual checking accounts, thus they all work in the same way and serve the same purpose.
D.19.3 Objects

D.19.3.1 GeneralEvery object belongs to exactly one class, whether or not that class inherits from one or more classes. There may be zero, one or more objects of any given class
D.19.3.2 Object instantiationsThe individual members of a class are called instance objects, or simply instances. For example, an individual checking account object can be called a checking account object instance, or a checking account instance. We will use the term instance to refer to an individual member of a class. All instances of a class share the same data definition, but each instance has its own unique values. The instances of a class also share the same methods. A method is defined once for the class, but each instance behaves as if it is the sole owner of the methods defined for the class. The methods are shared and can be used by all instances. This facility of object oriented programming environments permits the data for each instance to be hidden (encapsulated) because it can be accessed only via the methods of the class.The conventions used in all of the code fragments and the sample bank application are as follows:— Class names and interface names use camel case, the first letter of each word is capitalized. For example, the class checking account is "CheckingAccount".— Method names use lower case for the first word and camel case for subsequent words, for example, the method deposit is "deposit"; and the method calculate charges is "calculateCharges".— Data item names always consist of at least two lower case words separated by a "-", for example, customer name is "customer-name", an object is "an-object", and so forth.EXAMPLE:Each checking account is represented by an account instance. Each instance has its own copy of the data described by the class, the customer's name, the current balance, and the date opened. Each instance

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1106 ©ISO/IEC 2023

uses the methods defined for the class to carry out its functions, for example, the deposit method credits the account. Within the body of program code that defines a class, instances of the checking account class could be defined as follows:
. ...
OBJECT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 checking-account.

03 customer-name PIC X(35).
03 current-balance PIC S9(9)V99.
03 date-opened PIC 9(8).

 ...
PROCEDURE DIVISION.
METHOD-ID. deposit.

method code
END METHOD deposit.
. ...
METHOD-ID. withdraw.

method code
END METHOD withdraw.
. .
END OBJECT.

D.19.3.3 Object data definitionsSince each instance object is unique, it has a unique reference value that is generated by the runtime system when the instance is created. An object's reference value serves as a pointer to that specific instance. An object reference value can be thought of as a key that identifies a specific instance. The usage clause provides a means to define a data item, called an object reference, to hold an object's reference value. In the following example, data items a-checking-account and an-account are object references:EXAMPLE:
. . .
OBJECT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 checking-account.

03 customer-name PIC X(35).
03 current-balance PIC S9(9)V99.
03 date-opened PIC 9(8).

01 a-checking-account USAGE IS OBJECT REFERENCE.
01 an-account USAGE IS OBJECT REFERENCE.
PROCEDURE DIVISION.
....

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1107

The data item a-checking-account can be used to refer to a specific instance. A data item that has been defined as an object reference can be set equal to another data item defined as an object reference through the use of the SET statement as follows:
SET an-account TO a-checking-account.The above statement will transfer the value of the object reference in a-checking-account to an-account.

D.19.3.4 Object referencesAn object reference is a data item that contains a reference to an object. The content of the object reference is used to locate the object and information associated with the object.An application may ensure at compile time that an object of one class, say employee, will never be used as an object of an unrelated class, say account. This is done by using an object reference described with either an object-class-name, an interface-name, or an ACTIVE-CLASS phrase. If an object-class-name is specified, the data item can only be used to reference an object of the class specified, or one of its subclasses, as discussed in D.19.5.1, Inheritance. If an interface-name is specified, the data item can only be used to reference an object described with an IMPLEMENTS clause that references the interface specified, as discussed in D.19.5.4.2, Class polymorphism. If the ACTIVE-CLASS phrase is specified, the data item can only be used to reference an object of the same class as that of the object with which the method was invoked. Object references for ACTIVE-CLASS are of special significance as returning items. This capability is needed for defining a New method in the BASE class that works as documented without violating the conformance rules, and it allows writing user methods that do object creation in conformance with the definition of the class hierarchy.Alternatively, an application may use a universal object reference, one that can refer to any object. A data item is defined as a universal object reference by omitting all optional phrases from the OBJECT REFERENCE phrase of the USAGE clause. Runtime validation may be used to ensure that an object has the correct interface as described in 14.8.2, Parameters and 14.8.3, Returning items, but this approach does require more runtime resources.EXAMPLE:The definition of a data item that can refer only to an object of the CheckingAccount class or one of its subclasses is:
1 an-account USAGE IS OBJECT REFERENCE CheckingAccount.

The definition of a data item that can hold a reference to any object is as follows:
1 an-object USAGE IS OBJECT REFERENCE.

D.19.3.5 Factory objectsAs stated previously, a class describes the data for each instance of the class and defines the methods that can be used by each instance of the class. Each class has one object, called the factory object, that is

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1108 ©ISO/IEC 2023

responsible for functions, such as creating a new instance of the class and managing data associated with all instances of the class.A factory object can be thought of as an instance of a special kind of class and has data (factory data) and methods (factory methods). The data and methods for the factory object are defined as part of the class definition.Every instance of a class is created by the factory object of that class. When an object is created, the data descriptions in the class are used to allocate storage for the instance.EXAMPLE:The checking account class shown below describes a factory object, which is called the checking account factory object. To create a new checking account instance, a method in the checking account factory object is used. To keep track of the number of checking account instances a data item in the factory object can be used. Whenever a new instance is created, 1 can be added to the value; whenever an instance is removed, 1 can be subtracted from the value.Sample code for the checking account factory object could be as follows:
CLASS-ID. CheckingAccount INHERITS Base.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.

CLASS Base.
FACTORY.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 number-of-accounts PIC 9(5).
PROCEDURE DIVISION.
METHOD-ID. newAccount.
create-account.

add 1 to number-of-accounts.
. ...
END METHOD newAccount.

END FACTORY
OBJECT.
. ...
END CLASS CheckingAccount.

D.19.4 Methods

D.19.4.1 GeneralA method is procedural code that defines a specific function required by all of the instances of a class. A method may be thought of as a module or subroutine. A class may define as many methods as it needs to manage the data defined for the class. Methods are typically only a few lines of procedural code, but may be as many lines as required to accomplish a specific function.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1109

An instance object is used by invoking one of its methods. This facility is similar to the call facility. With conventional coding techniques, one program activates another program by issuing a call. With object oriented programming techniques, one object activates another object by issuing an invoke.“Methods are distinguished by their resolution signature. The method resolution signature consists of the method name, the number and type of parameters, and other information (as listed in 9.3.5.3, Parametric polymorphism) that differentiate methods of the same name. A class cannot define two methods of the same method resolution signature. If a subclass defines a method with the same method resolution signature as a method in an inherited class, the method in the inheriting class overrides the inherited method.
D.19.4.2 Method invocationAny program or method can invoke a method to act on an object. The name of the method specified on the invocation statement will be the method executed. The invocation statement also allows arguments to be passed to the method and also allows the method to return a result. EXAMPLE:Whenever an application needs to use an object, it invokes a method to act on the instance object. Let's assume the CheckingAccount class contains the methods deposit, withdraw and balance and that an-account references an instance of the Account class. The syntax to deposit an amount to an account is as follows:

 INVOKE an-account "deposit" USING in-amountSimilarly, the syntax to determine the current balance of an account is:
INVOKE an-account "balance" RETURNING current-balanceAn equivalent statement illustrating inline method invocation is:
MOVE an-account::"balance" TO current-balanceWhen the application needs to determine the balance of a specific account, a conventional program or a method will request the instance to activate its balance method. Code fragments to accomplish this are shown below:Assume a program wants to determine the balance of a checking account. Program Code

WORKING-STORAGE.
....
01 a-checking-account-object USAGE IS OBJECT REFERENCE CheckingAccount
....
77 the-balance PIC S9(8)V99 VALUE ZERO.
....
PROCEDURE DIVISION.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1110 ©ISO/IEC 2023

....
INVOKE a-checking-account-object "balance" RETURNING the-balance

 *> assume the object
 *> referenced by a-checking-
account-object
 *> contains the reference to the desired
 *> accountChecking Account Class

....
OBJECT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 checking-account.

03 customer-name PIC X(35).
03 current-balance PIC S9(9)V99.
03 date-opened PIC 9(8).

....
PROCEDURE DIVISION.
....
METHOD-ID. balance.
DATA DIVISION.
....
LINKAGE SECTION.
01 ls-balance PIC S9(8)V99.
....
PROCEDURE DIVISION RETURNING ls-balance.
return-balance.

MOVE current-balance TO ls-balance.
GOBACK.

END METHOD balance.
....

D.19.4.3 Method prototypesMethod prototypes are method skeletons that define the method name, parameters, and information necessary to describe those parameters such as that specified in the REPOSITORY paragraph and the SPECIAL-NAMES paragraph. They do not include the procedural code. In essence they provide all of the information required to invoke a method. Method prototypes are used to specify interfaces and are specified in interface definitions.EXAMPLE:The method prototype for the calculateInterest method of the SavingsAccount class is as follows:
METHOD-ID. calculateInterest.
DATA DIVISION.
LINKAGE SECTION.
01 interest-rate PIC S9(3)v9999.
01 interest-amount PIC S9(9)V99.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1111

PROCEDURE DIVISION USING interest-rate RETURNING interest-amount.
END METHOD calculateInterest.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1112 ©ISO/IEC 2023

D.19.5 Other object oriented programming featuresSome of the other capabilities are Inheritance, Interfaces and Polymorphism, and Conformance.
D.19.5.1 InheritanceOne of the language features that separates object oriented languages from conventional programming languages is the ability to develop a hierarchy of classes, as shown by the example in figure D.4, Manager class.

Figure D.4 — Manager class

The manager class is a subclass of the employee class which in turn is a subclass of the person class. Or said another way, the employee class is the superclass of the manager class and the person class is the superclass of the employee class. At any point in the hierarchy, the classes above a given class are its superclasses or its ancestors and the classes below are its subclasses or its children. A subclass includes all of the capabilities of all of its ancestors and additionally may add to or override these capabilities. For example, the methods of the person and employee classes are available to an instance of the manager class as well as the methods defined for the manager class.Inheritance is the mechanism used to develop class hierarchies.Inheritance supports a hierarchy of classes, where every instance of a subclass can be used "as if it were" an instance of its superclasses. For example, a manager object could be used as if it were an employee object, and an employee object could be used as if it were a person object. This is the principle of conformance between classes. When classes conform, a data item declared as a reference to an object of a given class may in fact reference an object of any class that descends from that given class.Inheritance represents an "is a" relationship between two classes and is a way of specializing a higher level class. In figure D.4, Manager class, a manager "is an" employee and an employee "is a" person. All the object data definitions described in the superclasses, person and employee, plus the object data definitions for the class itself, manager, are used to create an instance of the manager class. Also, the methods defined by the superclasses are inherited by the subclass and are used to directly operate on any instance of manager.

Employee

Manager

Person

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1113

Both factory and instance data and methods of all ancestor classes are inherited by a class that inherits from another class.When inheritance is used to define a subclass, data in the superclass is encapsulated because methods defined for the subclass are not allowed to directly access the data items defined for the superclasses. It requires all subclasses to use methods defined for the superclasses to access the data items defined for the superclasses. As an example, if the employee class defined the data item "employee-name", the employee class would have to include a method, say getName, to allow any subclass to retrieve the employee name.A class may inherit from more than one other class, this is called multiple inheritance.Example of single inheritance:A bank will have different kinds of accounts, and yet they are all accounts. If we consider checking accounts and savings accounts, they have a number of common features, they both have an owner and a balance. They also have some different features, the fact that checks are allowed for one and the other pays interest. It makes sense to have a basic account class that contains the common parts and then to use inheritance to define the checking account and the savings account subclasses. Thus the account class defines what is common to all accounts; the checking account class defines what is specific to checking accounts; and the savings account class defines only what is specific to savings accounts. Any changes to the account class will be picked up by the inheriting classes automatically. These relationships can be represented as shown in figure D.5, Banking hierarchy.
Figure D.5 — Banking hierarchy

In the example shown, each instance of CheckingAccount is automatically created with memory allocated for the attributes account-number, balance, date-opened and charges. Additionally, the

SavingAccount

interest-rate

calculateInterest

Account

account-number
balance

date-opened

deposit
withdraw
balance

CheckingAccount

charges

displayCharges
calculateCharges

Data items

Methods

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1114 ©ISO/IEC 2023

methods deposit, withdraw, and balance inherited from Account and the methods displayCharges and calculateCharges defined in the CheckingAccount class can act on each instance. Each instance of SavingsAccount is automatically created with memory allocated for the attributes account-number, balance, date-opened and interest-rate. Each instance of SavingsAccount can access the methods deposit, withdraw and balance inherited from Account and the method calculateInterest defined for itself. Some sample code for the account and checking account classes is shown below:Account Class

CLASS-ID. Account INHERITS Base.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY

CLASS Base.
FACTORY.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 number-of-accounts PIC 9(5).
PROCEDURE DIVISION.
METHOD-ID. newAccount.

method code
END METHOD newAccount.
....
END FACTORY.
OBJECT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ACCOUNT-INFORMATION.

03 account-number PIC X(12).
03 balance PIC S9(8)V99.
03 date-opened PIC 9(8).

. ...
PROCEDURE DIVISION.
METHOD-ID. deposit.
....
END METHOD deposit.
METHOD-ID. withdraw.
....
END METHOD withdraw.
METHOD-ID. balance.
....
END METHOD balance.
....
END CLASS Account.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1115

CheckingAccount Class

CLASS-ID. CheckingAccount INHERITS Account.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
CLASS Account.
....
OBJECT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 checking-account

03 charges PIC S9(8)V99.
. ...
PROCEDURE DIVISION.
METHOD-ID. displayCharges.
....
END METHOD displayCharges.
METHOD-ID. calculateCharges.
....
END METHOD calculateCharges.
....
END CLASS CheckingAccount.

D.19.5.2 Restricting inheritance and modification with the FINAL clauseIt may be desired that no extension be done to a class through inheritance. This, for example, might be needed by library providers who want to control the implementation of a class. To provide this functionality, a class may be declared 'final' if its definition is complete and no subclasses are desired or required. A compile-time error occurs if the name of a final class appears in the INHERITS clause of another class declaration; this implies that a 'final' class cannot have any subclasses.Because a final class never has any subclasses, the methods of a final class are never overridden. This may be an overkill in some cases, and it might be desired that only a few methods not be overridden. For that purpose, we can use the attribute 'final' with a method of any class, to prohibit the subclasses of that class from overriding that method. This attribute can also be used redundantly with the methods of a final class.Restricting methods from being overridden also helps in 'pairing' of methods of a class. Here's an example: Suppose a class A defines a method 'bar' calling another method 'foo' defined in the same class. If there is a subclass B that also defines 'foo', and if we invoke 'bar' on an object of class B, the method 'bar' (inherited from class A) will end up calling the function 'foo' defined for B and not the original 'foo'. If however, we specify the FINAL clause with the function 'foo' in class A, it cannot be overridden in class B, and the programmer can ensure that 'bar' will always invoke the same 'foo'.The FINAL attribute has to be handled carefully while dealing with multiple inheritance. If two classes A and B define a method of the same name, and if a class C inherits from both of them, the method definitions are not allowed to have the FINAL clause specified. However, if the same method is inherited

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1116 ©ISO/IEC 2023

through two classes which had the same superclass defining that method, the method is allowed to have the FINAL clause specified in its definition. This would happen for a diamond shaped multiple inheritance, where classes B and C inherit from a class A, and then class D inherits from both B and C. Class A can have methods with the FINAL clause specified, and though D will appear to inherit two methods of the same name with the FINAL clause, it is acceptable as they are the same method implementations.
D.19.5.3 ConformanceConformance allows the compiler to check the application code and determine if any class hierarchy inconsistencies can occur at runtime. A data item can be constrained to be an object reference for only objects of a specific class or its subclasses by inserting the class name after the USAGE IS OBJECT REFERENCE clause. Additionally, the compiler can determine if the arguments passed to a method match the parameters specified in the USING phrase of the procedure division header. Arguments and parameters conform when they match exactly. EXAMPLE:One part of a banking application can be written to deal with any kind of account. Data items that have been declared such as:

01 an-account USAGE OBJECT REFERENCE Account.can reference any object of the account class or any object of a class that inherits from the account class. The rules of conformance ensure that the subclasses of the account class can be used in exactly the same way as objects of the account class itself. The underlying implementation of a subclass may be different from the original account class, but the interface is guaranteed to be compatible.A different part of the banking application can be written to deal only with a specific kind of account. For example, the data item an-account would be defined as follows to hold a reference to a checking account object or to any object of a class that inherits from the CheckingAccount class. NOTE In this example, no classes inherit from the CheckingAccount class.
01 an-account USAGE OBJECT REFERENCE CheckingAccount.If a source element contains code that attempts to put a reference to an Account object into the data item declared to contain a checking account object, the compiler will warn the user that there is a potential error. It should be noted that the compiler cannot necessarily determine that this actually is an error, only that it might be an error. Additionally, the compiler can check to ensure that the arguments and parameters match.The policy for conformance checking is conservative and errs on the side of caution.These are some examples of restrictions imposed by compile time conformance checking, even though at runtime a conformance violation might not actually exist:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1117

1) Let's assume there is a class A with a subclass A1, and a source element containing the following definitions:
1 or-1 object reference A.
1 or-2 object reference A1. The statement
SET or-2 to or-1is invalid, because or-1 may contain, for example, a reference to class A, which is not valid in or-2. At runtime, or-1 might actually contain a reference to A1, which would be a valid content of or-2. This is, however, not predictable at compile time. Therefore, the SET rules require that the class of the sending operand, A in this case, is the same class or a subclass of the class of the receiving operand (A1), which is not the case.2) It is not permitted to pass or to return a strongly-typed group item having a subordinate item that is an object reference for ACTIVE-CLASS. At runtime, the class of the activating element may be different from the class of the activated element; that is, the two object references are restricted to different classes. These, again, are not known at compile time. (An object reference cannot be subordinate to a group item that is not strongly typed.)
Class A.
...
Method-Id. M-A.
...
1 or-1 object reference b.
1 t-a typedef strong.

 2 ...
 2 or-a object reference active-class.
1 a-a type t-a.
...
Procedure Division.
...
 Invoke B "New" returning or-1
 Set or-a to self
 Invoke or-1 "M-B" using a-a *> Invalid argument
...
End Method M-A.
End Class A.

Class B.
...
Method M-B.
...
Working-Storage Section.
...
1 t-a typedef strong.
 2 ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1118 ©ISO/IEC 2023

 2 or-b object reference active-class.
...
Linkage Section.
...
1 a-b type t-a.
...
Procedure Division using a-b.
...
Go-back.
End Method M-B.
End Class B.In this invalid example, or-a is restricted to class A, or-b to class B, and normally any valid content of or-a will be invalid for or-b, and vice-versa.3) Although returning an object reference for ACTIVE-CLASS is generally allowed, there are still restrictions due to the compile-time checking requirement. The compiler does not know the object that will be used to invoke the method; it does, however, know the object reference that is used to invoke the method containing the object reference to be returned. It is possible for the compiler to derive some information about the item to be returned.Consider the following class:
Class-id. C inherits B.
Factory.
 Method-id. M
 Linkage section.
 01 or-1 object reference active-class.
 Procedure division returning or-1.
 End method M.

End class C.Consider:
 Invoke C “M” returning an-obj.The compiler knows that the object returned by method M is of class C or some subclass of C. This knowledge can be used to detect some errors. For example, suppose we have this class hierarchy:

B
|
C
|
DConsider the following statements:
01 or-B object reference B.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1119

01 or-C object reference C.
01 or-D object reference D.

Invoke C “M” returning or-B
Invoke C “M” returning or-C
Invoke C “M” returning or-DThe compiler can statically determine that the first and second invokes are valid but the 3rd invoke is invalid, since it might result in storing an object of type C in an object reference of type D.4) In principle, method invocation on a specific object identified at runtime is permitted for any method that is defined for that object. Compile time checking, however, restricts the eligible methods to those that are known at compile time. For example, if the specified object reference is restricted to a specific class, only a method with that name defined in the class specified in the object reference is eligible. Thus it is possible to invoke an overriding method defined in a subclass of the specified class, but not a method that is defined only in the subclass, but not in the parent class.Let C-1 be a class with a subclass C-2, where C-1 contains a method M-1 and C-2 contains a method M-2. Assume further a client program or method contains:
1 or-1 object reference C-1.

Invoke or-1 "M-1"This is valid. Even when or-1 actually references an object of C-2, there is no problem, because it is still the same M-1 in class C-1. Also, there is no problem when M-1 is defined in C-2 as a method overriding the M-1 of C-1, because the signature of the overriding M-1 is still the same.But:
Invoke or-1 "M-2"is invalid, even when or-1 actually references an object of C-2, because the signature of M-2 is not known at compile time, and there is no way of conformance checking at compile time. Note, however, that the object modifier can be used to get type-safe access to M2, with conformance checking at runtime:
Invoke or-1 as C2 "M-2".

D.19.5.4 Polymorphism

D.19.5.4.1 GeneralPolymorphism is supported by COBOL in two different ways. Class polymorphism is supported through class inheritance and the use of interfaces. Parametric polymorphism is supported through method overloading.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1120 ©ISO/IEC 2023

D.19.5.4.2 Class polymorphismClass polymorphism is generally provided through the class inheritance. In COBOL, the use of interfaces also provides class polymorphism.An interface definition defines a subset of methods of any class implementing that interface. It provides a view of the methods that can be invoked for the class, including the names and parameter specifications for each method. That is, only method prototypes are described in the source unit of an interface definition.A class may implement several interfaces. Each interface may include one or more of the methods of that class.An object that implements all of the methods defined in an interface conforms to that interface. The application class hierarchy forms a hierarchy of conforming interfaces.EXAMPLE:A banking application may have defined a method in the Account class that prints the data values associated with each instance, for example, current owner and balance. Likewise, a method in the Customer class can print the name and address of the customers it represents. If there is a need for a generalized routine that prints things, with correct page formatting, an interface can be defined that contains the methods associated with printing. Any object that implements this interface can then be printed by this routine. This illustrates polymorphism.Sample code for the Print Interface is shown below:
INTERFACE-ID. PrintReport.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
PROCEDURE DIVISION.
METHOD-ID. printRpt.
END METHOD printRpt.
. ...
. ...
END INTERFACE PrintReport.

D.19.5.4.3 Parametric polymorphismParametric polymorphism (also known as method overloading) provides the ability to declare two or more methods of the same name, but with a different number of parameters and types. Each method has a method resolution signature that consists of the method name and all of the relevant information from the definition of each of the parameters, and from the returning item. During the resolution of the method, the signature derived from the invocation is compared with all methods of the same name. If the signatures match exactly, that method is bound. If not, the method that most closely matches the signature while still conforming is bound.No two methods within a class may have the same signature.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1121

EXAMPLE:Suppose we have three methods that print. The first method invokes the print method of whatever object pointer is passed to it. The second formats a packed decimal field and prints it, the third prints a variable length character string.
Method-id. PrintIt.
Linkage section.
01 In-o usage object.
Procedure division using In-o.
 invoke in-o "PrintMe".
End Method PrintIt.

Method-id. PrintIt.
Working-Storage section.
01 Out-p pic ZZZ,ZZZ,ZZZ.
Linkage section.
01 In-p BINARY-SHORT.
Procedure division using In-p.
 move In-p to Out-p.
 display out-p.
End Method PrintIt.

Method-id. PrintIt.
Working-Storage section.
01 Out-p pic $$$,$$$.99.
Linkage section.
01 In-p pic s9(5)v99 packed-decimal.
Procedure division using In-p.
 move In-p to Out-p.
 display out-p.
End Method PrintIt.

Method-id. PrintIt.
Linkage section.
01 In-x pic x(20).
01 In-len pic 9(4).
Procedure division using by value In-x, In-len.
 display In-x(1:In-len).
End Method PrintIt.If we invoke PrintIt with an object reference as in
Invoke aClass "PrintIt" using anObject.we would invoke the first method, which would invoke the "PrintMe" method of anObject. If we invoked PrintIt as follows:
Invoke aClass "PrintIt" using "FooBar", 3.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1122 ©ISO/IEC 2023

we would invoke the last method, and display "Foo".Invoking Printit with a numeric as follows:
Invoke aClass "PrintIt" using 32could match either the second or the third method, since the literal "32" is treated as USAGE DISPLAY. When there are two methods that match equally well, the first of the methods that match is the method to which we will resolve. In this case, it would be the second method, and we would display "32". Placing the method that is preferred first in the compilation unit assures that the method will be selected when the choice is ambiguous.
D.19.6 Object management

D.19.6.1 ObjectsAs mentioned previously, objects are allocated at runtime and are accessed only through object references. An object is created by invoking a method in a factory object. The object continues to exist until it can no longer be accessed. The object can no longer be accessed when no object reference data item references that object.
D.19.7 Class libraryA small class library is provided that can be used, extended, or integrated into business solutions. The BASE class is the single top node of the class library and includes methods that support object creation and initialization.
D.19.8 Parameterized classesA parameterized class is a skeleton class definition that when passed the appropriate parameters will create a new class tailored to perform a given function. Parameterized classes allow developers to create classes that have common behavior. For example, a single parameterized collection class can be used to define many types of collection classes.EXAMPLE:Let's consider container classes which are typically used to hold references to objects of a given class. In a banking application, a specific type of container class, say AccountCollection, could be used to hold the list of identifiers to each account object. To generate a collection class that is capable of holding or managing only identifiers of checking account objects, the class name CheckingAccount is specified as a parameter when the collection class is created.Suppose AccountCollection is a parameterized class whose definition is given elsewhere. Part of its class definition is as follows:
CLASS-ID. AccountCollection INHERITS Base USING X.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1123

CLASS Base
CLASS X.

...
END CLASS AccountCollection.In another source unit, the following would create a class which is a collection of checking accounts and an object reference for this new kind of class.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.

CLASS CheckingAccountCollection EXPANDS AccountCollection USING
CheckingAccount.
...
DATA DIVISION.
WORKING-STORAGE SECTION.
01 a-checking-account-collection USAGE OBJECT REFERENCE
CheckingAccountCollection.
...

D.19.9 Files in object orientation

D.19.9.1 GeneralFiles in object oriented applications can be specified in two different ways:1) Files in Instance Objects2) Files in Factory objects
D.19.9.2 Files in instance objectsA file specified in an instance object means that the instance definition contains the FILE-CONTROL paragraph and the file section. One or more instance methods will contain the file processing statements such as OPEN, CLOSE, READ and WRITE. All of the instance methods have visibility to the records associated with the file.When a class that contains a file specified in the instance definition is inherited, each direct or indirect descendent also inherits the file specification. The instance objects of each of these subclasses have their own file connector unless the EXTERNAL clause is specified for the file. Dynamic file assignment or file sharing may be used to resolve conflicts in accessing the physical files associated with these file connectors.Specifying dynamic file assignment in the file control entry permits a class to be used to define a logical file of a given structure, and each instance can associate a different physical file with its own file connector and perform I-O on that physical file.Sample code for dynamic file assignment is illustrated below.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1124 ©ISO/IEC 2023

NOTE The MOVE statements only have an effect on the dynamic assignment when a subsequent OPEN statement for the file connector is executed.
CLASS-ID. Employee INHERITS Base.
 ...
 OBJECT.
 ...
 FILE-CONTROL.
 SELECT EMPLOYEE-FILE ASSIGN USING FILE-REF.
 DATA DIVISION.
 FILE SECTION.
 FD EMPLOYEE-FILE
 ...
 WORKING-STORAGE SECTION.
 01 FILE-REF PIC X(16) VALUE SPACES.
 ...
 PROCEDURE DIVISION.

 METHOD-ID. readFile.
 ...
 WORKING-STORAGE SECTION.
 01 EMPLRCD.
 03 SSN PIC 9(9).
 03 NAME ...
 PROCEDURE DIVISION.
 ...
 MOVE 'external-ref01' TO FILE-REF
 OPEN INPUT EMPLOYEE-FILE
 ...
 READ EMPLOYEE-FILE NEXT RECORD INTO EMPLRCD
 CLOSE EMPLOYEE-FILE
 ...
 MOVE 'external-ref02' TO FILE-REF
 OPEN INPUT EMPLOYEE-FILE
 ...
 READ EMPLOYEE-FILE NEXT RECORD INTO EMPLRCD
 ...

D.19.9.3 Files in factory objectsWhen a file is specified in a factory, this means that the factory definition contains the FILE-CONTROL paragraph and FILE SECTION. One or more of the factory methods will contain the file processing statements such as OPEN, CLOSE, READ and WRITE. All of the factory methods have visibility to the data on the file without the use of the EXTERNAL clause.
Inherited Factory Object Definitions - It is important to note that when a class that contains a file specified in the factory object definition is inherited, each direct or indirect descendent also inherits the file specification. As in the case of inherited object definition above, the factory objects of each of these subclasses have their own file connector unless the EXTERNAL clause is specified for the file. Dynamic

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1125

file assignment or file sharing may be used to resolve conflicts in accessing the physical files associated with these file connectors.
D.19.10 Exception objectsException objects are used similarly to predefined exception conditions associated with exception-names. They provide, however, more flexibility and allow access to a wider variety of information for resolving exception situations, compared to the predefined or user-defined exception conditions, especially when used in object-oriented applications.Although in principle any object of any class could serve as an exception object, there will more likely be a specific class for a specific kind of exception. This allows the application to invoke a method tailored for handling that exception.There might be, for example, a class called INVALID-ACCOUNT, whose objects correspond to individual occurrences of the invalid account condition. The application can create and "raise" such an object when the application detects a transaction with an invalid account number. Let's assume the object reference pointing to this object is called AN-INVALID-ACCOUNT. As soon as the application method (assuming it is a method rather than a program) detects the error, it can execute a RAISE AN-INVALID-ACCOUNT statement, or it can pass the exception back to the invoking runtime element with a RAISING AN-INVALID-ACCOUNT phrase on a GOBACK statement. In the latter case, control is returned to the invoking runtime element, and the exception condition is handled in this invoking element as if the statement that invoked the method had been immediately followed by the statement 'RAISE AN-INVALID-ACCOUNT'. If the runtime element containing the RAISE or the INVOKE statement contains an "applicable" declarative, for example a declarative for the INVALID-ACCOUNT class, this declarative is then executed. It will typically invoke an appropriate exception-handling method on the exception object – which can be addressed by the EXCEPTION-OBJECT identifier – to issue a warning about the error. When there is no applicable declarative, the exception may be propagated to a higher level of the invocation hierarchy, if the >>PROPAGATE directive is in effect. Note that the GOBACK RAISING AN-INVALID-ACCOUNT statement returns the exception to the invoking runtime element only if this use of the class INVALID-ACCOUNT has been “announced” by listing that class (or a superclass of it) in the procedure division header of the method containing the GOBACK statement. Otherwise, the predefined exception condition EC-OO-EXCEPTION will be propagated instead, and no detailed analysis of the problem will be possible in the invoking runtime element.A declarative may alternatively be specified for a specific interface, rather than for a class. In this case, the declarative qualifies for the raised exception object if the object is described with an IMPLEMENTS clause that references that interface.Similarly, an interface-name rather than an object-class-name may be specified in the procedure division header of a source element containing an EXIT statement with the RAISING phrase or a GOBACK statement with the RAISING phrase. In this case, the object being raised shall be described with an IMPLEMENTS clause that references the specified interface in order to qualify for propagation.
D.19.11 Sample application

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1126 ©ISO/IEC 2023

D.19.11.1 GeneralThe following is an example of a very simple banking application, consisting of one main program and the Account class. It is not intended to illustrate all the object oriented features of COBOL.
D.19.11.2 Main program Most object oriented applications have a conventional program to start the processing. BANKMAIN serves this function in this sample bank application.

PROGRAM-ID. BANKMAIN.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.

CLASS Account.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 an-object USAGE OBJECT REFERENCE Account.
PROCEDURE DIVISION.
go-now.

INVOKE Account "newAccount" RETURNING an-object.
INVOKE an-object "displayUI".
SET an-object to NULL.
GOBACK.

END PROGRAM BANKMAIN.

D.19.11.3 Account classThe source code for the account class is illustrated below. The class has three factory methods:— newAccount creates a new instance of an account object, — addAccount adds 1 to the value of number-of-accounts, and — removeAccount subtracts 1 from the value of number-of-accounts. The account class also has five instance methods:— displayUI displays the value of the account balance or performs another function based on a user's request,— balance retrieves the balance of the account,— deposit adds an amount to the current balance of the account,— withdraw subtracts an amount from the current balance of the account,— initializeAccount moves initial values into the instance data.
CLASS-ID. Account INHERITS Base.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.

CLASS Base.
FACTORY.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1127

DATA DIVISION.
WORKING-STORAGE SECTION.
01 number-of-accounts PIC 9(5) VALUE ZERO.
PROCEDURE DIVISION.
METHOD-ID. newAccount.
DATA DIVISION.
LOCAL-STORAGE SECTION.
LINKAGE SECTION.
01 an-object USAGE IS OBJECT REFERENCE ACTIVE-CLASS.
PROCEDURE DIVISION RETURNING an-object.
begin-here.

INVOKE SELF "new" RETURNING an-object.
INVOKE an-object "initializeAccount" USING BY CONTENT number-of-

accounts.
GOBACK.

END METHOD newAccount.
METHOD-ID. addAccount.
PROCEDURE DIVISION.
method-start.

ADD 1 TO number-of-accounts.
GOBACK.

END METHOD addAccount.
METHOD-ID. removeAccount.
PROCEDURE DIVISION.
main-entry.

SUBTRACT 1 FROM number-of-accounts.
GOBACK.

END METHOD removeAccount.
END FACTORY.

OBJECT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 account-balance PIC S9(9)V99.
01 account-number PIC X(9).
01 the-date PIC 9(8).
PROCEDURE DIVISION.
METHOD-ID. displayUI.
DATA DIVISION.
LOCAL-STORAGE SECTION.
01 in-data.

03 action-type PIC X.
03 in-amount PIC S9(9)V99.
03 in-wrk PIC X(12).

PROCEDURE DIVISION.
method-start.

DISPLAY "Enter D for Deposit, B for Balance or W for Withdrawal"
ACCEPT in-data
EVALUATE action-type

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1128 ©ISO/IEC 2023

WHEN "D"
PERFORM get-amount
INVOKE SELF "deposit" USING in-amount

WHEN "W"
PERFORM get-amount
INVOKE SELF "withdraw" USING in-amount

WHEN "B"
INVOKE SELF "balance"

WHEN OTHER
DISPLAY "Enter valid transaction type."
GOBACK

END-EVALUATE
GOBACK
.

get-amount.
DISPLAY "Enter amount 9(9).99"
ACCEPT in-wrk
COMPUTE in-amount = FUNCTION NUMVAL (in-wrk)
.

END METHOD displayUI.

METHOD-ID. balance.
DATA DIVISION.
LOCAL-STORAGE SECTION.
01 display-balance PIC $ZZZ,ZZZ,ZZ9.99B–.
PROCEDURE DIVISION.
disp-balance.

MOVE account-balance to display-balance
DISPLAY "Your Account Balance is:" display-balance
GOBACK.

END METHOD balance.
METHOD-ID. deposit.
DATA DIVISION.
LINKAGE SECTION.
01 in-deposit PIC S9(9)V99.
PROCEDURE DIVISION USING in-deposit.
make-deposit.

ADD in-deposit TO account-balance
GOBACK.

END METHOD deposit.

METHOD-ID. withdraw.
DATA DIVISION.
LINKAGE SECTION.
01 in-withdraw PIC S9(9)V99.
PROCEDURE DIVISION USING in-withdraw.
withdraw-start.

IF account-balance >= in-withdraw
SUBTRACT in-withdraw FROM account-balance

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1129

ELSE
DISPLAY "Your Balance is Inadequate"

END-IF
GOBACK.

END METHOD withdraw.

METHOD-ID. initializeAccount.
DATA DIVISION.
LINKAGE SECTION.
01 new-account-number PIC 9(5).
PROCEDURE DIVISION USING new-account-number.
Begin-initialization.
 MOVE ZERO TO account-balance
 MOVE new-account-number TO account-number
 MOVE FUNCTION CURRENT-DATE (1: 8) TO the-date
 GOBACK.
END METHOD initializeAccount.
END OBJECT

END CLASS Account.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1130 ©ISO/IEC 2023

D.20 Report writer

D.20.1 GeneralReport writer is a facility for producing printed outputs that places its emphasis on their organization, format, and content, rather than by specifying the detailed procedures needed to produce them. The report writer language contains a concise data division syntax and, when this is used to define the report structure, relatively little procedural code is needed to produce the printed output, because most of the procedure division programming that would normally be supplied by the programmer is instead provided automatically. The programmer is freed from the task of writing procedures for constructing print lines, moving data, counting lines on a page, numbering pages, producing headings and footings, recognizing the end of logical data subdivisions, accumulating totals, printing tables and testing conditions.
D.20.2 Reports and report filesA report is any printed output with not more than one basic layout for its report headings, report footings, page headings and page footings and one optional hierarchical scheme of control breaks and control groups. More complex printed outputs can be obtained by describing more than one report for the same report file and printing pages from different reports in the order required. For an external file connector referenced by a file-name and for a file shared by multiple file connectors, separate runtime elements may specify different reports for the same file.Each report is divided vertically into report groups. A report group is a block of print lines, generated in a single operation, that is never split across more than one page.Report files differ from other output files in that their FD entry has a REPORT clause but no level-01 record descriptions, and their entire content is written through the execution of one of the report writer procedural statements: INITIATE, GENERATE and TERMINATE. Records should not be written to report files in any other manner. The FILE-CONTROL and FD entries and the OPEN and CLOSE statements perform the same function for report files as for other output files. A source unit may contain more than one report file. In the following example, two reports are defined:FD SUMMARY-PRINT-FILEREPORTS ARE DETAILED-LISTING, SUMMARY-PRINT.
D.20.3 RD entry

D.20.3.1 GeneralEach RD entry assigns a name to one report and describes its general characteristics. Its optional clauses are as follows:
D.20.3.2 PAGEThe PAGE clause defines the layout of a physical report page. The COLUMNS phrase defines the width of the page. The first printable line on the page is considered to be line 1, and all other phrases are based in relationship to this. The LINES phrase defines the position of the last print line on the page.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1131

The HEADING phrase defines where the first line of the page or report heading will be printed. If the HEADING phrase is absent, printing begins on line 1. The first line of a control group will print on either the line specified in the FIRST DETAIL phrase or one line after the last line of the last report or page heading printed, whichever is greater. The LAST CONTROL HEADING and the LAST DETAIL phrases determine when a page advance takes place. If the next item to be printed is the control heading, and the number of lines necessary to print the control heading added to the current line count for the page is greater than specified in the LAST CONTROL HEADING phrase a page advance will occur. If the next item to be printed is a detail item and the number of lines necessary to print the detail added to the current line count is greater than specified in the LAST DETAIL phrase, a page advance will occur.The FOOTING phrase has two different functions:1) If the next item to be printed is a control footing, and the number of lines necessary to print the footing added to the current line count is greater than specified in the FOOTING phrase, a page advance will occur. 2) When a page advance occurs, the line count is advanced to either the position specified in the FOOTING phrase or to the next line, whichever is greater, and the applicable page and report footings are printed.
Figure D.6 — Example of page layoutPAGE clause phrases Report content

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1132 ©ISO/IEC 2023

D.20.3.3 CONTROLThe CONTROL clause defines a hierarchy of data-names whose values will be used to sense for control breaks. FINAL may be specified as the highest-level control. For each data-name a control heading and a control footing group may be specified, which will be printed automatically on each occasion that a control break at that level, or above, is detected.
D.20.3.4 CODEThe CODE clause specifies information that is not to be printed that can be used to separate multiple reports that are written to the same file or may be needed for correct functioning of the printing device. For example, suppose you write two reports to a file and specify CODE "A" for one and CODE "B" for another. If your system allows reading of the report file you can separate both reports by reading the file, removing the first character, and sending A lines to one place and B lines to another.

Physical Top
of Form

the first line that can be printed

<blank>

Heading the first line of the report or page heading
<(first page only) report header lines>

<page heading lines>
First Detail

Logical Top
of Form

the first line of a body group
<Control Heading lines>

<Detail lines>
<Control Footing lines>
<Control Heading lines>

<Detail lines>
<Control Footing lines>

<Control Heading lines>
<Detail lines>

<Control Footing lines>
Last Control Heading the last line on which a control heading may print

<Detail lines>

Last Detail the last line on which Detail lines will print
<Control Footing lines>

Footing last line of Control footing or first line of a report or page footing
<page footing lines.

<(last page only) report footing lines>

Page Limit the last line on a logical pageLogical
Bottom of
Form

Physical
Bottom of
Form the last line that can be printed

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1133

D.20.3.5 EXAMPLEThe following example shows one instance of each of these optional clauses in the RD entry:
RD SUMMARY-PRINT

PAGE LIMITS ARE 60 LINES
HEADING 2
FIRST DETAIL 5
LAST DETAIL 56
FOOTING 58

CONTROLS ARE FINAL, WS-YEAR, WS-MONTH
CODE IS REFERENCE-NO.

D.20.4 Basic report group description

D.20.4.1 TYPEThe RD entry is followed by any number of report group descriptions, each beginning with a level-01 entry containing a TYPE clause. The TYPE clause defines how the report group will be used in the report. The order in which the report group descriptions are coded is immaterial.
D.20.4.2 LINE and NEXT GROUPThe lines of the report group correspond to LINE clauses in the report group description. LINE clauses are not nested and are written at a subordinate level (although a single-line report group may be described using a LINE clause in the level-01 entry).The operands of the LINE clauses specify the vertical positioning of the lines on the page. Lines can be absolute or relative. Absolute lines are defined by an integer with an optional NEXT PAGE phrase. Relative lines are indicated by the word PLUS or + before the integer. The absolute form gives the line number with respect to the top of the printed page, whereas the principal effect of the relative form is to move a vertical distance with respect to the previous line. Additional spacing after the report group has been printed may be indicated by using the NEXT GROUP clause, which has similar absolute and relative forms, and an additional NEXT PAGE phrase.
D.20.4.3 COLUMNCOLUMN clauses are used to specify the horizontal location of elementary items. COLUMN may be shortened to COL. Items whose description entries contain a COLUMN clause are referred to as printable items. Provided they are not absent as a result of a PRESENT WHEN clause, they are always printed when the report group containing them is printed. The COLUMN clause can be absolute, indicated by an integer, or relative, indicated by the word PLUS or +, before the integer. The absolute form gives the column number with respect to the left side of the printed page, whereas the relative form moves the item the specified horizontal distance from the last character of the previous printable item. Spaces are supplied in all unused columns. Elementary items whose description entries do not contain a COLUMN clause are referred to as unprintable items. They are not printed but may be referred to in SUM clauses for the purpose of totaling.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1134 ©ISO/IEC 2023

D.20.4.4 SOURCE, VALUE, and PICTUREThe establishing of the contents of elementary report items is directed not by procedure division statements but by the report section clauses SOURCE, SUM and VALUE. SUM is described in more detail below under "Totaling".SOURCE specifies the sending operand of an implicit MOVE or COMPUTE statement and the report entry that contains it defines the receiving printable item.VALUE assigns a fixed literal to the printable item. The content of such an item may be modified only by means of a PRESENT WHEN clause.A PICTURE clause is used, in the same way as any other receiving operand, to indicate the editing requirements for printable items. The PICTURE clause is optional when the elementary item has a clause of the form VALUE IS "literal".
D.20.4.5 EXAMPLEThe following example illustrates the basic report group description clauses:

01 TYPE PAGE HEADING.
05 LINE 2.
 07 COL CENTER 40 VALUE "NAME OF MY COMPANY".
 07 COL 74 VALUE "Page".
 07 COL RIGHT 80 PIC ZZ9 SOURCE PAGE-COUNTER.
05 LINE + 2.

07 COLS 5 30 40 VALUES "Description" "Date" "Value".
01 ORDER-LINE TYPE DETAIL.

05 LINE + 2.
 07 COL 5 PIC X(20) SOURCE ORDER-DESCRIPTION.
 07 COL 30 PIC 9(6) SOURCE ORDER-DATE.
 07 COL 40 PIC ZZZ,ZZ9.99–

 SOURCE (ORDER-VALUE – SPECIAL-DISCOUNT) / 100.

D.20.5 Modifying the report group layout

D.20.5.1 PRESENT WHENThe PRESENT WHEN clause specifies a condition that, if false, suppresses, for that instance of the report group, the processing of the report section entry, whether it be that of a report group, line, elementary report item, or some intermediate-level item. If the item suppressed is not elementary, all its subordinate items are also suppressed.The concept of suppressing an item does not necessarily imply that spaces are printed. Rather, the effect of suppressing an item is that the report behaves at that instant as though the item's data description were omitted entirely from the report description. The following effects are a consequence of this principle:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1135

1) Absent lines are not printed, do not alter the LINE-COUNTER, and do not contribute to the vertical size of the corresponding report group when the page fit test is performed.2) Absent printable items do not alter the horizontal counter in the current line. Consequently, a printable item whose entry has a PRESENT WHEN clause affects the column position of any relative printable items that immediately follow it in the report line.3) Within a report group, lines may apparently overlap or overflow the permitted region of the page, provided that their LINE clauses are subject to PRESENT WHEN clauses specifying mutually exclusive conditions, so that, after absent lines have been eliminated, such overlap or overflow does not occur.4) Within a given line, printable items may apparently overlap or, if relative, apparently exceed the page width, provided that their COLUMN clauses are subject to PRESENT WHEN clauses specifying mutually exclusive conditions, so that, after absent items have been eliminated, such overlap or overflow does not occur.It is not necessary to specify an alternate blank line or blank printable item to define the case where a line or printable item is absent, because unoccupied lines on the page and unoccupied columns in the line are always blank.The PRESENT WHEN clause is illustrated in the example below. If FIRST-NAME contains "UNKNOWN", spaces are printed instead of FIRST-NAME up to column 25 because SURNAME is printed in absolute column 25. However, if the MEMBER-FLAG does not contain 1, both MEMBER-NO and MEMBER-TYPE vanish and CITY is printed in column 47, because its COLUMN clause is relative.
05 LINE + 2.

 07 COL 1 PIC X(20) SOURCE FIRST-NAME
 PRESENT WHEN FIRST-NAME NOT = "UNKNOWN".
 07 COL 25 PIC X(20) SOURCE SURNAME.
 07 PRESENT WHEN MEMBER-FLAG = 1.
 09 COL 51 PIC X(6) SOURCE MEMBER-NO.
 09 COL 61 PIC X(10) SOURCE MEMBER-TYPE.
 07 COL + 3 PIC X(10) SOURCE CITY.In the next example, the second line will be suppressed entirely if BANK-FLAG is not 1. If these lines are part of a body group, the suppressed line is not included in the body group's vertical size when any page fit test is applied. By contrast, if the LINE clauses were absolute, a blank line would result in the place of the suppressed line.

05 LINE + 2.
 07 COL 1 PIC 9999 SOURCE PAYMENT. etc.

05 LINE + 1 PRESENT WHEN BANK-FLAG = 1.
 07 COL 1 PIC X(8) SOURCE BANK-ACCOUNT. etc.

D.20.5.2 GROUP INDICATEThe GROUP INDICATE clause is designed to enable a data item (typically a control data item) to be printed once only at the start of a series of details following a control break or page break. It behaves like a special case of PRESENT WHEN.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1136 ©ISO/IEC 2023

D.20.6 Repetition

D.20.6.1 OCCURSThe OCCURS clause enables any part of a report group defined by an entry below level 01, whether it be a line, elementary item, or some item described at an intermediate level, to be repeated a given number or variable number of times. OCCURS clauses may be nested to print multi-dimensional tables. The STEP phrase gives the horizontal or vertical spacing between items and is necessary if the item has an absolute (horizontal or vertical) position.
 03 LINE 4 OCCURS 4 STEP 1.
 *> The VALUE clause applies to each repetition
 05 COL 1 OCCURS 5 STEP 10 VALUE "PAY".
 03 LINE + 1 OCCURS 2.
 *> The SOURCE clause also applies to each repetition
 05 COL + 6 OCCURS 3 PIC X(4) SOURCE IS WS-CODE.

D.20.6.2 Multiple form of LINE, COLUMN, SOURCE, VALUEInstead of coding an OCCURS clause, the programmer may code a multiple COLUMN or LINE clause, an indispensable facility when the distance between items is irregular.
 03 LINES ARE 4, 5, 7, + 1.
 05 COLUMNS ARE 1, 11, 22, +5 ...In order to place different values or different source data items in successive entries, a multiple SOURCE or VALUE clause may be used. This is valid whether an OCCURS clause or a multiple LINE or COLUMN clause is used to establish the repetition:
 03 LINES 2, 3.
 05 COLS ARE 13, 35, 56
 VALUES ARE "THIS" "NEXT" "SOME" "YEAR" "YEAR" "DAY".
 03 LINE + 1.
 05 COL 12 OCCURS 3 STEP 22 PIC ZZZ9
 SOURCES ARE WS-PAY WS-BONUS WS-REFUND.

D.20.6.3 VARYINGThe VARYING clause may be used with an OCCURS clause or a multiple LINE or COLUMN clause to establish a repetition counter. This counter may then be used as a subscript or for any other purpose.
 03 LINES 2, 3, 4 VARYING RS-LINE-NO FROM 6 BY 6.
 05 COL 1 STEP 10 OCCURS 6

VARYING RS-ENTRY-NO FROM RS-LINE-NO BY –1
PIC ZZZ9
SOURCE IS WS-PAY-TABLE (RS-ENTRY-NO)
PRESENT WHEN WS-PAY-TABLE (RS-ENTRY-NO) >= 0.

D.20.7 Totaling

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1137

The SUM clause may be placed in a printable item's description instead of SOURCE or VALUE. It causes the indicated numeric data items to be accumulated in an internal sum counter. When the item is printed, the accumulated value is moved into the printable item and (except when a RESET phrase is specified) reset to zero once the processing of any remaining entries in the report group description is complete.A sum counter is an internal location, defined automatically. The number of its integral and fractional digits are implied by the PICTURE clause used with the SUM clause. A sum counter is always signed. A program may have any number of sum counters.The operands of the SUM clause may either be data items defined in the report section or data items defined in some other part of the data division. If a SUM operand is defined in the report section, it is added into the sum counter whenever the report group in which it is defined is printed. If a SUM operand is not defined in the report section, it is added into the sum counter whenever a GENERATE is executed for that report. For the latter case, an UPON phrase is provided to control which GENERATE statements cause adding and which do not.If the SUM operand is an array (a repeating data item) then the SUM entry may be an array of the same size (in which case an array of totals is formed) or, if it is a single data item or a table with fewer dimensions than the SUM operand, it will add together all the repeating entries in one or more (vertical or horizontal) directions.The RESET phrase may be used to delay the resetting of sum counters, thus providing cumulative totals.An entry with a SUM clause may be unprintable (without a COLUMN clause), so that a total may be formed but not immediately printed. The current value of a sum counter may be obtained by referencing the data name of the entry.In the following example, the SUM clause is used to produce subtotals at two levels.
RD PAY-REPORT
 CONTROLS ARE WS-YEAR WS-MONTH.

01 EMPLOYEE-PAYMENT TYPE DETAIL.
 03 LINE + 1.
 05 RS-PAY COL 4 STEP 10 OCCURS 4 TIMES

 *> This repeating entry could use a table as its SOURCE instead,
 *> VARYING a data name as a subscript as in the previous example under
 *> VARYING.

PIC Z(3)9 SOURCES WS-PAY WS-BONUS WS-EXTRA
 WS-REFUND.
 *> This entry accumulates the 4 items in a single total.
 05 RS-EMPLOYEE-TOTAL-PAY COL 51 PIC Z(6)9
 SUM OF RS-PAY.

01 TYPE CF FOR WS-MONTH.
 03 LINE + 1.

 *> This entry gives 4 totals for the 4 items added vertically
 05 COL 1 STEP 10 OCCURS 4 PIC Z(6)9
 SUM OF RS-PAY.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1138 ©ISO/IEC 2023

 05 RS-MONTH-TOTAL-PAY COL 51 PIC Z(6)9
 *> SUM OF RS-PAY would give the same result here:
 SUM OF RS-EMPLOYEE-TOTAL-PAY.
 *> This entry will print a cumulative total
 05 RS-MONTH-CUMULATIVE-PAY COL 1 PIC Z(7)9
 SUM OF RS-EMPLOYEE-TOTAL-PAY RESET ON WS-YEAR.

01 TYPE CF FOR WS-YEAR.
 03 LINE + 1.
 *> The following item is unprintable:
 05 RS-YEAR-TOTAL-PAY PIC Z(7)9
 *> SUM OF RS-EMPLOYEE-TOTAL-PAY would give the same result here:
 SUM OF RS-MONTH-TOTAL-PAY.
 *> This entry uses the yearly total in a source, scaling it down
 05 COL 1 PIC Z(5)9.99
 SOURCE IS RS-YEAR-TOTAL-PAY / 100 ROUNDED.

D.20.8 Procedure division statementsAlthough the description of the report groups and most of the physical and logical organization of a report is defined using data division elements, these descriptions do not have any effect on the processing of the report except during the execution of one of the procedure division statements INITIATE, GENERATE and TERMINATE. The processing of a report consists of the following steps:1) The file connector with which the report is associated shall be in an open mode.2) The INITIATE statement is executed to initiate processing of the report.3) Once the report is initiated, the GENERATE statement is used to generate the various parts of the report. Each GENERATE statement causes one detail group to be printed (except when the GENERATE report-name form of the statement is used), possibly preceded by other types of report groups resulting from a control break or page fit test.4) When the report is to be completed, the TERMINATE statement is executed to finish it.5) The file connector may then be closed or left open for more reports.A typical sequence of execution might be as follows:
OPEN OUTPUT report-file
INITIATE report-name
obtain input data record(s)
PERFORM UNTIL <end of input data>

GENERATE detail-A
GENERATE detail-B, etc.
obtain input data record(s)

END-PERFORM
TERMINATE report-name
CLOSE report-file

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1139

D.20.9 Report countersThe PAGE-COUNTER and LINE-COUNTER identifiers refer to locations that are defined automatically for each report description entry. They contain, respectively, the number of the current page and the number of the current line within the page.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1140 ©ISO/IEC 2023

D.21 Structured constantA "structured constant" is a record described with the CONSTANT RECORD clause at level 1.The contents of a structured constant are fixed and cannot be changed once the program has been compiled, either during program activation or during the lifetime of execution of the program. A structured constant is a read-only item. Use of a structured constant or any data item within it as a receiving data item, either by direct access or indirect means, is prohibited.A structured constant and its subordinate items are data items and can be used anywhere a sending data item can be used. This differs from a constant entry, which has no structure, and can be used only where a literal of the corresponding type can be used.The following example illustrates the format and content of a structured constant:
1 A-DATA-ITEM CONSTANT RECORD.
 2 FIELD-1 BINARY PICTURE S9(31).
 2 FIELD-2 DISPLAY PICTURE X(50).
 2 ARRAY-INIT PIC X(26) VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
 2 DISPLAY-CHARS REDEFINES ARRAY-INIT.
 3 DISPLAY-CHAR PICTURE X OCCURS 26 TIMES.
 2 FILLER PIC X(3) VALUE ALL "Q".
 2 FILLER PIC X(4).The content of A-DATA-ITEM does not change during the lifetime of the program in which it is declared. The content of A-DATA-ITEM and its subordinate fields are those specified for the applicable VALUE clauses, if any, and for the data items that do not have VALUE clauses, the default appropriate to the USAGE of the field, as described in the INITIALIZE statement.In this example, FIELD-1 will contain zeroes; FIELD-2 will contain spaces; ARRAY-INIT will contain "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; the first FILLER data item will contain "QQQ"; and the second FILLER item will contain four space characters.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1141

D.22 Validate facility

D.22.1 GeneralThe validate facility provides a major procedural statement VALIDATE and several associated data division clauses that enable data to be checked for various errors and inconsistencies in a high-level and comprehensive manner.NOTE The VALIDATE facility is an obsolete feature.Unlike other obsolete features, it is intended that interest in this facility will be reevaluated during the next revision of standard COBOL and before any final decision is made on whether or not to remove it from the next revision.The VALIDATE statement can be used to perform validation on any data item defined in the file, working-storage, local-storage, or linkage section. The item is checked for conformance to its data description and messages or flags of the programmer's choice may be issued or set in response. Data items can also be stored automatically in target locations.The detailed processing undertaken by the VALIDATE statement is established entirely by the description of the referenced data item rather than by code in the procedure division. As well as general data division clauses, such as PICTURE, additional clauses may be included that control the action of the VALIDATE statement, but have no effect otherwise.The data item may be a group or elementary item of any length and complexity. The operation of the VALIDATE statement is divided into several stages. Each stage is completed for the entire data item, including all its subordinate items, before the next stage begins. If an elementary data item fails one stage of validation it cannot be rejected at any further stage. If a check fails, there is no interruption to processing: instead, errors are indicated by the storing of messages or indicators defined by the programmer. The stages are as follows:— Format validation— Input distribution— Content validation— Relation validation— Error indication
D.22.2 Format validationThis stage uses the PICTURE clauses, possibly modified in their meaning by the SIGN and USAGE clauses, to check that each data item has the expected data format. An elementary item is assigned a default value if it fails this check or if its usage is display or national and its value is all spaces. The default value is used in subsequent references to the item. A group item may also have a DEFAULT clause.The clauses relevant to this stage are: DEFAULT, DYNAMIC LENGTH, PICTURE, SIGN, USAGE, and VARYING.
D.22.3 Input distribution

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1142 ©ISO/IEC 2023

This stage activates any DESTINATION clauses that are defined for the data item to store items in their target locations where indicated. By virtue of the default values, target locations always receive valid data, unless DEFAULT NONE is specified when they are unchanged.The clauses relevant to this stage are: DESTINATION and VARYING.
D.22.4 Content validationThis stage checks that each data item lies in the expected set of permissible values. 88-level entries may be used to check the values of the data item as a whole and the CLASS clause to check each of its characters. The range of values specified in 88-level entries can depend on specified conditions.The clauses relevant to this stage are: CLASS, VALUE and VARYING.
D.22.5 Relation validationThis stage checks that data items have appropriate values in relation to any other data items. Other terms for this stage are "inter-field checks" or "cross-field validation". The contents of a data item may be considered to be invalid, depending upon the truth value of a specified condition. For example, the clause 'ITEM-A INVALID WHEN ITEM-B > 35' means that the contents of ITEM-A are always considered to be invalid when the value of ITEM-B is greater than 35.The clauses relevant to this stage are: INVALID and VARYING.
D.22.6 Error indicationThis final stage operates on any VALIDATE-STATUS clauses that are defined and uses them to set up messages or indicators, specified by the programmer, to identify which items, if any, have been rejected. It is also possible to distinguish between the three reasons for rejection. The VALIDATE-STATUS clauses are not placed within the data item being validated but elsewhere in the data division.The clauses relevant to this stage are: VALIDATE-STATUS and VARYING.
D.22.7 Validation of more complex formatsThe data description can contain subordinate entries that have an OCCURS clause. Each repetition of the data item can then be checked independently, can have an independent DESTINATION, and can be assigned an independent error message or indicator. If the data description has alternate formats, these can be described using the REDEFINES clause and the appropriate description can be selected using the PRESENT WHEN clause.The clauses relevant to these formats are: PRESENT WHEN, REDEFINES, OCCURS, and VARYING.
D.22.8 Examples of validation

D.22.8.1 GeneralThe comments placed in these examples explain the use and effects of the various clauses.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1143

D.22.8.2 Example of validation of USAGE DISPLAY items

 01 INPUT-RECORD.
 *>PIC 99 checks that IN-TYPE is 2 characters numeric;
 03 IN-TYPE PIC 99
 *>if IN-TYPE fails the PICTURE check, it is assumed to be 1;
 *>without a DEFAULT clause, the assumed value would here be 0.
 DEFAULT 1.
 *>PRESENT WHEN states the condition for this format to be used.
 03 IN-REC-FORMAT-1 PRESENT WHEN IN-TYPE = 0 OR 1 OR 2.
 *>PICTURE A(20) checks for 20 alphabetic (or space) characters.
 05 IN-NAME PIC A(20)
 *>PRESENT WHEN defines when the validation clauses for this data item
 *>apply:
 PRESENT WHEN IN-TYPE = 0 OR 1
 *>CLASS checks each character for a class defined in SPECIAL-NAMES.
 CLASS IS ALPHA-UPPER
 *>DESTINATION moves this item (or spaces if not alpha) to OUT-NAME.
 DESTINATION OUT-NAME.
 *>PRESENT WHEN checks whether the item is "blank" under this condition
 05 FILLER REDEFINES IN-NAME
 PRESENT WHEN IN-TYPE = 2
 DESTINATION OUT-NAME.
 88 VALUE SPACES IS VALID.
 *>The values of IN-WEEK are checked to be in non-descending order.
 05 IN-WEEK PIC 99 OCCURS 5
 VARYING IN-WEEK-NO FROM 1, IN-NEXT-WEEK-NO FROM 2
 INVALID WHEN IN-WEEK-NO < 5
 AND IN-WEEK (IN-WEEK-NO) > IN-WEEK (IN-NEXT-WEEK-NO)
 *>OUT-WEEK (1) to (5) will hold the values of IN-WEEK (1) to (5),
 *>or zero for any one that failed the format (PICTURE) test.
 DESTINATION OUT-WEEK (IN-WEEK-NO).
 *>The 88-level INVALID entries check for invalid ranges of values.
 88 VALUES 0, 53 THRU 99 ARE INVALID.
 *>REDEFINES and another PRESENT WHEN define an alternate format.
 03 IN-REC-FORMAT-2 REDEFINES IN-REC-FORMAT-1
 PRESENT WHEN IN-TYPE > 2.
 *>IN-PAY has insertion characters that must be present on input.
 05 IN-PAY PIC ZZ,ZZZ.ZZ.
 *>The 88-level VALID entries check for valid ranges of values;
 *>the condition-name, if present, may be used in the usual way.
 *>The following assume that DECIMAL POINT IS COMMA is not specified.
 88 IN-PAY-OK VALUES "10,000.00" THRU "20,000.00" ARE VALID.
 *>88-level entries may also have a condition attached.
 88 VALUES "20,000.01" THRU "30,000.00" ARE VALID
 WHEN IN-TYPE = 8.
 *>exceptional cases can be specified using PRESENT WHEN
 05 IN-CODE PIC AX(3)9(4)
 PRESENT WHEN IN-CODE NOT = "UNKNOWN".

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1144 ©ISO/IEC 2023

 05 FILLER PIC X(13).
 *>
 *>***
 *>Description of target record
 *>***
 *>This is set up by the optional DESTINATION clauses defined
 *>in the input record;
 *>if a format error is found, a default value is stored instead.
 01 TARGET-AREA.
 05 OUT-NAME PIC X(20).
 05 OUT-WEEK PIC 99 COMP OCCURS 5.
 *>
 *>***
 *> Description of error messages
 *>***
 *>Error messages or flags are set up or cleared automatically
 *>when the VALIDATE statement is executed; the programmer chooses
 *>where they go and what messages or values they contain;
 *>they need not be contiguous as they are in this example.
 01 VALIDATE-MESSAGES.
 03 PIC X(40) VALIDATE-STATUS "Unknown Record Type - 1 assumed"
 WHEN ERROR FOR IN-TYPE
 *> more than one VALIDATE-STATUS clause may be defined in one entry;
 *> a NO ERROR phrase produces a message when the item is valid.
 VALIDATE-STATUS "Record type Accepted"
 WHEN NO ERROR FOR IN-TYPE.
 *> The VALIDATE-STATUS clause can pinpoint the stage of the failed check.
 03 PIC X(40) VALIDATE-STATUS "Name not alphabetic"
 WHEN ERROR ON FORMAT FOR IN-NAME
 VALIDATE-STATUS "Lower-case not allowed in name"
 WHEN ERROR ON CONTENT FOR IN-NAME
 VALIDATE-STATUS "Name not allowed in this case"
 WHEN ERROR ON RELATION FOR IN-NAME.
 *> If no message is stored, spaces will be stored in these cases.
 *> Errors may also be indicated by flags;
 *> they may also refer to a table of input items.
 03 W-ERROR-FLAG PIC 9 COMP OCCURS 5
 VALIDATE-STATUS 1 WHEN ERROR FOR IN-WEEK.
 *>An EC-VALIDATE (nonfatal) exception is also set if the
 *>VALIDATE statement detects an invalid condition.
 *>
 *>***
 *>Execution of the VALIDATE statement
 *>***
 PROCEDURE DIVISION.
 ...
 *>A single VALIDATE statement performs all the actions implied
 *>in the above data descriptions.
 VALIDATE INPUT-RECORD

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1145

 *>After this statement has been executed:
 *>(1) the input record is unchanged;
 *>(2) input items are moved automatically to the target area;
 *>(3) error messages are set up wherever specified in the program.

D.22.8.3 Example of validation of non-display items

 01 MIXED-GROUP TYPEDEF STRONG.
 05 FLD-1 PIC S9(4) USAGE COMP.
 05 FLD-2 PIC S9(7) USAGE PACKED-DECIMAL.
 05 FLD-3 PIC 1(8) USAGE BIT ALIGNED.
 05 PTR-1 USAGE INDEX.
 05 PTR-2 USAGE OBJECT REFERENCE.
 05 TXT-1 PIC N(12) USAGE NATIONAL.
 01 MY-MIXED-GROUP TYPE MIXED-GROUP.

 PROCEDURE DIVISION.
 ...
 *>A declarative section could be used instead of VALIDATE-STATUS clauses
 *>especially if errors are not expected.
 >> TURN EC-VALIDATE CHECKING ON
 VALIDATE MY-MIXED-GROUP

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1146 ©ISO/IEC 2023

D.23 Conditional expressionsFigures D.7 to D.10 illustrate how conditional expressions are evaluated.
Figure D.7 — Evaluation of the condition-1 AND condition-2 AND ... condition-n

Figure D.8 — Evaluation of the condition-1 OR condition-2 OR ... condition-n

Evaluate
condition-1

Condition-1
false

Condition-2
false

Condition-n
false

Evaluate
condition-2

Evaluate
condition-n

yes

yes

yes

no

no

no

Truth value
is true

Truth value
is false

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1147

Figure D.9 — Evaluation of condition-1 OR condition-2 AND condition-3

Evaluate
condition-1

Condition-1
true

Condition-2
true

Condition-n
true

Evaluate
condition-2

Evaluate
condition-n

yes

yes

yes

no

no

no

Truth value
is

Truth value
is truefalse

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1148 ©ISO/IEC 2023

Figure D.10 — Evaluation of (condition-1 OR NOT condition-2) AND condition-3 AND condition-
4

Evaluate
condition-1

Condition-1
true

Condition-2
false

Condition-3
false

Evaluate
condition-2

Evaluate
condition-3

yes

yes

yes

no

no

no

Truth value
is false

Truth value
is true

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1149

Evaluate
condition-1

Condition-1
true

Condition-2
false

Condition-3
false

Evaluate
condition-2

Evaluate
condition-3

yes

yes

yes

no

no

no

Truth value
is true

Truth value
is false

Condition-4
false

Evaluate
condition-4

no

yes

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1150 ©ISO/IEC 2023

D.24 Examples of the use of the EDITING phraseThe EDITING phrase of the PICTURE clause allows various characters or character strings to be inserted into an edited item. It is most useful when a numeric-edited item is being edited. The FOR phrase of the EDITING phrase provides for this. For example, it is quite common to represent negative items by enclosing them in parentheses. In the examples, ‘b’ means a blank or space and the apostrophes in the results are for readability only, and are not part of the actual result.The following example could be used to put them around such an item:
01 item PIC IS L9999.99F

EDITING “L” FOR NEGATIVE IS “(“
EDITING “F” FOR NEGATIVE IS “)”
BLANK WHEN ZERO.The statement ‘MOVE -123.45 TO item’ would result in‘(b123.45)’If you do not want spaces following the leading symbol, you would use floating symbols:

01 item PIC IS LLLL9.99F
EDITING “L” FOR NEGATIVE IS “(“
EDITING “F” FOR NEGATIVE IS “)”
BLANK WHEN ZERO.The statement ‘MOVE -123.45 TO item’ would result in‘b(123.45)’Perhaps it is desired to put multiple characters in the result

01 item PIC IS L999.99
EDITING “L” FOR NEGATIVE IS “DEBIT “
BLANK WHEN ZERO.The statement ‘MOVE -123.45 TO item’ would result in‘DEBIT 123.45’The statement ‘MOVE 123.45 TO item’ would result in‘bbbbbb123.45’ not ‘123.45’’Some care should be taken when using multiple character floating symbols. The size of the item may not be what is expected. For example, ‘PIC LLLL9,88 EDITING “L” FOR NEGATIVE IS “DEBIT ”’ would result in an item size of 13 characters: 6 for the first ‘L’, 3 for the next three, and 4 for the numbers.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1151

D.25 Examples of the execution of the INSPECT statementIn each of the following examples of the INSPECT statement, COUNT-n is assumed to be zero immediately prior to execution of the statement. The results shown for each example, except the last, are the result of executing the two successive INSPECT statements shown above them.EXAMPLE 1:
INSPECT ITEM TALLYING

COUNT-0 FOR ALL "AB", ALL "D"
COUNT-1 FOR ALL "BC"
COUNT-2 FOR LEADING "EF"
COUNT-3 FOR LEADING "B"
COUNT-4 FOR CHARACTERS;

INSPECT ITEM REPLACING
ALL "AB" BY "XY", "D" BY "X"
ALL "BC" BY "VW"
LEADING "EF" BY "TU"
LEADING "B" BY "S"
FIRST "G" BY "R"
FIRST "G" BY "P"
CHARACTERS BY "Z"

EXAMPLE 2:
INSPECT ITEM TALLYING

COUNT-0 FOR CHARACTERS
COUNT-1 FOR ALL "A";

INSPECT ITEM REPLACING
CHARACTERS BY "Z"
ALL "A" BY "X"

Initial Value
of ITEM COUNT-0 COUNT-1 COUNT-2 COUNT-3 COUNT-4

Final Value
of ItemEFABDBCGABEFGG 3 1 1 0 5 TUXYXVWRXYZZPZBABABC 2 0 0 1 1 SXYXYZBBBC 0 1 0 2 0 SSVW

Initial Value
of ITEM COUNT-0 COUNT-1

Final Value
of ITEMBBB 3 0 ZZZABA 3 0 ZZZ

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1152 ©ISO/IEC 2023

EXAMPLE 3:
INSPECT ITEM TALLYING

COUNT-0 FOR ALL "AB" BEFORE "BC"
COUNT-1 FOR LEADING "B" AFTER "D"
COUNT-2 FOR CHARACTERS AFTER "A" BEFORE "C";

INSPECT ITEM REPLACING
ALL "AB" BY "XY" BEFORE "BC"
LEADING "B" BY "W" AFTER "D"
FIRST "E" BY "V" AFTER "D"
CHARACTERS BY "Z" AFTER "A" BEFORE "C"

EXAMPLE 4:
INSPECT ITEM TALLYING

COUNT-0 FOR ALL "AB" AFTER "BA" BEFORE "BC";
INSPECT ITEM REPLACING

ALL "AB" BY "XY" AFTER "BA" BEFORE "BC"

Initial Value
of ITEM COUNT-0 COUNT-1 COUNT-2

Final Value
of ITEMBBEABDABABBCABEE 3 0 2 BBEXYZXYXYZCABVEADDDDC 0 0 4 AZZZZCADDDDA 0 0 5 AZZZZZCDDDDC 0 0 0 CDDDDCBDBBBDB 0 3 0 BDWWWDB

Initial Value
of ITEM COUNT-0

Final Value
of ITEMABABABABC 1 ABABXYABC

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1153

EXAMPLE 5:
INSPECT BACKWARD ITEM TALLYING

COUNT-0 FOR ALL "AB" BEFORE "BC"
COUNT-1 FOR LEADING "B"
COUNT-2 FOR CHARACTERS AFTER "A" BEFORE "C"

INSPECT BACKWARD ITEM REPLACING
ALL "AB" BY "XY" BEFORE "BC"
LEADING "B" BY "V" AFTER "D"

INSPECT FUNCTION REVERSE (ITEM) TALLYING
COUNT-0 FOR ALL "AB" BEFORE "BC"
COUNT-1 FOR LEADING "B"
COUNT-2 FOR CHARACTERS AFTER "A" BEFORE "C"

MOVE FUNCTION REVERSE (ITEM) TO ITEM
INSPECT BACKWARD ITEM REPLACING

ALL "AB" BY "XY" BEFORE "BC"
LEADING "B" BY "V" AFTER "D"

Initial Value
of ITEM COUNT-0 COUNT-1 COUNT-2

Final Value
of ITEMABABBCAB 1 1 0 ABABBCXYABDBABC 0 0 4 AZDBABCBCABCABD 1 0 4 BCABCXYD

Initial Value
of ITEM COUNT-0 COUNT-1 COUNT-2

Final Value
of ITEMABABBCAB 0 1 0 AYXBBCABABDBABC 0 0 4 AZDBABCBCABCABD 0 0 0 BCABCAZD

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1154 ©ISO/IEC 2023

EXAMPLE 6:
INSPECT ITEM CONVERTING

"ABCD" TO "XYZX" AFTER QUOTE BEFORE "#".The above INSPECT is equivalent to the following INSPECT:
INSPECT ITEM REPLACING

ALL "A" BY "X" AFTER QUOTE BEFORE "#"
ALL "B" BY "Y" AFTER QUOTE BEFORE "#"
ALL "C" BY "Z" AFTER QUOTE BEFORE "#"
ALL "D" BY "X" AFTER QUOTE BEFORE "#".

EXAMPLE 7:
INSPECT ITEM CONVERTING "ABCDEFGHIJKLMNOPQRSTUVWXYZ"-

"abcdefghijklmnopqrstuvwxyz"
TO ALL "?"

Initial Value
of ITEM

Final Value
of ITEMAC"AEBDFBCD#AB"D AC"XEYXFYZX#AB"D

Initial Value
of ITEM

Final Value
of ITEM415-245-1212 415-245-1212415-CH5-1212 415-??5-121220%Numeric 20%???????

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1155

D.26 Examples of the execution of the PERFORM statement with the VARYING phrase
specifiedRepresentations of the actions of several types of PERFORM statements with varying-phrase specified are given in figures D.11, The VARYING phrase of a PERFORM statement with the TEST BEFORE phrase having one condition, D.12, The VARYING phrase of a PERFORM statement with the TEST BEFORE phrase having two conditions, D.13, The VARYING phrase of a PERFORM statement with the TEST AFTER phrase having one condition, and D.14, The VARYING phrase of a PERFORM statement with the TEST AFTER phrase having two conditions. These are not intended to dictate implementation.

Figure D.11 — The VARYING phrase of a PERFORM statement with the TEST BEFORE phrase
having one condition

Figure D.12 — The VARYING phrase of a PERFORM statement with the TEST BEFORE phrase
having two conditions

Entrance

Condition-1

Augment identifier-2
with current BY value

Set identifier-2 equal to
current FROM value

Execute specified
set of statements

True

False

Exit

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1156 ©ISO/IEC 2023

Figure D.13 — The VARYING phrase of a PERFORM statement with the TEST AFTER phrase
having one condition

Set identifier-2 to cur-
rent FROM value

Set identifier-5 to cur-
rent FROM value

Condition-2

Augment identifier-5
with current BY value

Condition-1

Execute specified set
of statements

True

False

Entrance

Set identifier-5 to cur-
rent FROM value

Augment identifier-2
with current BY value

True Exit

False

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1157

Figure D.14 — The VARYING phrase of a PERFORM statement with the TEST AFTER phrase
having two conditions

Entrance

Condition-1

Augment identifier-2
with current BY value

Set identifier-2 equal to
current FROM value

Execute specified
set of statements

True

False

Exit

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1158 ©ISO/IEC 2023

Set identifier-2 to cur-
rent FROM value

Set identifier-5 to cur-
rent FROM value

Condition-1

Augment identifier-5
with current BY value

Condition-2

Execute specified set
of statements

False

Entrance

Augment identifier-2
with current BY value

True

Exit

False

True

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1159

D.27 Example of free-form reference formatAn example of free-form reference format follows. It is assumed that each line except the first one begins in column 1, but they can begin in any column. The first line begins in column 8.
 >>SOURCE FORMAT IS FREE
IDENTIFICATION DIVISION.
PROGRAM-ID. Free-form-example.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 a-long-item PIC X(100) VALUE "The first part continued on the next "-
 "line - simple enough.".
01 num-item PIC 9(10).
PROCEDURE DIVISION.
a-paragraph-name.
*> This is a comment line - nothing precedes the comment indicator
 MOVE 0 TO num-item *> this is an inline comment - text precedes
 MOVE "a literal that is concatenated to make a " &
 "longer one" TO a-long-item
. *> a period still has to end a paragraph
>>SOURCE FORMAT IS FIXED
 *> Now we are in fixed format - wasted space at left
 b-paragraph-name.
 MOVE 1 TO num-item *> you can use inline comments
 >>SOURCE FORMAT IS FREE
*> now we are back in free-form - note the directive is in column 8
.
c-paragraph-name.
 ADD 1 TO num-item *> note that indentation not needed - there is no
area a
 *> or area b or any area
 MOVE "abc" TO a-long-item *> however, it makes a better program
 STOP RUN
 .

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1160 ©ISO/IEC 2023

D.28 Conditional compilationConditional compilation provides a means of including or omitting selected lines of source code depending on the values of literals specified by the DEFINE directive. In this way, multiple variants of the same program may be created, without the need to maintain separate source streams.The compiler directives that are used for conditional compilation are the DEFINE directive, the EVALUATE directive, and the IF directive. The DEFINE directive is used to define constants that are referenced in the EVALUATE and IF directives in order to select lines of code that are to be compiled or are to be omitted during compilation.The following examples illustrate how conditional compilation is used:
>>DEFINE compile-this AS 1
>>DEFINE system-number AS 14
>>DEFINE system-type AS "type A"
IDENTIFICATION DIVISION.
PROGRAM-ID. A-program.
DATA DIVISION.
>>EVALUATE system-type
 >>WHEN "type A"
 01 type-item PIC X(10) VALUE "System A".
 >>WHEN "type B"
 01 type-item PIC X(10) VALUE "System B".
 >>WHEN OTHER
 01 type-item PIC X(10) VALUE "Bad system".
>>END-EVALUATE
 ...
PROCEDURE DIVISION.
Startt.
>>IF compile-this IS DEFINED
 DISPLAY "something" *> compiled only when compile-this is specified
>>END-IF
 ...
>>IF compile-this IS NOT DEFINED
 DISPLAY "something else" *> compiled only when compile-this is not
 *> specified
>>END-IF
>>IF (compile-this = 1 AND system-type = "type A")
 OR (compile-this = 2 AND system-type = "type Q")
 PERFORM something
>>ELSE
 PERFORM something-else
>>END-IF
>>IF system-number IS > 10 AND system-number IS < 20
 MOVE x TO y
>>ELSE
 MOVE z TO y

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1161

>>END-IF

 ...

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1162 ©ISO/IEC 2023

D.29 CALL-CONVENTION directiveThe CALL-CONVENTION directive indicates how a program-name or a method-name specified as a literal in a subsequent INVOKE statement, inline method invocation, CALL statement, CANCEL statement, or program-address-identifier is to be processed by the compiler. It may also be used by the implementor to indicate other aspects of the call. The default is as if CALL-CONVENTION IS COBOL had been specified. If call-convention-name-1 is specified, an implementor-defined convention is used.In the following example, if call-convention-name-1 indicates C names, all names without AS clauses are treated as C names and are case-sensitive:
>>CALL-CONVENTION IS COBOL *> case-insensitive
 CALL "A-COBOL-PROGRAM" USING …
 …
>> CALL-CONVENTION IS c-type-names *> case-sensitive
 CALL "A_C_program" USING …
 ...
>> CALL-CONVENTION IS COBOL
*> now we are back to COBOL names again

D.30 ENTRY-CONVENTION clauseThe ENTRY-CONVENTION clause specifies how a runtime element is to receive control. It may be specified in the OPTIONS paragraph of a function or program, indicating the manner by which the containing runtime element will receive control. It may be specified in the OPTIONS paragraph of a class, indicating the manner by which the methods of that class will receive control. It may also be specified in the OPTIONS paragraph of an interface or prototype, to allow proper transfer of control to the methods, functions, or programs referenced by those interfaces or prototypes.The effect of the ENTRY-CONVENTION clause is implementor-defined and may include such aspects of the implementation as the calling sequence used, the manner in which the stack is set up, and any transformation of the called program name.
D.31 Date and time handling

D.31.1 GeneralCOBOL provides a wide range of mechanisms associated with date and time handling. These mechanisms have evolved over the years of COBOL's existence and make use of a number of capabilities of the language.For purposes of illustration, all date examples in this section will use a date of Wednesday, February 15, 1995, and all time examples will use 05:14:27.812479168304 Eastern Standard Time (on the same calendar date).These mechanisms use various terms to describe internal formats, and the definitions are paraphrased here for clarification:1) Standard numeric date form: a date in the Gregorian calendar in the form YYYYMMDD, in which the first four character positions represent the year, the next two the month of the year, and the next two

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1163

the date of the month. The example date above is represented as 19950215 in standard numeric date form.2) Standard numeric time form: a numeric time value representing seconds past midnight. The mechanisms that accept this form require that the implementation be able to recognize at least nine digits to the right of the decimal point in the value, thus providing the ability to represent times to nanosecond precision. (The implementor is not required to provide the current time in the operating environment to nanosecond accuracy, but is encouraged to provide as accurate a value as feasible in that form). The example time above is represented in standard numeric time form as 18867.812479168304.3) Integer date form: an integer value representing the number of days a given date succeeds December 31, 1600 in the Gregorian calendar. The example date above is represented in integer date form as 143951.
D.31.2 Temporal format ACCEPT statement

D.31.2.1 GeneralThe temporal format of the ACCEPT statement returns the current date and time as provided by the operating environment.
D.31.2.2 ACCEPT FROM DATEACCEPT FROM DATE provides a six-digit usage display numeric result representing the current Gregorian date: two digit year of century, two digit month, and two digit day of month; for example, 950215.
D.31.2.3 ACCEPT FROM DATE YYYYMMDDACCEPT FROM DATE YYYYMMDD provides an eight-digit usage display numeric result representing the current Gregorian date, in standard numeric date form; for example, 19950215.
D.31.2.4 ACCEPT FROM DAYACCEPT FROM DAY provides a five-digit usage display numeric result representing the current Julian date: two digit year of century, and three digit day of the year in the range 001 through 366; for example, 95046.
D.31.2.5 ACCEPT FROM DAY YYYYDDDACCEPT FROM DAY YYYYDDD provides a seven-digit usage display numeric result representing the current Julian date: four digit year, and three digit day of the year in the range 001 through 366; for example, 1995046.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1164 ©ISO/IEC 2023

D.31.2.6 ACCEPT FROM DAY-OF-WEEKACCEPT FROM DAY-OF-WEEK provides a one digit usage display numeric result representing the current day of the week, where the value 1 represents Monday, 2 represents Tuesday, … and 7 represents Sunday; for example, 3.
D.31.2.7 ACCEPT FROM TIMEACCEPT FROM TIME provides an eight digit usage display numeric result representing the current local time based on a 24-hour clock: two digits for the hour past midnight in the range 00 through 23; two digits for the minutes past the hour in the range 00 through 59; two digits for the seconds past the minute in the range 00 through 59 by default; and two digits for the hundredths of the second past the second; for example, 05142781.The content of the seconds subfield is affected by the current setting of the LEAP-SECOND directive. If the directive with the ON phrase is in effect, the range of the seconds subfield is defined by the implementor; otherwise, the maximum value is 59.
D.31.3 Basic date and time intrinsic functions

D.31.3.1 GeneralThe basic intrinsic functions provide operating environment date and time retrieval mechanisms and functions designed to facilitate the manipulation and conversion of dates.Two additional functions were added by ISO/IEC 1989:2002 as complements to these basic functions.The order in which these functions are presented here is intended to illustrate the interrelationships among them.
D.31.3.2 CURRENT-DATE functionThe CURRENT-DATE function returns a 21-character alphanumeric value representing the local date and time in the operating environment as follows:— Four numeric digits of the year in the Gregorian calendar— Two numeric digits of the month of the year— Two numeric digits of the day of the month— Two numeric digits of the hour past midnight— Two numeric digits of the minutes past the hour— Two numeric digits of the seconds past the minute— Two numeric digits of the hundredths of a second past the minute— The character "+" to indicate that local time is the same as, or ahead of, Greenwich Mean Time, "-" to indicate that local time is behind Greenwich Mean Time, or "0" to indicate that the operating environment does not have the facility to provide the local time differential— Two digits indicating the number of hours the reported time is ahead of or behind Greenwich Mean Time — Two digits indicating the number of additional minutes the reported time is ahead of or behind Greenwich Mean Time

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1165

For example, in operating environments that include the ability to differentiate local time from Greenwich Mean Time, the returned result would be "1995021505142781-0500"; in operating environments that do not have that capability, the returned result would be "199502150514278100000".
D.31.3.3 WHEN-COMPILED functionThe WHEN-COMPILED function returns a value in exactly the same format as the CURRENT-DATE function, representing the local date and time in the operating environment at which the compilation of the program occurred.
D.31.3.4 INTEGER-OF-DATE functionThe INTEGER-OF-DATE function accepts an integer parameter representing a date in the Gregorian calendar in standard numeric date form (YYYYMMDD), and returns a positive integer in integer date form (days past December 31. 1600); for example, given the parameter 19950215, the returned value would be 143951.
D.31.3.5 INTEGER-OF-DAY functionThe INTEGER-OF-DAY function accepts an integer parameter in Julian date form (YYYYDDD) and returns a positive integer in integer date form (days past December 31, 1600); for example, given the parameter 1995046, the returned value would be 143951.
D.31.3.6 DATE-OF-INTEGER functionThe DATE-OF-INTEGER function performs the reverse of the INTEGER-OF-DATE function. Given a value in integer date form (days past December 31, 1600), the function returns a positive integer in the form YYYYMMDD; for example, for the value 143951, the returned value would be 19950215.
D.31.3.7 DAY-OF-INTEGER functionThe DAY-OF-INTEGER function performs the reverse of the INTEGER-OF-DAY function. Given a value in integer date form (days past December 31, 1600), the function returns a positive integer in the form YYYYDDD; for example, for the value 143951, the returned value would be 1995046.
D.31.3.8 TEST-DATE-YYYYMMDD functionThe TEST-DATE-YYYYMMDD function accepts an argument in standard date form (YYYYMMDD). It returns a zero if the argument is a valid date; the value 1 if the year subfield content is out of range; the value 2 if the month subfield content is out of range; or the value 3 if the day subfield content is out of range for the given year and month.
D.31.3.9 TEST-DAY-YYYYDDD functionThe TEST-DAY-YYYYDDD function accepts an argument in Julian date form (YYYYDDD). It returns a zero if the argument is a valid date; the value 1 if the year subfield content is out of range; or the value 2 if the day subfield content is out of range for the given year.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1166 ©ISO/IEC 2023

D.31.4 Locale date and time intrinsic functions

D.31.4.1 GeneralThe locale-based date and time intrinsic functions format date arguments in accordance with details specified in a locale. This provides dates and times formatted to meet expectations of specific cultures.
D.31.4.2 LOCALE-DATE functionThe LOCALE-DATE function takes as its first argument a date in standard date form (YYYYMMDD) and an optional second argument specifying a locale identified in the SPECIAL-NAMES paragraph (if this argument is omitted, the current locale is used), and returns a character string containing the date specified by the first argument in the format associated with the locale.
D.31.4.3 LOCALE-DAY functionThe LOCALE-DAY function takes as its first argument a date in Julian date form (YYYYDDD) and an optional second argument specifying a locale identified in the SPECIAL-NAMES paragraph (if this argument is omitted, the current locale is used), and returns a character string containing the date specified by the first argument in the format associated with the locale.
D.31.4.4 LOCALE-TIME functionThe LOCALE-TIME function takes as its first argument an integer time in HHMMSS form and an optional second argument specifying a locale identified in the SPECIAL-NAMES paragraph (if this argument is omitted, the current locale is used), and returns a character string containing the time specified by the first argument in the format associated with the locale.
D.31.4.5 LOCALE-TIME-FROM-SECONDS functionThe LOCALE-TIME-FROM-SECONDS function accepts as its first argument a value in standard numeric time form and an optional second argument specifying a locale identified in the SPECIAL-NAMES paragraph (if this argument is omitted, the current locale is used), and returns a character string containing the time specified by the first argument in the format associated with the locale. NOTE While the LOCALE-TIME function does not provide for the representation of fractional seconds, the LOCALE-TIME-FROM-SECONDS function recognizes and processes argument values representing precision to the nanosecond (the implementor can allow even more precise values).
D.31.5 International date and time format handling

D.31.5.1 GeneralIntrinsic functions support the handling of dates and times in several international formats. The supported international formats are representations of formats defined in ISO 8601-1.The date formats, time formats, and combined date and time formats supported by COBOL are illustrated in D.31.5.2, Examples of time and date formats.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1167

The intrinsic functions that support international date and time formats are described in D.31.5.3 through D.31.5.11. The order in which these functions are presented is intended to illustrate the interrelationships among them. In those intrinsic function descriptions the following three formats are used for illustrative purposes: the basic calendar date format ("YYYYMMDD"); a basic local time format with four digits of fractional seconds and offset from GMT ("hhmmss.ssss+hhmm"), and a combined date-and-time format that consists of the illustrative date format and the illustrative time format, separated by the letter "T" ("YYYYMMDDThhmmss.ssss+hhmm").
D.31.5.2 Examples of time and date formats The following examples summarize permissible date and time formats, and the form of the values associated with those formats: The date used in these examples is Wednesday, February 15, 1995, and the time used in these examples is 05:14:27.8135 Eastern Standard Time (on the same calendar date).
Date formats Formats Values Basic calendar date YYYYMMDD 19950215Extended calendar date YYYY-MM-DD 1995-02-15Basic ordinal date YYYYDDD 1995046Extended ordinal date YYYY-DDD 1995-046Basic week date YYYYWwwD 1995W063Extended week date YYYY-Www-D 1995-W06-3
Integer-seconds time formats Formats Values Basic local time hhmmss 051427Extended local time hh:mm:ss 05:14:27Basic UTC time hhmmssZ 101427ZExtended UTC time hh:mm:ssZ 10:14:27ZBasic offset time hhmmss+hhmm 051427-0500Extended offset time hh:mm:ss+hh:mm 05:14:27-05:00
Fractional-seconds time formats Formats Values Basic local time hhmmss.sssss 051427.8124Extended local time hh:mm:ss.ssss 05:14:27.8124 Basic UTC time hhmmss.ssssZ 101427.8124ZExtended UTC time hh:mm:ss.ssssZ 10:14:27.8124Z Basic offset time hhmmss.ssss+hhmm 051427.8124-0500Extended offset time hh:mm:ss.ssdd+hh:mm 05:14:27.8124-05:00The combined basic date and time formats consist of any basic date format followed by the letter "T" followed by any basic local time format. The combined extended date and time formats consist of any extended date format followed by the letter "T" followed by any extended time format.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1168 ©ISO/IEC 2023

In the above examples for fractional-seconds time representations, the period is used as the decimal separator, and four "s" characters after the period are used for illustrative purposes. The decimal separator used for such formats is dependent on the presence or absence of the DECIMAL-POINT IS COMMA clause. The number of "s" characters that may be specified after the decimal separator in these formats may range from 1 to a maximum of 9.
D.31.5.3 FORMATTED-CURRENT-DATE functionThe FORMATTED-CURRENT-DATE function has as its single argument a literal containing a combined date and time format, and returns the local date and time in the operating environment in the specified format. For example, given the format "YYYYMMDDThhmmss.ss+hhmm" and a current operating environment date as described in the introductory paragraphs of D.31, Date and time handling, the returned value will be "19950215T05142781-0500".NOTE Given this particular format – "YYYYMMDDThhmmss.ss+hhmm" – the only difference between the returned value for CURRENT-DATE and that for FORMATTED-CURRENT-DATE is the presence of the character "T" separating the date portion from the time portion in the returned value of the latter function.
D.31.5.4 SECONDS-PAST-MIDNIGHT functionThe SECONDS-PAST-MIDNIGHT function has no parameters. It returns a value in standard numeric time form representing the current time of day in the operating environment expressed as seconds past midnight. For example, if the current time in the operating environment is 5:14:27.812479168304, the returned value would be as close to 18867.812479168304 as the operating environment was capable of providing.
D.31.5.5 FORMATTED-DATE functionThe FORMATTED-DATE function accepts two arguments -- a literal that is a valid date format, and a value in integer date form -- and returns a date in the specified format. For example, for the format "YYYYMMDD" and the value 143951, the returned value would be 19950215.
D.31.5.6 FORMATTED-TIME functionThe FORMATTED-TIME function accepts three arguments – a literal that is a valid time format; a value in numeric time form; and an optional integer argument specifying the number of minutes by which the second argument is presumed to differ from GMT – and returns a time in the specified format. If the first parameter is either a UTC format or an offset format, the third parameter is required (although it may be zero). For example: given as the first argument the format "hhmmss.ss+hhmm", as the second argument the value 18867.812479168304 representing local time, and as the third argument the value +300 representing the five hours by which Eastern Standard Time differs from UTC, the returned value would be "05142781+0500".
D.31.5.7 FORMATTED-DATETIME functionThe FORMATTED-DATETIME function is a combination of the FORMATTED-DATE and FORMATTED-TIME functions. It accepts four arguments – a literal that is a valid combined date and time format; a value in integer date form; a value in standard numeric time form; and an optional offset parameter (see the FORMATTED-TIME function) – and returns a combined date and time in the specified format. For

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1169

example, given as the first argument the format "YYMMDDThhmmss.ss+hhmm", as the second argument the value 143951, as the third argument the value 18867.812479168304, and as the fourth argument the value +300, the returned value would be "19950215T05142781+0500".
D.31.5.8 INTEGER-OF-FORMATTED-DATE functionThe INTEGER-OF-FORMATTED-DATE function accepts two parameters – a literal that is either a valid date format or a valid combined date and time format, and a data item whose content is in the specified format – and returns a value in integer date form. If the first argument is a combined date and time format, the time portion of the data item is validated against the format, but the returned value does not include the time. For example, given as the first argument the format "YYYYMMDD" and as the second argument the value "19950215", the returned value would be 143951. The same value would be returned if the first argument was the format "YYYYMMDDThhmmss.ss+hhmm" and the second argument the value "19950215T05142781+0500".
D.31.5.9 SECONDS-FROM-FORMATTED-TIME functionThe SECONDS-FROM-FORMATTED-TIME function accepts two parameters – a literal that is either a time format or a combined date and time format, and a data item whose content is in the specified format – and returns a value in standard numeric time form. If the first argument is a combined date and time format, the date portion of the data item is validated against the format, but the returned value does not include the date. For example, given as the first argument the format "hhmmss.ss+hhmm" and as the second argument the value "05142781+0500", the returned value would be 18867.81. The same value would be returned if the first argument was the format "YYYYMMDDThhmmss.ss+hhmm" and the second argument was the value "19950215T05142781+0500".
D.31.5.10 TEST-FORMATTED-DATETIME functionThe TEST-FORMATTED-DATETIME function accepts two parameters – a date format, a time format, or a combined date and time format, and a data item containing a data item presumed to be in that format. The function returns zero if the data in the second argument exactly matches the format in the first argument. If the data item does not match the format, the value returned is the ordinal position of the first character for which the data item and the format do not match.
D.31.5.11 COMBINED-DATETIME functionThe COMBINED-DATETIME function accepts two arguments – a date in integer date form, and a time in standard numeric time form – and returns a numeric value in which the date occupies the integer part of the value and the time represents the fractional part, according to the expression argument-1 + (argument-2 / 100000). For example, given the integer date form value 143951 (representing the date February 15, 1995) and the standard numeric time form value 18867.812479168304 (representing the time 05:14:27.812479168304), the returned value would be exactly 143951.18867812479168304. The intent of this function is to provide a standard numeric representation of a combined date and time in a single variable, for any date from January 1, 1601 onward, to at least nanosecond precision.
D.32 Alternatives to HIGHEST-ALGEBRAIC, LOWEST-ALGEBRAIC and SMALLEST-ALGE-
BRAIC FUNCTIONS

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1170 ©ISO/IEC 2023

These three functions apply to any type of numeric and numeric-edited item. Most of their functionality can also be achieved with the standard-float-content format of the SET statement and the MOVE ZERO TO statement.The returned value for the LOWEST-ALGEBRAIC function, when the argument is unsigned, is always zero.The statementsSET numeric-item TO NEAREST-TO-ZERO IN-ARITHMETIC-RANGEandMOVE SMALLEST-ALGEBRAIC (numeric-item) TO numeric-itemmay be used to set the minimum nonzero value permitted for any numeric or numeric-edited item.The statement
SET CONTENT OF numeric-item TO FARTHEST-FROM-ZERO may be used to set numeric-item to the positive value farthest from zero that can be represented in numeric-item.That result is the same as that which might be obtained with the statement
MOVE HIGHEST-ALGEBRAIC (numeric-item) TO numeric-item.The statement
SET CONTENT OF signed-numeric item TO FARTHEST-FROM-ZERO SIGN NEGATIVEmay be used to set signed-numeric-item to the negative value farthest from zero that can be represented in signed-numeric-item.That result is the same as that which might be obtained with the statement
MOVE LOWEST-ALGEBRAIC (signed-numeric-item) TO signed-numeric-item.Existing specifications (for example, 'MOVE ZERO TO unsigned-numeric-item' provide sufficient alternatives to 'MOVE LOWEST-ALGEBRAIC (unsigned-numeric-item) TO unsigned-numeric-item' without encountering the function argument limitations.The IN-ARITHMETIC-RANGE class test independently provides the ability to determine whether the content of a given numeric or numeric-edited data item is within the algebraic range permitted for the mode of arithmetic that is in effect.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1171

The function LOWEST-ALGEBRAIC (numeric item) for an unsigned numeric item provides an equivalent to SMALLEST-ALGEBRAIC for fixed-point numeric items, it is unlikely that the same approach for floating-point items would work.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1172 ©ISO/IEC 2023

 Annex E (informative)
 Substantive changes list

E.1 GeneralThis annex contains a list of the substantive changes between the previous COBOL standard and this Working Draft International Standard. The list is separated into those changes potentially affecting existing COBOL programs and those changes probably not affecting existing COBOL programs.
E.2 Substantive changes potentially affecting existing programs1) Removal of items not previously identified as obsolete. The following are items that were not identified as obsolete in the previous COBOL Standard. However, since then, it has been determined that they are sufficiently little used and often error-prone. In some cases, the items were designated as archaic but not obsolete. In other cases, they were not archaic but at this time it is felt that their removal will only enhance COBOL programming. Implementors are free to continue support for them as extensions but they will neither be supported or enhanced within the COBOL Standard. — Move of alphanumeric figurative constants to numeric or numeric-edited items (with the exception of ALL “literal” containing only digits or ALL symbolic-character representing a digit to integer numeric items which is still permitted. — Continuation of COBOL words in fixed form reference format — On Overflow phrase of the CALL statement — Removal of support for non-pseudo-text operands in the replacing phrase of the COPY statement — EXIT METHOD statement — EXIT FUNCTION statement — The WITH LOCK phrase of the CLOSE statement and the related File Status of 38Justification: In the previous COBOL standard, some of the features listed above were designated as archaic. Others are either not used or little used. All of these features are believed to be error-prone and there are other facilities available to obtain the same results with less potential for errors in programming and maintenance.It is believed that few, if any, programs will be affected by these changes.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1173

2) ALIGN clause. The ALIGN clause is added to the lists for required consistency between typed data items and the rules for strongly typed items have been amended to also include the alignment of corresponding bit items.Justification:This corrects an omission in the previous standard, though complete alignment at byte boundaries was already required by the pre-existing rules.The requirement for alignment at bit positions is thought to be unlikely to affect existing programs and implementations.3) Boolean shifting operators. The boolean operators B-SHIFT-L, B-SHIFT-R, B-SHIFT-LC and B-SHIFT-RC have been added to allow boolean left and right shifting.Justification: The ability to manipulate by shifting the boolean digits that form an alphanumeric or national data item was a requested feature for this edition of the COBOL standard. It is believed that many compilers already support this feature in one form or another, and it was deemed valuable to provide a standard way of providing this.It is believed that few programs will be affected by these changes.4) Characters permitted in user-defined words. The following character, represented by the code point in the hexadecimal notation specified in ISO/IEC 10646, has been deleted:— 037A GREEK YPOGEGRAMMENIThe following character has been changed so it is not allowed for the start or last character of a user-defined word:— 30FB KATAKANA MIDDLE DOTJustification:The character 037A is listed in ISO/IEC TR 10176:2003 but explicitly excluded from the Identifier Characters in UAX #31, Unicode 13.0.0. The character 30FB is listed in ISO/IEC TR 10176:2003 as it is allowed to be the first or last character of a user-defined word but it is classified as one of the medial characters in UAX #31, Unicode 13.0.0.It is believed that few, if any, programs will be affected by those changes because those characters are believed to be rarely used in user-defined words. The benefits of maintaining currency in references to external standards outweigh the inconvenience caused by those changes.5) Compiler-directive words. The following compiler directive words have been added: — COBOL-WORDS— DISPLAY

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1174 ©ISO/IEC 2023

— FLAG-14— I-O-STATUS-04— NUM-ED-ZERO-FIG-CONSTANT— POP— PUSH— REF-MOD-ZERO-LENGTH— UPON Justification:In each case, the benefits to be derived from the additional facility provided through the addition of each compiler-directive word were deemed to outweigh the inconvenience caused by removing this word from the realm of compilation variable names.It is believed that few, if any, programs will be affected by these changes.6) Compile-Time Arithmetic Expression, Mode of arithmetic for evaluating and handling of intermediate results. The mode of arithmetic used in evaluating compile-time arithmetic expressions and the handling of intermediate results is now explicitly implementor defined. Justification: The previous COBOL Standard required the use of an arithmetic mode that is no longer supported.It is believed that few, if any, programs will be affected by these changes.7) Determination of whether a year is a leap year. The International Standard (ISO 8601:2004) that defined the formula that determined whether a particular year was a leap year has been updated, and the new version of that International Standard (ISO 8601-1:2019) has removed that formula from normative text.Justification:This standard should not refer to an obsolete version of another ISO standard.It is believed that few, if any, programs will be affected by this change.8) EVALUATE compiler directive. The two rules about omitting text when reaching the end of the EVALUATE compiler directive without any WHEN phrase evaluating to true or without encountering a WHEN OTHER phrase have been changed to ensure that the whole condition is now true only when both of the constituent conditions are true.Justification:This corrects an error in the previous standardIt is believed that few if any programs would be affected, as it is probable that implementors already implemented these rules as now written.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1175

9) External items. Exception conditions for checking conformance have now been added, where previously the mechanism for doing so was unspecified. It was up to the implementor to decide how to do so, though that was not previously specified as an implementor defined item.Justification:Although rules for conformance had previously been specified, no exception conditions had been provided for any violations.Programs that ignored or provided different mechanisms for detecting and processing violations may need revision. The associated new exception conditions will have no effect and the conditions ignored unless they are enabled in both the invoked and invoking runtime elements, this means that any current implementor defined checking processes would now be ignored, unless they use implementor defined syntax to do so. The potential benefits for compatibility are thought to justify the provision of a consistent checking mechanism.It is believed that few, if any, programs will be affected by these changes.10) External items. The CONSTANT RECORD clause may now only be specified for external items that are strongly typed, where previously external items could not be strongly typed. Previously external items could be specified with the CONSTANT RECORD clause with inadequate conformance checking between runtime elements, thereby allowing them to be changed by runtime elements that did not specify the CONSTANT RECORD clause.Justification:Correction of an error that permitted external constant record items to be changed by other runtime elements, while also now permitting them to be shared safely.It is believed that few programs would be affected, but that those that are should be corrected.11) Figurative constant values with the ALL phrase where the length of the data item is
unspecified. The length is now defined, the results were previously undefined, but could be expected to cause a compiler error and it seems likely that implementors already prevent or work around this use. Justification:These changes were needed because there could be erroneous results and compiler errors.It is believed that few, if any, programs will be affected by these changes. Any programs that are affected could easily be changed to reflect the outcome that was probably originally intended.12) FILE STATUS and the EXTERNAL clause. It is now required that if a file is external and has a FILE STATUS clause in the SELECT statement, all corresponding SELECT statements within the run unit for that file shall have a FILE STATUS clause specifying the same corresponding external data item.Justification:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1176 ©ISO/IEC 2023

To ensure that the setting of the FILE STATUS data item for a file by I-O statements is consistent between runtime elements.It is thought that relatively few programs would be affected and that those that are should be changed to reflect the outcome that was probably originally intended.13) FUNCTION ALL INTRINSIC and new intrinsic functions. If FUNCTION ALL INTRINSIC is specified in the REPOSITORY paragraph, the following new intrinsic function names are prohibited within the scope of that REPOSITORY paragraph as user-defined words: — BASECONVERT— CONCAT— CONVERT— FIND-STRING— MODULE-NAME— SMALLEST-ALGEBRAIC— SUBSTITUTE Justification:New intrinsic functions were added to provide needed functionality. Existing programs that include a REPOSITORY paragraph with the intrinsic format of the function-specifier with the ALL phrase specified may no longer compile if any of these names are specified as user-defined words within the scope of the REPOSITORY paragraph. The benefits to be derived from the additional capabilities provided through the addition of each intrinsic function name were deemed to outweigh the inconvenience caused by removing this word from the realm of user-defined words available to the user in the limited context of the scope of a REPOSITORY paragraph with the FUNCTION ALL INTRINSIC specification.It is believed that few, if any, programs will be affected by these changes.14) General case mappings. The following case mappings have been deleted.(0131,0069); (03C2,03C3)Justification:This corrects an error in the previous standard. The following characters, represented by the code points in the hexadecimal notation specified in ISO/IEC 10646, are lowercase.— 0131 LATIN SMALL LETTER DOTLESS I— 03C2 GREEK SMALL LETTER FINAL SIGMAIt is believed that few if any programs would be affected, as the characters are believed to be rarely used in user-defined words.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1177

15) I-O Status ‘04’. The setting of I-O Status ‘04’ is clarified to state when it is set. It was in the list of known errors in the previous COBOL standard as not clearly defined.Justification:Removing it from the known errors improves compatibility.It is believed that few, if any, programs will be affected by these changes.16) I-O Status ‘07’. The setting of I-O Status ‘07’ is now restricted to the execution of the OPEN and CLOSE statements.Justification:It was considered unnecessary that this fault should be flagged for any of the other input-output statements.It is thought that this change would not significantly affect the operation of existing programs, because it only potentially prevents the repetitive use of error handling procedures for the same condition while processing a file.17) I-O status ‘0x’. It is now implementor dependent whether or not upper and lower case versions of letters in this context are equivalent.Justification:It was previously undefined whether or not this was the case.It is believed that few programs will be affected by these changes that potentially affect program portability.18) I-O Status ‘37’. The OPEN statement may return a file status ‘37’ for insufficient authority to open a file.Justification: It is thought that most implementations would already be returning a file status for insufficient authority; this will make implementations consistent.It is believed that few, if any, programs will be affected by these changes.19) Inline exception processing. The PERFORM statement is enhanced to allow checking for exception conditions inline. This facility required changes to the various input-output statements that may be incompatible with some existing implementations:a) INVALID KEY processing. If an INVALID KEY phrase is not specified and an invalid key condition occurs, any declarative that specified INPUT, OUTPUT, I-O, or EXTEND would not have been executed. It will now be executed. This appears to be an error in previous COBOL standards.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1178 ©ISO/IEC 2023

b) READ processing. If an exception that is not an invalid key or at end occurs, any declarative that specifies INPUT or I-O would not have been executed. It will now be executed. This appears to be an error in previous standards.Justification:The previous COBOL Standard was not clear or missing processing of some I-O exceptions. This change clarifies or corrects that processing.It is believed that few, if any, programs will be affected by these changes.20) MERGE statement restriction: A MERGE statement is now prohibited in an output procedure of another MERGE statement or an input or output procedure of a file format SORT statement.The previous COBOL Standard allowed this but there were conflicting rules and SORT did not allow it. The results of executing it could cause an exception to be raised or undefined action.It is believed that few, if any, programs will be affected by these changes.21) Obsolete elements. The following features that were classified as obsolete in the previous COBOL standard, have been removed from this Working Draft International Standard: — FLAG-85 — FLAG-NATIVE-ARITHMETIC — Standard Arithmetic — Move of the figurative constant, QUOTE, to numeric or numeric-edited itemsJustification:In each case, the justification for eventually removing the feature was presented in the previous COBOL standard. These features are either ones better handled by external hardware or software, or are irrelevant in a modern development environment.It is believed that several of these features were infrequently implemented and that few programs have used these features. For those users that remain dependent on these features, implementors may provide extensions that correspond to the deleted features.It is believed that few, if any, programs will be affected by these changes.22) READ PREVIOUS statement following an OPEN statement. Ensure that an at end condition occurs.Justification:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1179

The prior standard had a note that conflicted with a rule to state that the at end condition normally exists, while the rule itself stated that the first record would be retrieved. The rule itself has been amended such that an at end condition would occur.It is believed that few if any programs would be affected, since most or all implementations that support READ PREVIOUS already apply the rule as now changed.23) Reference-modification. The resultant data item may now have a length of zero, when the REF-MOD-ZERO-LENGTH compiler directive is in effect to allow it, otherwise the EC-BOUND-REF-MOD exception is raised. Previously the consequence of this result was undefined, though it had been the intention that a zero-length result would always raise the EC-BOUND-REF-MOD exception.Justification:It is believed that in most cases programmers intend that reference-modification does not result in a zero-length item and expect an exception when this is not the case. In cases where this is not true the REF-MOD-ZERO-LENGTH compiler directive may be specified.It is thought that few, if any, programs will be affected.24) Relative keys where the file is external. It is now a requirement that the relative key data item is always the same corresponding external data item.Justification:This would clear up potential confusion as to the meaning of the standard and ensure all runtime elements in which the external file is specified refer to the same corresponding external data item as a relative key.It is believed that few if any programs will be affected by this change, as it is thought that implementors would have understood this to be the required behavior already.25) Reserved words. The following reserved words have been added: — B-SHIFT-L— B-SHIFT-LC— B-SHIFT-R— B-SHIFT-RC— COMMIT— EDITING— END-RECEIVE— END-SEND— EXCLUSIVE-OR— FINALLY— LOCATION— MESSAGE-TAG— RECEIVE— ROLLBACK— SEND

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1180 ©ISO/IEC 2023

— XORJustification:In each case, the benefits to be derived from the additional facility provided through the addition of each reserved word were deemed to outweigh the inconvenience caused by removing this word from the realm of user-defined words.It is believed that few, if any, programs will be affected by these changes.26) Transfer of control. Explicit and implicit transfers of control (inclusion of sections as well as paragraphs).Justification:The checking was unclear and probably not what was intended before these changes. It is easy to change any affected programs to reflect the outcome that was probably originally intended.It is believed that few, if any, programs will be affected by these changes.27) VALUE clause literal categories. Alphanumeric and national literals in the VALUE clause for numeric-edited items are now checked to ensure they conform to their PICTURE and USAGE clauses. Justification:It was unclear what value was actually used. The changes make it clear and obvious. It is easy to change any affected programs to reflect the outcome that was probably originally intended.It is believed that few, if any, programs will be affected by these changes.28) VALUE clause and the figurative constant ZERO for numeric-edited items. The figurative constant ZERO or ZEROES with or without the ALL phrase, when used as the value for a numeric-edited data item, is now treated as the numeric literal zero, such that the result is no longer left justified or potentially a simple string of zeroes.Justification:It seems unlikely that implementors ever applied the rule that they were not to be. It is easy to change any affected programs to reflect the outcome that was probably originally intended.It is believed that few, if any, programs will be affected by these changes.29) VALUE clause and editing symbols for numeric-edited items. Editing symbols are now compulsorily required in the value when the value is an alphanumeric or national literal and are automatically supplied when the literal is a numeric literal.Justification:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1181

This appears to be an omission from the previous standard and now ensures that the content of such data items is consistent with their definitions when the VALUE clause is specified.It is thought that relatively few programs would be affected and that those that are should be changed to reflect the outcome that was probably originally intended. It seems unlikely that implementors ever applied the rule that they were not to be included.30) WRITE statement and end-of-page condition processing. When the END-OF-PAGE condition occurs and the END-OF-PAGE phrase is not specified, control passes to the end of the WRITE statement.Justification:Corrected an omission.It is thought that few programs would be affected as implementors would probably have already provided this solution.
E.3 Substantive changes probably not affecting existing programs

E.3.1 GeneralSome items in this annex require new reserved words, new intrinsic function names, or new compiler-directive words. Such incompatible additions are documented in E.2, Substantive changes potentially affecting existing programs. With the exception of such additions, the items in this annex have no syntax or semantic changes that might impact existing conforming source programs.
E.3.2 Possibly affecting because of the addition of new words or names

1) Asynchronous messaging. A method of allowing communication between run units via messages is provided. The run units may be on the same processor or different processors and the processors do not have to be in the same location.2) Commit and rollback facility. The addition of this facility allows the users to permanently commit file changes at specified stages of a run unit, together with the ability to rollback changes to those files to the point that they were at the previous commit or, if none, the start of the run unit. It also allows specified data items to be saved by a commit for restoration in the event of a rollback.3) Exception conditions. New exception conditions have been added: — For the Asynchronous messaging facility (EC-MCS, EC-MCS-ABNORMAL-TERMINATION, EC-MCS-IMP, EC-MCS-INVALID-TAG, EC-MCS-MESSAGE-LENGTH, EC-MCS-NO-REQUESTOR, EC-MCS-NO-SERVER, EC-MCS-NORMAL-TERMINATION, EC-MCS-REQUESTOR-FAILED) — For the Commit and Rollback facility (EC-FLOW-APPLY-COMMIT, EC-FLOW-COMMIT and EC-FLOW-ROLLBACK)

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1182 ©ISO/IEC 2023

— For additional functionality for the CONTINUE statement (EC-CONTINUE, EC-CONTINUE-IMP, EC-CONTINUE-LESS-THAN-ZERO) — For external item conformance checking (EC-EXTERNAL, EC-EXTERNAL-DATA-MISMATCH, EC-EXTERNAL-FILE-MISMATCH, EC-EXTERNAL-FORMAT-CONFLICT, and EC-EXTERNAL-IMP) — For enabling exception checking PERFORM statements and declaratives to process input-output warnings for successful execution with non-zero file status. (EC-I-O-WARNING) — For representing I-O status “7x” (EC-IO-RECORD-CONTENT)4) Logical operators. Logical operators have been enhanced to include ‘EXCLUSIVE-OR’ and ‘XOR’.5) The NO SIGN phrase of the USAGE clause. The USAGE clause has been enhanced to allow the representation of a PACKED-DECIMAL data item in the storage of the computer to contain no sign value.6) SYNCHRONIZED clause. This clause may now be specified for a group level data item, when it is treated as though it had been independently specified for each contained elementary data item for which it is permitted.
E.3.3 Not affecting1) The ANYCASE keyword of the NUMVAL-C function has been clarified to be consistent with the rest of the standard.2) BEFORE and AFTER phrases. Both BEFORE and AFTER are allowed together in WRITE ADVANCING.3) Binary operators. Binary operators have been enhanced to include ‘B-SHIFT-L, B-SHIFT-LC, B-SHIFT-R and B-SHIFT-RC.4) Characters permitted in user-defined words. The following characters have been changed to be allowed as the first character of a user-defined word.

Armenian:
0559

Common:
00B5, 02BB-02C1, 02D0-02D1, 02EE, 2102, 2107, 210A-2113, 2115, 2119-211D, 2124,
2128, 212C-212D, 212F-2131, 2133-2139, 3006

Greek:
1FBE, 2126

Han:
3005, 3007, 3021-3029, 3038-303A

Latin:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1183

02B0-02B8, 02E0-02E4, 212A-212B, 2160-2183

Tamil:
0B835) Characters permitted in user-defined words. The following characters have been added.
Adlam:
1E900-1E94B, 1E950-1E959

Ahom:
11700-1171A, 1171D-1172B, 11730-11739

Anatolian_Hieroglyphs:
14400-14646

Arabic:
0610-061A, 0620, 063B-063F, 0656-065F, 066E-066F, 06DF-06E4, 06EE-06EF, 06FF,
0750-077F, 08A0-08B4, 08B6-08C7, 08D3-08E1, 08E3-08FF, FB50-FBB1, FBD3-FC5D,
FC64-FD3D, FD50-FD8F, FD92-FDC7, FDF0-FDF9, FE71, FE73, FE77, FE79, FE7B, FE7D,
FE7F-FEFC, 1EE00-1EE03, 1EE05-1EE1F, 1EE21-1EE22, 1EE24, 1EE27, 1EE29-1EE32,
1EE34-1EE37, 1EE39, 1EE3B, 1EE42, 1EE47, 1EE49, 1EE4B, 1EE4D-1EE4F,
1EE51-1EE52, 1EE54, 1EE57, 1EE59, 1EE5B, 1EE5D, 1EE5F, 1EE61-1EE62, 1EE64,
1EE67-1EE6A, 1EE6C-1EE72, 1EE74-1EE77, 1EE79-1EE7C, 1EE7E, 1EE80-1EE89,
1EE8B-1EE9B, 1EEA1-1EEA3, 1EEA5-1EEA9, 1EEAB-1EEBB

Armenian:
0560, 0588, FB13-FB17

Avestan:
10B00-10B35

Balinese:
1B00-1B4B, 1B50-1B59, 1B6B-1B73

Bamum:
A6A0-A6F1, 16800-16A38

Bassa_Vah:
16AD0-16AED, 16AF0-16AF4

Batak:
1BC0-1BF3

Bengali:
0980, 09BC-09BD, 09CE, 09D7, 09FC, 09FE

Bhaiksuki:
11C00-11C08, 11C0A-11C36, 11C38-11C40, 11C50-11C59

Bopomofo:
312D-312F, 31B8-31BF

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1184 ©ISO/IEC 2023

Brahmi:
11000-11046, 11066-1106F, 1107F

Buginese:
1A00-1A1B

Buhid:
1740-1753

Canadian_Aboriginal:
1677-167F, 18B0-18F5

Carian:
102A0-102D0

Caucasian_Albanian:
10530-10563

Chakma:
11100-11134, 11136-1113F, 11144-11147

Cham:
AA00-AA36, AA40-AA4D, AA50-AA59

Cherokee:
13F5, 13F8-13FD, AB70-ABBF

Chorasmian:
10FB0-10FC4

Common:
02B9-02BA, 02C6-02CF, 02EC, 0374, 0387, 1CE1, 1CE9-1CEC, 1CEE-1CF3, 1CF5-1CF7,
1CFA, 2054, 2118, 212E, 213C-213F, 2145-2149, 3031-3035, 303C, A717-A71F, A788,
A9CF, FE33-FE34, FE4D-FE4F, FF10-FF19, FF3F, FF70, FF9E-FF9F, 16FE3,
1D165-1D166, 1D16D-1D172, 1D400-1D454, 1D456-1D49C, 1D49E-1D49F, 1D4A2,
1D4A5-1D4A6, 1D4A9-1D4AC, 1D4AE-1D4B9, 1D4BB, 1D4BD-1D4C3, 1D4C5-1D505,
1D507-1D50A, 1D50D-1D514, 1D516-1D51C, 1D51E-1D539, 1D53B-1D53E, 1D540-1D544,
1D546, 1D54A-1D550, 1D552-1D6A5, 1D6A8-1D6C0, 1D6C2-1D6DA, 1D6DC-1D6FA,
1D6FC-1D714, 1D716-1D734, 1D736-1D74E, 1D750-1D76E, 1D770-1D788, 1D78A-1D7A8,
1D7AA-1D7C2, 1D7C4-1D7CB, 1D7CE-1D7FF, 1FBF0-1FBF9

Coptic:
2C80-2CE4, 2CEB-2CF3

Cuneiform:
12000-12399, 12400-1246E, 12480-12543

Cypriot:
10800-10805, 10808, 1080A-10835, 10837-10838, 1083C, 1083F

Cyrillic:
0483-0484, 0487, 048A-048B, 04C5-04C6, 04C9-04CA, 04CD-04CF, 04F6-04F7,
04FA-052F, 1C80-1C88, 1D2B, 1D78, 2DE0-2DFF, A640-A66F, A674-A67D, A67F-A69F,

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1185

FE2E-FE2F

Deseret:
10400-1044F

Devanagari:
0900, 0904, 093A-093C, 094E-094F, 0955-0957, 0971-097F, A8E0-A8F7, A8FB,
A8FD-A8FF

Dives_Akuru:
11900-11906, 11909, 1190C-11913, 11915-11916, 11918-11935, 11937-11938,
1193B-11943, 11950-11959

Dogra:
11800-1183A

Duployan:
1BC00-1BC6A, 1BC70-1BC7C, 1BC80-1BC88, 1BC90-1BC99, 1BC9D-1BC9E

Egyptian_Hieroglyphs:
13000-1342E

Elbasan:
10500-10527

Elymaic:
10FE0-10FF6

Ethiopic:
1207, 1247, 1287, 12AF, 12CF, 12EF, 130F, 131F, 1347, 135D-135F, 1380-138F,
2D80-2D96, 2DA0-2DA6, 2DA8-2DAE, 2DB0-2DB6, 2DB8-2DBE, 2DC0-2DC6, 2DC8-2DCE,
2DD0-2DD6, 2DD8-2DDE, AB01-AB06, AB09-AB0E, AB11-AB16, AB20-AB26, AB28-AB2E

Georgian:
10C7, 10CD, 10F7-10FA, 10FC-10FF, 1C90-1CBA, 1CBD-1CBF, 2D00-2D25, 2D27, 2D2D

Glagolitic:
2C00-2C2E, 2C30-2C5E, 1E000-1E006, 1E008-1E018, 1E01B-1E021, 1E023-1E024,
1E026-1E02A

Gothic:
10330-1034A

Grantha:
11300-11303, 11305-1130C, 1130F-11310, 11313-11328, 1132A-11330, 11332-11333,
11335-11339, 1133C-11344, 11347-11348, 1134B-1134D, 11350, 11357, 1135D-11363,
11366-1136C, 11370-11374

Greek:
0370-0373, 0376-0377, 037B-037D, 037F, 03CF, 03D8-03D9, 03F4-03F5, 03F7-03FF,
1D26-1D2A, 1D5D-1D61, 1D66-1D6A, 1DBF, AB65, 10140-10174, 1D242-1D244

Gujarati:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1186 ©ISO/IEC 2023

0A8C, 0ABC, 0AE1-0AE3, 0AF9-0AFF

Gunjala_Gondi:
11D60-11D65, 11D67-11D68, 11D6A-11D8E, 11D90-11D91, 11D93-11D98, 11DA0-11DA9

Gurmukhi:
0A01, 0A03, 0A3C, 0A51, 0A70-0A71, 0A75

Han:
303B, 4DB6-4DBF, 9FA6-9FFC, F900-FA0D, FA10, FA12, FA15-FA1E, FA20, FA22,
FA25-FA26, FA2A-FA6D, FA70-FAD9, 16FF0-16FF1, 20000-2A6DD, 2A700-2B734,
2B740-2B81D, 2B820-2CEA1, 2CEB0-2EBE0, 2F800-2FA1D, 30000-3134A

Hangul:
1100-11FF, 302E-302F, 3131-318E, A960-A97C, D7B0-D7C6, D7CB-D7FB, FFA0-FFBE,
FFC2-FFC7, FFCA-FFCF, FFD2-FFD7, FFDA-FFDC

Hanifi_Rohingya:
10D00-10D27, 10D30-10D39

Hanunoo:
1720-1734

Hatran:
108E0-108F2, 108F4-108F5

Hebrew:
0591-05AF, 05BA, 05C4-05C5, 05C7, 05EF, FB1D-FB28, FB2A-FB36, FB38-FB3C, FB3E,
FB40-FB41, FB43-FB44, FB46-FB4F

Hiragana:
3095-3096, 309D-309F, 1B001-1B11E, 1B150-1B152

Imperial_Aramaic:
10840-10855

Inherited:
0300-036F, 0485-0486, 0653-0655, 0953-0954, 1AB0-1ABD, 1ABF-1AC0, 1CD0-1CD2,
1CD4-1CE0, 1CE2-1CE8, 1CED, 1CF4, 1CF8-1CF9, 1DC0-1DF9, 1DFB-1DFF, 20D0-20DC,
20E1, 20E5-20F0, 302A-302D, 3099-309A, FE00-FE0F, FE20-FE2D, 101FD, 102E0,
1133B, 1D167-1D169, 1D17B-1D182, 1D185-1D18B, 1D1AA-1D1AD, E0100-E01EF

Inscriptional_Pahlavi:
10B60-10B72

Inscriptional_Parthian:
10B40-10B55

Javanese:
A980-A9C0, A9D0-A9D9

Kaithi:
11080-110BA

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1187

Kannada:
0C80-0C81, 0CBC-0CBD, 0CD5-0CD6, 0CE2-0CE3, 0CF1-0CF2

Katakana:
30FD-30FF, 31F0-31FF, FF66-FF6F, FF71-FF9D, 1B000, 1B164-1B167

Kayah_Li:
A900-A92D

Kharoshthi:
10A00-10A03, 10A05-10A06, 10A0C-10A13, 10A15-10A17, 10A19-10A35, 10A38-10A3A,
10A3F

Khitan_Small_Script:
16FE4, 18B00-18CD5

Khmer:
17D7, 17DC-17DD

Khojki:
11200-11211, 11213-11237, 1123E

Khudawadi:
112B0-112EA, 112F0-112F9

Lao:
0E86, 0E89, 0E8C, 0E8E-0E93, 0E98, 0EA0, 0EA8-0EA9, 0EAC, 0EBA, 0EDE-0EDF

Latin:
0220-0221, 0234-024F, 02AE-02AF, 1D00-1D25, 1D2C-1D5C, 1D62-1D65, 1D6B-1D77,
1D79-1DBE, 1E9C-1E9F, 1EFA-1EFF, 2071, 2090-209C, 2132, 214E, 2184-2188,
2C60-2C7F, A722-A787, A78B-A7BF, A7C2-A7CA, A7F5-A7FF, AB30-AB5A, AB5C-AB64,
AB66-AB69, FB00-FB06, FF21-FF3A, FF41-FF5A

Lepcha:
1C00-1C37, 1C40-1C49, 1C4D-1C4F

Limbu:
1900-191E, 1920-192B, 1930-193B, 1946-194F

Linear_A:
10600-10736, 10740-10755, 10760-10767

Linear_B:
10000-1000B, 1000D-10026, 10028-1003A, 1003C-1003D, 1003F-1004D, 10050-1005D,
10080-100FA

Lisu:
A4D0-A4FD, 11FB0

Lycian:
10280-1029C

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1188 ©ISO/IEC 2023

Lydian:
10920-10939

Mahajani:
11150-11173, 11176

Makasar:
11EE0-11EF6

Malayalam:
0D00-0D01, 0D04, 0D29, 0D3A-0D3D, 0D44, 0D4E, 0D54-0D57, 0D5F, 0D62-0D63,
0D7A-0D7F

Mandaic:
0840-085B

Manichaean:
10AC0-10AC7, 10AC9-10AE6

Marchen:
11C72-11C8F, 11C92-11CA7, 11CA9-11CB6

Masaram_Gondi:
11D00-11D06, 11D08-11D09, 11D0B-11D36, 11D3A, 11D3C-11D3D, 11D3F-11D47,
11D50-11D59

Medefaidrin:
16E40-16E7F

Meetei_Mayek:
AAE0-AAEF, AAF2-AAF6, ABC0-ABEA, ABEC-ABED, ABF0-ABF9

Mende_Kikakui:
1E800-1E8C4, 1E8D0-1E8D6

Meroitic_Cursive:
109A0-109B7, 109BE-109BF

Meroitic_Hieroglyphs:
10980-1099F

Miao:
16F00-16F4A, 16F4F-16F87, 16F8F-16F9F

Modi:
11600-11640, 11644, 11650-11659

Mongolian:
180B-180D, 1878, 18AA

Mro:
16A40-16A5E, 16A60-16A69

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1189

Multani:
11280-11286, 11288, 1128A-1128D, 1128F-1129D, 1129F-112A8

Myanmar:
1022, 1028, 102B, 1033-1035, 103A-103F, 105A-109D, A9E0-A9FE, AA60-AA76,
AA7A-AA7F

Nabataean:
10880-1089E

Nandinagari:
119A0-119A7, 119AA-119D7, 119DA-119E1, 119E3-119E4

New_Tai_Lue:
1980-19AB, 19B0-19C9, 19D0-19DA

Newa:
11400-1144A, 11450-11459, 1145E-11461

Nko:
07C0-07F5, 07FA, 07FD

Nushu:
16FE1, 1B170-1B2FB

Nyiakeng_Puachue_Hmong:
1E100-1E12C, 1E130-1E13D, 1E140-1E149, 1E14E

Ol_Chiki:
1C50-1C7D

Old_Hungarian:
10C80-10CB2, 10CC0-10CF2

Old_Italic:
10300-1031F, 1032D-1032F

Old_North_Arabian:
10A80-10A9C

Old_Permic:
10350-1037A

Old_Persian:
103A0-103C3, 103C8-103CF, 103D1-103D5

Old_Sogdian:
10F00-10F1C, 10F27

Old_South_Arabian:
10A60-10A7C

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1190 ©ISO/IEC 2023

Old_Turkic:
10C00-10C48

Oriya:
0B35, 0B3C, 0B44, 0B55-0B57, 0B62-0B63, 0B71

Osage:
104B0-104D3, 104D8-104FB

Osmanya:
10480-1049D, 104A0-104A9

Pahawh_Hmong:
16B00-16B36, 16B40-16B43, 16B50-16B59, 16B63-16B77, 16B7D-16B8F

Palmyrene:
10860-10876

Pau_Cin_Hau:
11AC0-11AF8

Phags_Pa:
A840-A873

Phoenician:
10900-10915

Psalter_Pahlavi:
10B80-10B91

Rejang:
A930-A953

Runic:
16F1-16F8

Samaritan:
0800-082D

Saurashtra:
A880-A8C5, A8D0-A8D9

Sharada:
11180-111C4, 111C9-111CC, 111CE-111DA, 111DC

Shavian:
10450-1047F

Siddham:
11580-115B5, 115B8-115C0, 115D8-115DD

SignWriting:
1DA00-1DA36, 1DA3B-1DA6C, 1DA75, 1DA84, 1DA9B-1DA9F, 1DAA1-1DAAF

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1191

Sinhala:
0D81, 0DE6-0DEF

Sogdian:
10F30-10F50

Sora_Sompeng:
110D0-110E8, 110F0-110F9

Soyombo:
11A50-11A99, 11A9D

Sundanese:
1B80-1BBF

Syloti_Nagri:
A800-A827, A82C

Syriac:
072D-074A, 074D-074F, 0860-086A

Tagalog:
1700-170C, 170E-1714

Tagbanwa:
1760-176C, 176E-1770, 1772-1773

Tai_Le:
1950-196D, 1970-1974

Tai_Tham:
1A20-1A5E, 1A60-1A7C, 1A7F-1A89, 1A90-1A99, 1AA7

Tai_Viet:
AA80-AAC2, AADB-AADD

Takri:
11680-116B8, 116C0-116C9

Tamil:
0BB6, 0BD0, 0BD7, 0BE6

Tangut:
16FE0, 17000-187F7, 18800-18AFF, 18D00-18D08

Telugu:
0C00, 0C04, 0C34, 0C3D, 0C55-0C56, 0C58-0C5A, 0C62-0C63

Thaana:
07B1

Tibetan:

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1192 ©ISO/IEC 2023

0F3E-0F3F, 0F6B-0F6C, 0F8C-0F8F, 0FC6

Tifinagh:
2D30-2D67, 2D6F, 2D7F

Tirhuta:
11480-114C5, 114C7, 114D0-114D9

Ugaritic:
10380-1039D

Vai:
A500-A60C, A610-A62B

Wancho:
1E2C0-1E2F9

Warang_Citi:
118A0-118E9, 118FF

Yezidi:
10E80-10EA9, 10EAB-10EAC, 10EB0-10EB1

Zanabazar_Square:
11A00-11A3E, 11A476) General case mappings. The following case mappings have been added.
(0220,019E);(023A,2C65);(023B,023C);(023D,019A);
(023E,2C66);(0241,0242);(0243,0180);(0244,0289);
(0245,028C);(0246,0247);(0248,0249);(024A,024B);
(024C,024D);(024E,024F);(0370,0371);(0372,0373);
(0376,0377);(037F,03F3);(03CF,03D7);(03D8,03D9);
(03F4,03B8);(03F7,03F8);(03F9,03F2);(03FA,03FB);
(03FD,037B);(03FE,037C);(03FF,037D);(048A,048B);
(04C5,04C6);(04C9,04CA);(04CD,04CE);(04F6,04F7);
(04FA,04FB);(04FC,04FD);(04FE,04FF);(0500,0501);
(0502,0503);(0504,0505);(0506,0507);(0508,0509);
(050A,050B);(050C,050D);(050E,050F);(0510,0511);
(0512,0513);(0514,0515);(0516,0517);(0518,0519);
(051A,051B);(051C,051D);(051E,051F);(0520,0521);
(0522,0523);(0524,0525);(0526,0527);(0528,0529);
(052A,052B);(052C,052D);(052E,052F);(10C7,2D27);
(10CD,2D2D);(1C90,10D0);(1C91,10D1);(1C92,10D2);
(1C93,10D3);(1C94,10D4);(1C95,10D5);(1C96,10D6);
(1C97,10D7);(1C98,10D8);(1C99,10D9);(1C9A,10DA);
(1C9B,10DB);(1C9C,10DC);(1C9D,10DD);(1C9E,10DE);
(1C9F,10DF);(1CA0,10E0);(1CA1,10E1);(1CA2,10E2);
(1CA3,10E3);(1CA4,10E4);(1CA5,10E5);(1CA6,10E6);
(1CA7,10E7);(1CA8,10E8);(1CA9,10E9);(1CAA,10EA);
(1CAB,10EB);(1CAC,10EC);(1CAD,10ED);(1CAE,10EE);
(1CAF,10EF);(1CB0,10F0);(1CB1,10F1);(1CB2,10F2);
(1CB3,10F3);(1CB4,10F4);(1CB5,10F5);(1CB6,10F6);

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1193

(1CB7,10F7);(1CB8,10F8);(1CB9,10F9);(1CBA,10FA);
(1CBD,10FD);(1CBE,10FE);(1CBF,10FF);(1E9E,00DF);
(1EFA,1EFB);(1EFC,1EFD);(1EFE,1EFF);(2132,214E);
(2C00,2C30);(2C01,2C31);(2C02,2C32);(2C03,2C33);
(2C04,2C34);(2C05,2C35);(2C06,2C36);(2C07,2C37);
(2C08,2C38);(2C09,2C39);(2C0A,2C3A);(2C0B,2C3B);
(2C0C,2C3C);(2C0D,2C3D);(2C0E,2C3E);(2C0F,2C3F);
(2C10,2C40);(2C11,2C41);(2C12,2C42);(2C13,2C43);
(2C14,2C44);(2C15,2C45);(2C16,2C46);(2C17,2C47);
(2C18,2C48);(2C19,2C49);(2C1A,2C4A);(2C1B,2C4B);
(2C1C,2C4C);(2C1D,2C4D);(2C1E,2C4E);(2C1F,2C4F);
(2C20,2C50);(2C21,2C51);(2C22,2C52);(2C23,2C53);
(2C24,2C54);(2C25,2C55);(2C26,2C56);(2C27,2C57);
(2C28,2C58);(2C29,2C59);(2C2A,2C5A);(2C2B,2C5B);
(2C2C,2C5C);(2C2D,2C5D);(2C2E,2C5E);(2C60,2C61);
(2C62,026B);(2C63,1D7D);(2C64,027D);(2C67,2C68);
(2C69,2C6A);(2C6B,2C6C);(2C6D,0251);(2C6E,0271);
(2C6F,0250);(2C70,0252);(2C72,2C73);(2C75,2C76);
(2C7E,023F);(2C7F,0240);(2C80,2C81);(2C82,2C83);
(2C84,2C85);(2C86,2C87);(2C88,2C89);(2C8A,2C8B);
(2C8C,2C8D);(2C8E,2C8F);(2C90,2C91);(2C92,2C93);
(2C94,2C95);(2C96,2C97);(2C98,2C99);(2C9A,2C9B);
(2C9C,2C9D);(2C9E,2C9F);(2CA0,2CA1);(2CA2,2CA3);
(2CA4,2CA5);(2CA6,2CA7);(2CA8,2CA9);(2CAA,2CAB);
(2CAC,2CAD);(2CAE,2CAF);(2CB0,2CB1);(2CB2,2CB3);
(2CB4,2CB5);(2CB6,2CB7);(2CB8,2CB9);(2CBA,2CBB);
(2CBC,2CBD);(2CBE,2CBF);(2CC0,2CC1);(2CC2,2CC3);
(2CC4,2CC5);(2CC6,2CC7);(2CC8,2CC9);(2CCA,2CCB);
(2CCC,2CCD);(2CCE,2CCF);(2CD0,2CD1);(2CD2,2CD3);
(2CD4,2CD5);(2CD6,2CD7);(2CD8,2CD9);(2CDA,2CDB);
(2CDC,2CDD);(2CDE,2CDF);(2CE0,2CE1);(2CE2,2CE3);
(2CEB,2CEC);(2CED,2CEE);(2CF2,2CF3);(A640,A641);
(A642,A643);(A644,A645);(A646,A647);(A648,A649);
(A64A,A64B);(A64C,A64D);(A64E,A64F);(A650,A651);
(A652,A653);(A654,A655);(A656,A657);(A658,A659);
(A65A,A65B);(A65C,A65D);(A65E,A65F);(A660,A661);
(A662,A663);(A664,A665);(A666,A667);(A668,A669);
(A66A,A66B);(A66C,A66D);(A680,A681);(A682,A683);
(A684,A685);(A686,A687);(A688,A689);(A68A,A68B);
(A68C,A68D);(A68E,A68F);(A690,A691);(A692,A693);
(A694,A695);(A696,A697);(A698,A699);(A69A,A69B);
(A722,A723);(A724,A725);(A726,A727);(A728,A729);
(A72A,A72B);(A72C,A72D);(A72E,A72F);(A732,A733);
(A734,A735);(A736,A737);(A738,A739);(A73A,A73B);
(A73C,A73D);(A73E,A73F);(A740,A741);(A742,A743);
(A744,A745);(A746,A747);(A748,A749);(A74A,A74B);
(A74C,A74D);(A74E,A74F);(A750,A751);(A752,A753);
(A754,A755);(A756,A757);(A758,A759);(A75A,A75B);
(A75C,A75D);(A75E,A75F);(A760,A761);(A762,A763);
(A764,A765);(A766,A767);(A768,A769);(A76A,A76B);
(A76C,A76D);(A76E,A76F);(A779,A77A);(A77B,A77C);
(A77D,1D79);(A77E,A77F);(A780,A781);(A782,A783);

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1194 ©ISO/IEC 2023

(A784,A785);(A786,A787);(A78B,A78C);(A78D,0265);
(A790,A791);(A792,A793);(A796,A797);(A798,A799);
(A79A,A79B);(A79C,A79D);(A79E,A79F);(A7A0,A7A1);
(A7A2,A7A3);(A7A4,A7A5);(A7A6,A7A7);(A7A8,A7A9);
(A7AA,0266);(A7AB,025C);(A7AC,0261);(A7AD,026C);
(A7AE,026A);(A7B0,029E);(A7B1,0287);(A7B2,029D);
(A7B3,AB53);(A7B4,A7B5);(A7B6,A7B7);(A7B8,A7B9);
(A7BA,A7BB);(A7BC,A7BD);(A7BE,A7BF);(A7C2,A7C3);
(A7C4,A794);(A7C5,0282);(A7C6,1D8E);(A7C7,A7C8);
(A7C9,A7CA);(A7F5,A7F6);(FF21,FF41);(FF22,FF42);
(FF23,FF43);(FF24,FF44);(FF25,FF45);(FF26,FF46);
(FF27,FF47);(FF28,FF48);(FF29,FF49);(FF2A,FF4A);
(FF2B,FF4B);(FF2C,FF4C);(FF2D,FF4D);(FF2E,FF4E);
(FF2F,FF4F);(FF30,FF50);(FF31,FF51);(FF32,FF52);
(FF33,FF53);(FF34,FF54);(FF35,FF55);(FF36,FF56);
(FF37,FF57);(FF38,FF58);(FF39,FF59);(FF3A,FF5A);
(10400,10428);(10401,10429);(10402,1042A);(10403,1042B);
(10404,1042C);(10405,1042D);(10406,1042E);(10407,1042F);
(10408,10430);(10409,10431);(1040A,10432);(1040B,10433);
(1040C,10434);(1040D,10435);(1040E,10436);(1040F,10437);
(10410,10438);(10411,10439);(10412,1043A);(10413,1043B);
(10414,1043C);(10415,1043D);(10416,1043E);(10417,1043F);
(10418,10440);(10419,10441);(1041A,10442);(1041B,10443);
(1041C,10444);(1041D,10445);(1041E,10446);(1041F,10447);
(10420,10448);(10421,10449);(10422,1044A);(10423,1044B);
(10424,1044C);(10425,1044D);(10426,1044E);(10427,1044F);
(104B0,104D8);(104B1,104D9);(104B2,104DA);(104B3,104DB);
(104B4,104DC);(104B5,104DD);(104B6,104DE);(104B7,104DF);
(104B8,104E0);(104B9,104E1);(104BA,104E2);(104BB,104E3);
(104BC,104E4);(104BD,104E5);(104BE,104E6);(104BF,104E7);
(104C0,104E8);(104C1,104E9);(104C2,104EA);(104C3,104EB);
(104C4,104EC);(104C5,104ED);(104C6,104EE);(104C7,104EF);
(104C8,104F0);(104C9,104F1);(104CA,104F2);(104CB,104F3);
(104CC,104F4);(104CD,104F5);(104CE,104F6);(104CF,104F7);
(104D0,104F8);(104D1,104F9);(104D2,104FA);(104D3,104FB);
(10C80,10CC0);(10C81,10CC1);(10C82,10CC2);(10C83,10CC3);
(10C84,10CC4);(10C85,10CC5);(10C86,10CC6);(10C87,10CC7);
(10C88,10CC8);(10C89,10CC9);(10C8A,10CCA);(10C8B,10CCB);
(10C8C,10CCC);(10C8D,10CCD);(10C8E,10CCE);(10C8F,10CCF);
(10C90,10CD0);(10C91,10CD1);(10C92,10CD2);(10C93,10CD3);
(10C94,10CD4);(10C95,10CD5);(10C96,10CD6);(10C97,10CD7);
(10C98,10CD8);(10C99,10CD9);(10C9A,10CDA);(10C9B,10CDB);
(10C9C,10CDC);(10C9D,10CDD);(10C9E,10CDE);(10C9F,10CDF);
(10CA0,10CE0);(10CA1,10CE1);(10CA2,10CE2);(10CA3,10CE3);
(10CA4,10CE4);(10CA5,10CE5);(10CA6,10CE6);(10CA7,10CE7);
(10CA8,10CE8);(10CA9,10CE9);(10CAA,10CEA);(10CAB,10CEB);
(10CAC,10CEC);(10CAD,10CED);(10CAE,10CEE);(10CAF,10CEF);
(10CB0,10CF0);(10CB1,10CF1);(10CB2,10CF2);(118A0,118C0);
(118A1,118C1);(118A2,118C2);(118A3,118C3);(118A4,118C4);
(118A5,118C5);(118A6,118C6);(118A7,118C7);(118A8,118C8);
(118A9,118C9);(118AA,118CA);(118AB,118CB);(118AC,118CC);
(118AD,118CD);(118AE,118CE);(118AF,118CF);(118B0,118D0);

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1195

(118B1,118D1);(118B2,118D2);(118B3,118D3);(118B4,118D4);
(118B5,118D5);(118B6,118D6);(118B7,118D7);(118B8,118D8);
(118B9,118D9);(118BA,118DA);(118BB,118DB);(118BC,118DC);
(118BD,118DD);(118BE,118DE);(118BF,118DF);(16E40,16E60);
(16E41,16E61);(16E42,16E62);(16E43,16E63);(16E44,16E64);
(16E45,16E65);(16E46,16E66);(16E47,16E67);(16E48,16E68);
(16E49,16E69);(16E4A,16E6A);(16E4B,16E6B);(16E4C,16E6C);
(16E4D,16E6D);(16E4E,16E6E);(16E4F,16E6F);(16E50,16E70);
(16E51,16E71);(16E52,16E72);(16E53,16E73);(16E54,16E74);
(16E55,16E75);(16E56,16E76);(16E57,16E77);(16E58,16E78);
(16E59,16E79);(16E5A,16E7A);(16E5B,16E7B);(16E5C,16E7C);
(16E5D,16E7D);(16E5E,16E7E);(16E5F,16E7F);(1E900,1E922);
(1E901,1E923);(1E902,1E924);(1E903,1E925);(1E904,1E926);
(1E905,1E927);(1E906,1E928);(1E907,1E929);(1E908,1E92A);
(1E909,1E92B);(1E90A,1E92C);(1E90B,1E92D);(1E90C,1E92E);
(1E90D,1E92F);(1E90E,1E930);(1E90F,1E931);(1E910,1E932);
(1E911,1E933);(1E912,1E934);(1E913,1E935);(1E914,1E936);
(1E915,1E937);(1E916,1E938);(1E917,1E939);(1E918,1E93A);
(1E919,1E93B);(1E91A,1E93C);(1E91B,1E93D);(1E91C,1E93E);
(1E91D,1E93F);(1E91E,1E940);(1E91F,1E941);(1E920,1E942);
(1E921,1E943)7) Clarification of exception handling procedures. Some inconsistencies were resolved.8) Clarification that the rules for the GLOBAL clause do not contradict those for the EXTERNAL clause.9) Clarified that real zeroes are permitted values when checking for underflow conditions as per ISO/IEC 60559:2020 [ISO/IEC 60559:2020 Information technology — Microprocessor Systems — Floating-Point arithmetic].10) Clarified the size error rules in 14.7.5, SIZE ERROR phrase and size error condition such that any computation involving rounding gives rise to an EC-SIZE-TRUNCATION exception condition only when the DEFAULT ROUNDED MODE IS PROHIBITED clause or the ROUNDED MODE IS PROHIBITED phrase is in effect. This was already implied by the rules for these features, but was partially contradicted in this section. It is thought that implementors already apply these rules appropriately.11) COBOL Words. COBOL words may now be 63 characters long.12) COBOL-WORDS directive. The COBOL-WORDS directive may be used to modify the reserved words, context-sensitive words, and function-name lists. It may also be used to prohibit the use of specific user-defined words.13) Context-sensitive words. In order to provide enhanced functionality, the following words have either been added to the list of context-sensitive words or the context in which they are reserved has been expanded: — ACTIVATING— ANUM— APPLY

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1196 ©ISO/IEC 2023

— BACKWARD— BYTE— BYTES— CURRENT— HEX— NAT— SECONDS— STACK— TOP-LEVEL14) Additional functionality added to the CONTINUE statement. The CONTINUE statement has been enhanced to provide the ability to pause runtime execution for a specified period of time.15) The DELETE FILE statement. The DELETE FILE statement causes the removal of the referenced files from the mass storage device.16) The DISPLAY directive. The DISPLAY directive allows the display of compile-time information during the compilation of COBOL source.17) Dynamic-length elementary items. The SET statement was enhanced to allow the setting of the length of a dynamic-length elementary item.18) EC-I-O-WARNING exception condition. This exception was added to enable detection of nonzero successful I-O status values by declaratives and the WHEN phrases of exception-checking PERFORM statements.19) EDITING phrase. The EDITING phrase of the PICTURE clause adds the capability to specify a literal of any size for simple insertion and sign-sensitive fixed insertion.20) EXTERNAL data items. External data items may now be strongly typed.21) FLAG-14 directive. A compiler directive, FLAG-14, has been added that causes compiler flagging of language elements that may be incompatible between the previous COBOL standard and this Working Draft International Standard.22) FUNCTION BASECONVERT. This function has been added to enable conversion between different number bases in the range 2-16.23) FUNCTION CONCAT. The CONCAT function has been added to be able to concatenate data items in the same fashion as the concatenation operator does for literals.24) FUNCTION CONVERT. This function has been added to enable conversion between data representations, such as to and from alphanumeric and national natural and hex representations, and the representation of most types of data item in hexadecimal.25) FUNCTION EXCEPTION-FILE. An optional argument has been added to this function to permit the user to specify the file connector for which the information is requested, while leaving the original feature unchanged when no argument is supplied.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1197

26) FUNCTION EXCEPTION-FILE-N. An optional argument has been added to this function to permit the user to specify the file connector for which the information is requested, while leaving the original feature unchanged when no argument is supplied.27) FUNCTION FIND-STRING. The FIND-STRING intrinsic function has been added to provide the facility to locate the position of one string within another.28) FUNCTION MODULE-NAME. The MODULE-NAME intrinsic function has been added to provide information about the modules in the hierarchy of the running application.29) FUNCTION SMALLEST-ALGEBRAIC. The SMALLEST-ALGEBRAIC intrinsic function has been added to provide the smallest number that can be represented in any elementary numeric data item.30) FUNCTION SUBSTITUTE. The SUBSTITUTE intrinsic function has been added to provide the facility to replace portions of strings with substitutions that may be of different lengths.31) FUNCTION TRIM. The TRIM function has been enhanced to truncate removing characters other than space.32) The GOBACK statement now allows the same status phrase as the STOP statement. This only takes effect when the GOBACK statement appears in a COBOL main program.33) INITIALIZE clause of the OPTIONS paragraph. The content of data items that were not initialized explicitly was implementor-defined. The content is explicitly defined when this clause is specified.34) INSPECT statement, BACKWARD context sensitive word added to provide greater functionality.35) Setting of I-O status ‘05’, ‘37’, ‘39’, ‘41’, and ‘62’. The DELETE FILE statement has been added, as a result these file statuses may be set by this new statement.36) PERFORM Statement. An exception checking variant of this statement has been added.37) PERFORM Statement. The PERFORM statement now allows the UNTIL EXIT phrase which causes an infinite loop.38) PUSH and POP directives. The PUSH and POP directives are added to allow saving and restoration of the state of compiler directives.39) RAISE statement. The processing of exception conditions is clarified to follow rules elsewhere.40) Reserved Words. There is no longer a restriction in this Standard or for future revisions of this Standard on the formation of new reserved words. Instead, consideration, but no requirement, is expected for the following of the previous restrictions on the formation of new reserved words. Those included prohibiting new reserved words starting with the digits 0 through 9, the letters X, Y, and Z. It also restricted new reserved words starting with one or two letters followed by a hyphen or the use of two consecutive hyphens. Finally, it required new reserved words, other than special character words to include at least two basic letters.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1198 ©ISO/IEC 2023

41) REWRITE statement. Clarification that where identifier-1 is subordinate to the file description, then its contents are not available after execution of the REWRITE statement.42) SUPPRESS WHEN phrase. The SUPPRESS WHEN phrase may be specified as part of the ALTERNATE RECORD KEY clause to suppress access to a record via a particular alternate record key when the value of this key equals the value specified in this phrase.43) VALUE clause, numeric-edited items and numeric literals. It is now permitted to allow numeric-edited data items to be assigned values specified as numeric literals.44) WRITE statement. Determination of identifier-1. The impossible condition of identifier-1 being both subordinate and not subordinate to the file description has been removed.45) WRITE statement. Clarification that where identifier-1 is subordinate to the file description, then its contents are not available after execution of the WRITE statement

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1199

 Annex F (informative)
 Archaic and obsolete language element lists

F.1 Archaic language elementsThe purpose of the archaic language element designation is to discourage the use in new programs of some features that are unreliable, poor programming practice, or ill-defined -- where better programming techniques are available in standard COBOL. These elements are classified as archaic rather than obsolete because their use in existing programs might be too extensive to warrant removal in the next edition of standard COBOL.There is no schedule for deleting archaic elements from standard COBOL; however, this may be reevaluated for any future editions of standard COBOL.Archaic features are likely to cause future compiler errors. It is therefore recommended that they are avoided in new source units and replaced in existing ones.The following are archaic language elements:1) The EXIT PROGRAM Statement. The EXIT PROGRAM statement provides the same functionality as the GOBACK statement when used in a called subprogram and works the same as a CONTINUE statement in a main program. The use of the GOBACK statement and the new MODULE NAME intrinsic function provide the useful features of the older EXIT PROGRAM statement.2) NEXT SENTENCE phrase in the IF and SEARCH statements. This phrase can be confusing, especially when specified in a delimited scope statement. It is a common belief among users that control is transferred to a position after the scope delimiter rather than to a separator period that follows it somewhere. In addition, it is a common source of errors, especially for maintenance programmers who inadvertently insert a period somewhere before the actual terminating separator period. The CONTINUE statement and scope delimiters may be used to accomplish the same functionality and such constructs are clearer and less prone to error.
F.2 Obsolete language elementsObsolete language elements are elements that will, unless otherwise specified, be removed in the next edition of this Working Draft International Standard because those elements are no longer needed or are rarely used. To limit the affect of removal, those elements are designated as obsolete to serve as a notice of the intention to remove them.Obsolete language elements have not been enhanced or modified in this Working Draft International Standard and will not be maintained. The interaction between obsolete language elements and other language elements is undefined unless otherwise specified in this Working Draft International Standard.A conforming implementation shall support obsolete language elements except for elements that are also optional or processor-dependent.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1200 ©ISO/IEC 2023

The following are obsolete language elements:1) FLAG-02 directive. The FLAG-02 directive was specified in the previous COBOL standard to flag incompatibilities between that COBOL standard and the COBOL standard previous to it. The FLAG-14 directive is specified in the current COBOL standard to flag incompatibilities between the current COBOL standard and the previous COBOL standard. There is no longer a need for the older FLAG-02 directive.2) MOVE of ALL “literal” figurative constant containing only digits or ALL symbolic-character
representing a digit to integer numeric items. A MOVE of an ALL “literal” figurative constant containing only digits or an ALL symbolic-character representing a digit to an integer numeric item will probably result in the desired effect. However, there are other techniques such as the use of the zero figurative constant, the highest-algebraic and lowest-algebraic intrinsic functions, or the use of a numeric literal as a sending item that are thought to be less error prone in the development and maintenance of COBOL programs.3) STANDARD-BINARY arithmetic and STANDARD BINARY Intermediate Data Item. These features have not been implemented as of the writing of this revision by any COBOL provider. Neither users nor implementors have indicated interest or intention for providing these facilities.Unlike other obsolete features, it is intended that interest in these facilities will be reevaluated during the next revision of standard COBOL and before any final decision is made on whether or not to remove them from the next revision4) Use of the fixed continuation indicator (hyphen in column 7) and continuation of literals in
fixed form reference format using the fixed continuation indicator. Continuation of literals in fixed form reference format using the fixed continuation indicator is highly error-prone. Trailing spaces on the continued line often cause programming errors. Such errors can easily be avoided by using floating continuation indicators that are supported in both fixed and free form reference format 5) Validate facility. The VALIDATE facility has not been implemented as of the writing of this revision by any COBOL provider. Neither users nor implementors have indicated interest or intention for providing this facility. Unlike other obsolete features, it is intended that interest in this facility will be reevaluated during the next revision of standard COBOL and before any final decision is made on whether or not to remove it from the next revision.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1201

 Annex G (informative)
 Known errors

G.1 RationaleWhile it is not the intent to publish a standard with errors, some features of COBOL have been discovered to contain errors. An attempt has been made to resolve all such matters. However, there are certain errors for which one or more of the following apply:— Proposed solutions for the error result in unacceptable incompatibilities.— Proposed solutions for the error are excessively complicated.— The COBOL feature in error is archaic or obsolete.
G.2 List of errorsThe following are known errors in this Working Draft International Standard:1) Accessibility. Many of the accessibility features are missing from the document. The current publishing software makes accessibility difficult or does not function correctly. These will be added in future versions. The following are the missing features that fail the accessibility checks:a) Page issues – Tagged content: Publishing software does not tag page numbers. Every page fails this check.b) Page issues – Tagged annotations: Problem with publishing software.c) Page issues – Tab order: Publishing software does not process page numbers. Every page fails this check.d) Alternate text – Some formats have a default alternate text. This will be added as time is available.e) Tables – Headers – Will be corrected as time permits.f) Tables – Regularity – Will be corrected as time permits.g) The space at the end of a line is sometimes not recognized by some readers and the last word on the line is combined with the first word of the next line. This is a problem with Adobe FrameMaker and will be fixed at a later date.2) Mapping of uppercase letters to lowercase letters. Uppercase Cherokee syllables are not mapped to lowercase Cherokee syllables in Annex C. The Changes_When_Lowercased property is set to Cherokee Uppercase syllables in UAX #44, Unicode 13.0.0, but no correspondence with lowercase syllables is specified. The uppercase Cherokee syllables are not folded to lowercase in this document.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1202 ©ISO/IEC 2023

3) Physical file. The terms “physical file” and “physically” are used in many places where it is not necessary for COBOL to distinguish between logical files or physical files, since COBOL will generally treat the use of the term file as meaning a file presented to COBOL by the environment in which it is running however it is actually stored or derived. It is planned to review and replace such instances by the term “file” where appropriate in the next revision of the standard.

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1203

BIBLIOGRAPHY The following documents are useful references for implementors and users of this Working Draft International Standard, in addition to the normative references:[1] ISO/IEC Directives Part 2, Rules for the structure and drafting of International Standards, May 2021[2] Merriam-Webster's Collegiate® Dictionary, Eleventh Edition; Merriam-Webster, Incorporated, ISBN 978-0-87779-809-5[3] The Unicode Standard, Version 13.0.0, The Unicode Consortium; http://unicode.org/versions/Unicode 13.0.0[4] Unicode Standard Annex, UAX #31, Unicode Identifier and Pattern Syntax http:www.unicode.org/
reports/tr31-33.html[5] Unicode Standard Annex, UAX #44, Unicode Character Database http:www.unicode.org/reports/tr44/
tr44--26.html[6] ISO 1989:1985 Programming Language - COBOL, including ISO 1989:1985/Amd 1:1992 intrinsic
function module, and ISO 1989:1985/Amd 2:1994 Correction and clarification amendment for COBOL[7] ISO/IEC 1989:2002, Information technology — Programming Languages — COBOL[8] ISO/IEC 1989:2014, Information technology — Programming Languages — COBOL

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1204 ©ISO/IEC 2023

Index

Symbols

::
operator 133, 173

'-
Literal continuation indicator 34

"-
Literal continuation indicator 34

*
Comment line 38
operator 172

**
operator 172

*>
Comment indicator 34
Comment line 39
Inline comment 39

/
Comment line 38
operator 172

&
operator 173

+
operator 172

–
operator 172

<
Relation 173

<=
Relation 173

<>
Relation 173

=
COMPUTE statement 602
Relation 173
SEARCH statement 720

==
pseudo-text delimiter 44, 50

>
Relation 173

>=
Relation 173

>>
Compiler directive 54
Compiler directive indicator 34

Numerics

0 PICTURE symbol 448
01 entry 152, 415
1 PICTURE symbol 446
66 RENAMES data description entry 152, 415, 473
77 level data description entry 152, 357
88 condition-name data description entry 152, 415

9 PICTURE symbol 448

A

A PICTURE symbol 441
Abbreviated combined relation conditions 202
Abnormal run unit termination 546, 549
ABS function 816
ACCEPT statement 292, 480, 512, 576

FROM phrase 576
Screen format 740

ACCESS MODE clause 319
FILE-CONTROL paragraph 312

Access modes 220
ACOS function 817
ACTIVATING 890
Active state 537
ACTIVE-CLASS phrase 248, 570, 735

USAGE clause 503
ADD statement 564, 583
Additional language elements 24
ADDRESS OF phrase 170

Data-address-identifier 139
SET statement, pointer assignment 730

ADDRESS OF PROGRAM phrase
Program-address-identifier 141
SET statement, pointer assignment 730

Address-identifier 125
ADVANCING ON LOCK phrase

READ statement 692
ADVANCING phrase

READ statement 692
AFTER ADVANCING phrase

WRITE statement 785
AFTER EXCEPTION phrase

USE statement 774
AFTER phrase

INSPECT statement 644
PERFORM statement 683

AFTER STANDARD ERROR phrase
USE statement 774

AFTER STANDARD EXCEPTION phrase
USE statement 774

Algebraic signs 153
ALIGNED clause 372
Alignment of data

In storage 154
Within data items 542

ALL figurative constant 114
ALL literal 117
ALL option

FLAG-02 directive 70
ALL OTHER phrase

OPEN statement 675
SHARING clause 332

ALL phrase
INITIALIZE statement 637

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1205

INSPECT statement 643
SEARCH statement 720
UNSTRING statement 769

ALL subscript 123
Intrinsic function 798

ALLOCATE statement 170, 521, 586, 627
ALPHABET clause

SPECIAL-NAMES paragraph 291
Alphabetic category 162, 445
Alphabetic character 3
Alphabetic class

Class of data
Alphabetic 162

Alphabetic data item 162
ALPHABETIC phrase

CLASS clause 194, 382
INITIALIZE statement 637

ALPHABETIC-LOWER phrase
CLASS clause 194, 382

ALPHABETIC-UPPER phrase 194
CLASS clause 382

Alphabet-name 98, 289, 517, 566, 618
CODE-SET clause 384
COLLATING SEQUENCE clause 322
Definition 100
FILE-CONTROL paragraph 312
OBJECT-COMPUTER paragraph 285
Scope of 146
SPECIAL-NAMES paragraph 291

Alphabets 93
Alphanumeric category 162, 411, 445
Alphanumeric character 3
Alphanumeric character set 87, 1073
Alphanumeric class 162
Alphanumeric coded character set 87, 1073
Alphanumeric data item 162
Alphanumeric functions 796
Alphanumeric literals 107

Continuation of 37, 39
ALPHANUMERIC phrase

CODE-SET clause 384
COLLATING SEQUENCE clause 322
INITIALIZE statement 637
MERGE statement 657
SORT statement 745
SPECIAL-NAMES paragraph 290, 291

Alphanumeric-edited category 162, 163, 446
Alphanumeric-edited data item 163
ALPHANUMERIC-EDITED phrase

INITIALIZE statement 637
ALSO phrase

EVALUATE statement 618
ALTERNATE RECORD KEY clause 320, 794

FILE-CONTROL paragraph 312
ALTERNATE RECORD KEY clause, 1007
AND operator

In combined conditions 201
In complex conditions 200

AND phrase
SEARCH statement 720

ANNUITY function 818
ANY LENGTH clause 133, 373, 574, 590
ANY phrase

EVALUATE statement 618
ANYCASE keyword 920
Apostrophe 91
APPLY COMMIT 333, 1019

Commit and Rollback 233
EC-FLOW-APPLY-COMMIT Exception-name 553
ROLLBACK statement 718

APPLY COMMIT clause 601, 608, 718
Archaic language element flagging 24
Archaic language elements 24, 1199

Continuation of COBOL words 1199
Identifier-n (text-n) in a COPY statement 1199
MOVE of figurative constants that are not numeric to

numeric items 1199
NEXT SENTENCE phrase 635, 720, 1199
ON OVERFLOW phrase of CALL 1199

Arguments 30
Arguments, intrinsic functions 796
Arithmetic 172, 175

Native 175
Standard 175
Standard-binary 176
Standard-decimal 179

ARITHMETIC clause 176, 272
Arithmetic compute 602
Arithmetic expressions 31, 175

COMPUTE statement 602
EVALUATE statement 618
Parenthesis in 175
Sign condition 198

Arithmetic Operators 172
Arithmetic statements 564

ADD statement 564, 583
COMPUTE statement 564, 602
Data conversion 564
decimal point alignment 564
DIVIDE statement 564, 614
maximum operand size 565
MULTIPLY statement 564, 673
SUBTRACT statement 564, 762

AS phrase
CALL statement 589
CLASS-ID paragraph 264
EXTERNAL clause 342, 343, 400
FUNCTION-ID paragraph 267
INTERFACE-ID paragraph 268
PROGRAM-ID paragraph 280
REPOSITORY paragraph 304

ASCENDING KEY phrase
MERGE statement 657
OCCURS clause 430
SEARCH statement 724
SORT statement 745

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1206 ©ISO/IEC 2023

ASIN function 819
ASSIGN clause

FILE-CONTROL paragraph 312
Asterisk (*) comment line 38
AT END 222
At end condition 700, 708

Definition 560
AT END phrase

READ statement 692
RETURN statement 708
SEARCH statement 720

AT END-OF-PAGE 222
AT END-OF-PAGE phrase

WRITE statement 785
AT EOP 222
AT EOP phrase

WRITE statement 785
ATAN function 820
ATTRIBUTE phrase

SET statement, attribute setting 730
AUTO clause 374
Automatic data 168, 537, 538
Automatic items 168
AUTOMATIC phrase

LOCK MODE clause 325
AWAY-FROM-ZERO phrase

DEFAULT ROUNDED clause 273
ROUNDED phrase 560

B

B PICTURE symbol 441
BACKGROUND-COLOR clause 375
BACKWARD 646
B-AND operator 172
BASE class 941
BASECONVERT function 821
BASED clause 170, 366, 376
Based data 170
Based data item 521

ALLOCATE statement 587
SET statement 735

Based entry 170
Basic calendar date format

Definition 799
Basic combined date and time format 803
Basic common time format

Definition 801
Basic common time format with integer seconds

representation
Definition

Basic common time format
Definition 801

Basic common time3 format with fractional seconds
Definition 801

Basic letters 90
Basic local time format 802

Basic offset time format 802
Basic ordinal date format

Definition 799
Basic UTC time format 802
Basic week date format

Definition 800
BEFORE ADVANCING phrase

WRITE statement 785
BEFORE phrase

INSPECT statement 644
PERFORM statement 683

BEFORE REPORTING phrase
USE statement 774

BELL clause 377
BELL phrase

SET statement, attribute setting 730
big-endian 509
Binary encoding

ISO/IEC/IEEE 60559 definition reference 509
BINARY phrase

USAGE clause 503
BINARY-CHAR phrase

USAGE clause 503
BINARY-DOUBLE phrase

USAGE clause 503
BINARY-ENCODING phrase

FLOAT-DECIMAL clause 275
USAGE clause 504

BINARY-LONG phrase
USAGE clause 503

BINARY-SHORT phrase
USAGE clause 503

BIT 410
Bit data item 410, 506
Bit group 1070
Bit group item 410
BIT phrase

USAGE clause 503
BLANK clause 378
Blank line 38, 39
BLANK WHEN ZERO clause 379, 443
BLINK clause 380
BLINK phrase

SET statement, attribute setting 730
BLOCK CONTAINS clause 381

File description entry 342
B-NOT operator 172
Boolean category 162, 163, 410, 446
Boolean character 5
Boolean class 162
BOOLEAN clause 194
Boolean compute 602
Boolean data item 163
Boolean expression 62
Boolean expressions 182

COMPUTE statement 602
EVALUATE statement 618
Parenthesis in 182

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1207

Relation condition 187
Boolean functions 796
Boolean literals 110

Continuation of 37, 39
Boolean operators 172
BOOLEAN phrase

CLASS clause 382
INITIALIZE statement 637

Boolean zero-length literal
Definition 111

BOOLEAN-OF-INTEGER function 822
B-OR operator 172
Braces 29
Brackets 29
B-SHIFT-L operator 172
B-SHIFT-LC operator 172
B-SHIFT-R operator 172
B-SHIFT-RC operator 172
B-XOR operator 172
BY CONTENT phrase

CALL statement 588
INVOKE statement 651
Procedure division header 130

BY phrase
COPY statement 46
DIVIDE statement 614
INITIALIZE statement 637
INSPECT statement 644
MULTIPLY statement 673
PERFORM statement 683
SET statement, pointer arithmetic 731
VARYING clause 525

BY REFERENCE phrase
CALL statement 588
INVOKE statement 651
Procedure division header 129, 528

BY VALUE phrase
CALL statement 589
INVOKE statement 651
Procedure division header 130, 528

BYTE-LENGTH function 823
BYTE-LENGTH phrase

Constant entry 355

C

Calendar date format 799
CALL

Failure 568
CALL statement 588, 633
CALL-CONVENTION directive 59, 1162
Call-convention-name 104
call-convention-name 59
CANCEL statement 538, 595, 633
CAPACITY 430
Case mapping 92
Category of data

Alphabetic 162, 445
Alphanumeric 162, 411, 445
Alphanumeric-edited 162, 163, 446
Boolean 162, 163, 410, 446
Boolean literal 110
Data-pointer 162, 163
Function-pointer 162, 163
Index 162, 163, 506
National 162, 164, 411, 446
National literal 111
National-edited 162, 164, 446
Numeric 162, 164, 446
Numeric literal 109
Numeric-edited 165, 446
Object-reference 162, 165, 509
Program-pointer 162, 165

CF phrase
TYPE clause 494

CH phrase
TYPE clause 494

CHAR function 825
Character

Alphabetic 3
Alphanumeric 3
Boolean 5
Numeric 16

CHARACTER CLASSIFICATION clause 287
OBJECT-COMPUTER paragraph 285

Character sets 87, 289, 1073
Character substitution 93
CHARACTERS phrase

ALLOCATE statement 586
BLOCK CONTAINS clause 381
INSPECT statement 643
RECORD clause 467

Character-string 6
character-strings

Definition 97
CHAR-NATIONAL function 826
Choice indicators 29
Class

BASE 941
Parameterized 251

Class and category of data 161
CLASS clause 194, 382

SPECIAL-NAMES paragraph 290
Class condition 193

BOOLEAN phrase 194
Class inheritance 250
Class of data

Alphanumeric 162
Boolean 162
Index 162
National 162
Numeric 162
Object 162
Pointer 162

CLASS phrase

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1208 ©ISO/IEC 2023

USAGE clause 503
Class polymorphism 241
Class-definition 258
CLASS-ID paragraph 264
Class-name 289

CLASS clause 382
CLASS-ID paragraph 264
Object orientation 101
Scope of 146
SPECIAL-NAMES paragraph 290
Truth value 98, 101

Clause 6
CLOSE statement 71, 596, 597

Implied 661, 662, 751, 752
Closing delimiter 118
COBOL character repertoire 90
COBOL compilation group 256
COBOL library 43
COBOL reserved words 105
COBOL source program structure 254
COBOL word 97
COBOL-WORDS directive 42, 60, 309
CODE clause 383

Report description entry 358
Coded character set 87, 1073

Definition 153
Code-name 104

SPECIAL-NAMES paragraph 291
CODE-SET clause 87, 384, 481, 482

File description entry 342
Collating sequence 289
COLLATING SEQUENCE clause 322

FILE-CONTROL paragraph 312
OBJECT-COMPUTER paragraph 285

COLLATING SEQUENCE phrase
MERGE statement 657
SORT statement 745

Collating sequences 93
Colon 91

Separator 118
Color number 238
COLUMN (COL) phrase

ACCEPT statement 577
DISPLAY statement 610

COLUMN clause 386
Combined conditions 201
Combined date and time format 803
COMBINED-DATETIME 827
Comma 29

Interchangeable with semicolon 117
Separator 117

Comment 38, 39
Inline 38, 40
Line 38, 39

Comment indicator 34
commit 1019
COMMIT statement 234, 334, 601, 718

APPLY COMMIT clause 333

EC-FLOW-COMMIT Exception-name 553
COMMON 682
COMMON clause

PROGRAM-ID paragraph 280
Common exception processing 1091
COMMON phrase 549
Common phrases 559
Common program 170

Scope of 149
Common time format 801
COMP phrase

USAGE clause 503
Comparison

Between message tags 192
Between object reference identifiers 192
Locale-based 191
Of alphanumeric operands 189
Of boolean operands 190
Of data-pointer operands 192
Of index data items 192
Of mixed operands 189
Of national operands 190
Of numeric operands 188
Of strongly-typed group items 191

Compatibility
FLAG-85 directive 70, 72

Compatibility of Variable-length groups
Definition 160

Compilation group 254, 1041
Compilation stage 42
Compilation unit 25, 254, 1041
Compilation variable name 62
Compilation-variable-name 62, 97, 98, 101, 150
Compiler directing statement 44

COPY statement 44
REPLACE statement 44

Compiler directive 54
Compiler directive indicator 34
Compiler-directive word 54, 97, 213
Compile-time arithmetic expressions 55, 355
Compile-time boolean expressions 56
Composite of operands 176

ADD statement 584
DIVIDE statement 615
MULTIPLY statement 673
SUBTRACT statement 763

COMPUTATIONAL phrase
USAGE clause 503

COMPUTE statement 564, 602
Computer's character set 87, 1073
Computer's coded character set 87, 151, 1073
Computer-name 104

OBJECT-COMPUTER paragraph 285
SOURCE-COMPUTER paragraph 284

CONCAT function 828
Concatenation expressions 185
Concatenation operator 173
Concepts 1005

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1209

CONDITION 774
Condition 186

Abbreviated combined relation condition 202
Class condition 193
Condition-name condition 197
EVALUATE statement 618
Evaluation order rules 201
IF statement 635
Omitted argument condition 199
Sign condition 198
Switch-status condition 197

Conditional compilation 75, 1160
Conditional expression 186, 684, 1146

EVALUATE statement 618
Conditional phrase 533, 535
Conditional statement 533
Conditional variable 197

Definition 144
Conditionally-processed compilation group 44
Condition-name 98, 101, 144, 197

Qualified with subscripts 145
Scope of 146, 148
Subscripted 123
Switch status 145

Condition-name condition 197
Configuration section 283
Conformance 246
Conformance for object orientation 247
Conforming implementation 25, 26
Conforming run unit 25
Constant conditional expression 57
Constant entry 355
CONSTANT RECORD 478
CONSTANT RECORD clause 277, 391
Constant-name 98, 101, 146, 355

Scope of 148
Contained source unit 255
Contained statement 536
CONTENT phrase

INVOKE statement 651
SET statement 732
VALIDATE-STATUS clause 513

Content validation 781
Context-sensitive word 106
Context-sensitive word list 208
Contiguity of data items 159
Continuation indicator 34
Continuation of lines 37, 38
CONTINUE phrase 703
CONTINUE statement 539, 604, 625, 636, 722
Continued line 39
Control break 392, 409
Control break processing 628
CONTROL clause 392, 628, 778

Report description entry 358
CONTROL FOOTING phrase

TYPE clause 494
CONTROL HEADING phrase

TYPE clause 494
CONVERT function 829
CONVERTING phrase

INSPECT statement 643
COPY statement 44, 46, 67, 75

Nesting 49
Correspondence

Variable-length groups 161
CORRESPONDING (CORR) phrase 563

ADD statement 564, 583
FILLER clause 564
MOVE statement 564, 664
OCCURS clause 564
REDEFINES clause 564
RENAMES clause 564
SUBTRACT statement 564, 762

COS function 833
COUNT IN phrase

UNSTRING statement 769
CR PICTURE symbol 441
CRT status 236
CRT STATUS clause

SPECIAL-NAMES paragraph 290
Cultural adaptability 1082
Cultural elements 94
Cultural ordering table 916, 947

Definition 102
Currency sign 289
CURRENCY SIGN clause

SPECIAL-NAMES paragraph 290
Currency string 295
Currency symbol 290, 295
currency_symbol 95
Current screen item 238
Current volume pointer 222, 1010
CURRENT-DATE function 834
Cursor 237
CURSOR clause

SPECIAL-NAMES paragraph 290
Cursor locator 238
CYCLE phrase

EXIT statement 623

D

d_fmt 96
DATA BY phrase

INITIALIZE statement 637
Data conversion 564, 580

ACCEPT statement 580
MOVE statement 667

Data description entry 347, 362
Data division 338
Data division entries 339
Data item 124
Data-address-identifier 139
Data-name 398

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1210 ©ISO/IEC 2023

Data description entry 363
Definition 101
Identifier 126
Qualified 126
Scope of 148
Subscripted 123, 126

data-name 98
Data-pointer 95, 586, 627

Definition 510
Data-pointer category 140, 162, 163
Data-pointer data item 163
DATA-POINTER phrase

INITIALIZE statement 637
Date forms 805
DATE phrase

ACCEPT statement 576
DATE-OF-INTEGER function 836
DATE-TO-YYYYMMDD function 837
DAY phrase

ACCEPT statement 576
Day subfield 799
DAY-OF-INTEGER function 839
DAY-OF-WEEK phrase

ACCEPT statement 576
Day-of-week subfield 800
Day-of-year subfield 799
DAY-TO-YYYYDDD function 840
DB PICTURE symbol 441
DE phrase

TYPE clause 494
Decimal encoding

ISO/IEC/IEEE 60559 definition reference 509
Decimal point 289
Decimal point alignment 564
Decimal separator

Definition 301
DECIMAL-ENCODING phrase

FLOAT-DECIMAL clause 275
USAGE clause 504

DECIMAL-POINT IS COMMA clause 894, 896, 898
Definition 301
SPECIAL-NAMES paragraph 290

Declarative statement 533
USE statement 774

DECLARATIVES 527, 532
Declaratives 527, 532

Normal completion 548
De-editing 667, 668
DEFAULT clause 394
DEFAULT phrase

INITIALIZE statement 637
SET statement, locale 731

DEFAULT ROUNDED clause 273
DEFAULT ROUNDED MODE IS PROHIBITED clause 563,

1195
DEFINE directive 62
Defined condition 58
Definitions 3

DELETE FILE statement 605
DELETE statement 605
DELIMITED BY phrase

STRING statement 759
UNSTRING statement 769

DELIMITED phrase
DYNAMIC LENGTH STRUCTURE clause 291

Delimited scope statement 535
DELIMITER IN phrase

UNSTRING statement 769
DEPENDING ON phrase

GO TO statement 630
OCCURS clause 430
RECORD clause 467

DESCENDING KEY phrase
MERGE statement 657
OCCURS clause 430
SEARCH statement 724
SORT statement 745

DESTINATION clause 396, 397
DETAIL phrase

TYPE clause 494
Device-name 104

FILE-CONTROL paragraph 312
SPECIAL-NAMES paragraph 290

Directive-name
Definition 101

directive-name 98
DISPLAY directive 64
DISPLAY phrase

USAGE clause 503
DISPLAY screen statement 610, 740
DISPLAY statement 292, 610
DISPLAY-OF function 842
DIVIDE statement 564, 614
Division header 255
DOWN phrase

SET statement, index arithmetic 729, 731
SET statement, pointer arithmetic 731

DUPLICATES phrase
ALTERNATE RECORD KEY clause 320
SORT statement 745

DYNAMIC 430
Dynamic access mode 221, 1009
DYNAMIC LENGTH clause 397

Data description entry 363
DYNAMIC LENGTH STRUCTURE clause 291
DYNAMIC phrase

ACCESS MODE clause 312, 319
Dynamic storage 586, 627
Dynamic-capacity tables 1036

Definition 156
Dynamic-capacity-table

Format 430
Dynamic-length elementary item

Definition 158
Dynamic-length elementary items 1018
Dynamic-length-structure-name 98, 101

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1211

DYNAMIC LENGTH clause 363, 397
Scope of 146

E

E function 843
E PICTURE symbol 441
EC 70, 554, 555, 774
EC-ALL 222
EC-ALL exception 70, 85, 548, 552, 1091
EC-ARGUMENT exception 548, 552, 1091
EC-ARGUMENT-FUNCTION exception 552, 798, 951
EC-ARGUMENT-FUNCTION exception condition 919
EC-ARGUMENT-IMP exception 552
EC-BOUND exception 548, 552, 1091
EC-BOUND-IMP exception 552
EC-BOUND-ODO exception 435, 552
EC-BOUND-OVERFLOW exception 158, 552
EC-BOUND-PTR exception 376, 552
EC-BOUND-REF-MOD exception 132, 552
EC-BOUND-SET exception 552, 742
EC-BOUND-SUBSCRIPT exception 124, 552, 742
EC-BOUND-SUBSCRIPT exception condition 737, 739
EC-BOUND-TABLE-LIMIT exception 158, 552, 742
EC-CONTINUE exception 552
EC-CONTINUE-IMP 552
EC-CONTINUE-LESS-THAN-ZERO exception 552, 604
EC-DATA exception 548, 552, 1091
EC-DATA-CONVERSION exception 552, 668, 831, 842,

892
EC-DATA-IMP exception 552
EC-DATA-INCOMPATIBLE exception 177, 179, 552, 558,

559, 564, 581, 582, 630, 669, 782, 964
EC-DATA-NOT-FINITE exception 552, 559
EC-DATA-OVERFLOW exception 553, 669
EC-DATA-PTR-NULL exception 376, 553, 741
EC-EXTERNAL 553
EC-EXTERNAL exception 574, 593
EC-EXTERNAL-DATA-MISMATCH 553, 592, 655
EC-EXTERNAL-FILE-MISMATCH 553, 592, 655
EC-EXTERNAL-FORMAT-CONFLICT 553, 592, 655
EC-EXTERNAL-IMP 553
EC-FLOW exception 548, 553, 1091
EC-FLOW-APPLY exception 334
EC-FLOW-APPLY-COMMIT exception 334, 553
EC-FLOW-COMMIT exception 601
EC-FLOW-GLOBAL-EXIT exception 553
EC-FLOW-GLOBAL-GOBACK exception 553, 633
EC-FLOW-IMP exception 553
EC-FLOW-RELEASE exception 553, 704
EC-FLOW-REPORT exception 553, 778
EC-FLOW-RETURN exception 553, 708
EC-FLOW-ROLLBACK exception 553, 718
EC-FLOW-SEARCH exception 553, 743
EC-FLOW-USE exception 553, 776
EC-FUNCTION exception 553
EC-FUNCTION-ARG-OMITTED 554

EC-FUNCTION-ARG-OMITTED exception 131
EC-FUNCTION-IMP exception 554
EC-FUNCTION-NOT-FOUND exception 130, 554
EC-FUNCTION-PTR-INVALID exception 554, 740
EC-FUNCTION-PTR-NULL exception 130, 554
EC-IMP exception 548, 554, 624, 1091
EC-IMP-suffix 554
EC-I-O 222
EC-I-O exception 230, 547, 548, 549, 554, 596, 681, 844,

846, 1091
EC-I-O-AT-END exception 223, 554, 700, 1012
EC-I-O-EOP exception 554, 792
EC-I-O-EOP-OVERFLOW exception 554, 792
EC-I-O-FILE-SHARING exception 223, 554
EC-I-O-IMP exception 223, 554
EC-I-O-INVALID-KEY exception 223, 230, 554
EC-I-O-LINAGE exception 418, 554
EC-I-O-LOGIC-ERROR exception 223, 470, 554
EC-I-O-PERMANENT-ERROR exception 223, 554
EC-I-O-RECORD-CONTENT 554
EC-I-O-RECORD-OPERATION exception 223, 554
EC-I-O-WARNING exception 85, 223, 554
EC-LOCALE exception 548, 554
EC-LOCALE-IMP exception 554
EC-LOCALE-INCOMPATIBLE exception 190, 191, 554
EC-LOCALE-INVALID exception 95, 554
EC-LOCALE-INVALID-PTR exception 554, 741
EC-LOCALE-MISSING exception 95, 554, 742, 875, 876,

877, 878, 896
EC-LOCALE-SIZE exception 456, 554
EC-MCS 554
EC-MCS-ABNORMAL-TERMINATION exception 555
EC-MCS-IMP exception 555
EC-MCS-INVALID-TAG 555
EC-MCS-INVALID-TAG exception 555, 703
EC-MCS-MESSAGE-LENGTH exception 555, 703
EC-MCS-NO-RECEIVER exception 728
EC-MCS-NO-REQUESTER exception 555
EC-MCS-NORMAL-TERMINATION 555
EC-MCS-NO-SERVER exception 555, 728
EC-MCS-REQUESTOR-FAILED exception 555, 703
EC-OO exception 548, 555, 1091
EC-OO-ARG-OMITTED exception 555, 656
EC-OO-CONFORMANCE exception 134, 135, 555, 568
EC-OO-EXCEPTION exception 551, 555
EC-OO-IMP exception 555
EC-OO-METHOD exception 243, 555, 655
EC-OO-NULL exception 555, 654
EC-OO-RESOURCE exception 555, 942
EC-OO-UNIVERSAL exception 555, 568, 655
EC-ORDER exception 548, 555
EC-ORDER-IMP exception 555
EC-ORDER-NOT-SUPPORTED exception 555, 916
EC-ORDER-NOT-SUPPORTED exception condition 972
EC-OVERFLOW exception 548, 555, 1091
EC-OVERFLOW-IMP exception 555
EC-OVERFLOW-STRING exception 555, 761
EC-OVERFLOW-UNSTRING exception 555, 772

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1212 ©ISO/IEC 2023

EC-PROGRAM exception 70, 548, 555, 593, 1091
EC-PROGRAM-ARG-MISMATCH exception 555, 592
EC-PROGRAM-ARG-OMITTED exception 70, 131, 555,

594
EC-PROGRAM-CANCEL-ACTIVE exception 555, 596
EC-PROGRAM-EXCEPTIONS option

FLAG-02 directive 70
EC-PROGRAM-IMP exception 556
EC-PROGRAM-NOT-FOUND exception 70, 142, 556, 592
EC-PROGRAM-PTR-NULL exception 556, 592
EC-PROGRAM-RECURSIVE-CALL exception 556, 593
EC-PROGRAM-RESOURCES exception 130, 556, 592
EC-RAISING exception 556
EC-RAISING-IMP exception 556
EC-RAISING-NOT-SPECIFIED exception 556, 633
EC-RANGE exception 548, 556, 1091
EC-RANGE-IMP exception 556
EC-RANGE-INDEX exception 71, 434, 556
EC-RANGE-INDEX exception condition 738, 739
EC-RANGE-INSPECT-SIZE exception 556, 649
EC-RANGE-INVALID exception 556, 566
EC-RANGE-PERFORM-VARYING exception 556, 685
EC-RANGE-PTR exception 556, 741
EC-RANGE-SEARCH-INDEX exception 556, 722, 723
EC-RANGE-SEARCH-NO-MATCH exception 556, 722,

724, 725
EC-REPORT exception 548, 556, 1091
EC-REPORT-ACTIVE exception 556, 642
EC-REPORT-COLUMN-OVERLAP exception 388, 556
EC-REPORT-FILE-MODE exception 556, 642
EC-REPORT-IMP exception 556
EC-REPORT-INACTIVE exception 556, 629, 766
EC-REPORT-LINE-OVERLAP exception 422, 556
EC-REPORT-NOT-TERMINATED exception 557, 599
EC-REPORT-PAGE-LIMIT exception 422, 557
EC-REPORT-PAGE-WIDTH exception 388, 557
EC-REPORT-SUM-SIZE exception 489, 557
EC-REPORT-VARYING exception 526, 557
EC-SCREEN exception 557, 582
EC-SCREEN-FIELD-OVERLAP exception 557, 581, 612,

613
EC-SCREEN-IMP exception 557
EC-SCREEN-ITEM-TRUNCATED exception 390, 557, 613
EC-SCREEN-LINE-NUMBER exception 425, 557, 613
EC-SCREEN-STARTING-COLUMN exception 389, 557,

613
EC-SIZE exception 548, 557, 561, 562, 563, 564, 1091
EC-SIZE-ADDRESS exception 557, 741
EC-SIZE-EXPONENTIATION exception 176, 179, 182,

557, 563
EC-SIZE-IMP exception 557
EC-SIZE-OVERFLOW exception 178, 180, 557, 563
EC-SIZE-TRUNCATION exception 278, 279, 557, 561,

563, 1195
EC-SIZE-UNDERFLOW exception 178, 180, 557, 563
EC-SIZE-ZERO-DIVIDE exception 557, 563
EC-SORT-MERGE exception 548, 557, 1091
EC-SORT-MERGE-ACTIVE exception 557, 661, 750, 751

EC-SORT-MERGE-FILE-ACTIVE exception 968
EC-SORT-MERGE-FILE-OPEN exception 557, 660, 662,

749, 750, 968
EC-SORT-MERGE-IMP exception 557
EC-SORT-MERGE-RELEASE exception 470, 557, 660,

751
EC-SORT-MERGE-RETURN exception 557, 709
EC-SORT-MERGE-SEQUENCE exception 557, 660
EC-STORAGE exception 548, 557
EC-STORAGE-IMP exception 557
EC-STORAGE-NOT-ALLOC exception 558, 627
EC-STORAGE-NOT-AVAIL exception 558, 587, 744
EC-USER exception 529, 548, 558, 624, 633, 1091
EC-VALIDATE exception 558, 783
EC-VALIDATE-CONTENT exception 558, 783
EC-VALIDATE-FORMAT exception 558, 783
EC-VALIDATE-IMP exception 558
EC-VALIDATE-RELATION exception 558, 783
EC-VALIDATE-VARYING exception 526, 558
EDITING phrase 1150
Editing rules 452
Elementary items 151
Ellipses 29, 31
ELSE NEXT SENTENCE phrase

IF statement 635
ELSE phrase

IF statement 635
END CLASS marker 261
END DECLARATIVES 527, 532
END FACTORY marker 261
END FUNCTION marker 261
END INTERFACE marker 261
END MARKERS 261
END METHOD marker 261
END OBJECT marker 261
End of COBOL source program 261
END PROGRAM marker 261
END-ACCEPT phrase 576
END-ADD phrase 583
END-CALL phrase 588
END-COMPUTE phrase 602
END-DELETE phrase 605
END-DISPLAY phrase 610
END-DIVIDE phrase 614
END-EVALUATE phrase 618
END-IF phrase

IF statement 635
END-MULTIPLY phrase 673
END-OF-PAGE phrase 792

WRITE statement 785
END-READ phrase 692
END-RETURN phrase 708
END-REWRITE phrase 710
END-SEARCH phrase 720
END-START phrase 754
END-STRING phrase 759
END-SUBTRACT phrase 762
END-UNSTRING phrase 769

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1213

END-WRITE phrase 785
ENTRY-CONVENTION clause 274, 1162
Entry-convention-name 104, 274
Entry-name clause 398
Environment division 282
EO 774
EOP phrase

WRITE statement 785
EQUAL phrase

SEARCH statement 720
Equivalent arithmetic expression 805
ERASE clause 399
ERROR clause 513
Error indication 781
ERROR phrase

PERFORM statement 682
STOP statement 758
USE statement 774
VALIDATE-STATUS clause 513

ERROR PROCEDURE phrase
USE statement 774

EVALUATE directive 66
EVALUATE statement 618
Evaluation of conditional expressions 201
Evaluation of conditions 1146
Evaluation rules for conditions 204
EXCEPTION 682
EXCEPTION CONDITION 774
Exception condition handling 546
Exception conditions 546, 551

Fatal 549
Nonfatal 550

Exception declaratives 1012
EXCEPTION EC-MCS-NORMAL-TERMINATION

exception 546
Exception functions 1012
Exception handling 546, 774, 1011

Input-output exceptions 222
EXCEPTION OBJECT 774
Exception object 550, 774
EXCEPTION phrase 631

ACCEPT statement 577
CALL statement 588
DISPLAY statement 610
EXIT statement 623
RAISE statement 691
USE statement 774

EXCEPTION PROCEDURE phrase
USE statement 774

Exception status indicators 547
Exception-checking PERFORM statement. 597
EXCEPTION-FILE function 844
EXCEPTION-FILE-N function 846
EXCEPTION-LOCATION function 848
EXCEPTION-LOCATION-N function 850
Exception-names 106, 548, 551
EXCEPTION-OBJECT 135, 547, 691
EXCEPTION-STATEMENT function 852

EXCEPTION-STATUS function 547, 853
EXCLUSIVE-OR 174, 200, 204
Execution 536
EXIT FUNCTION statement 10, 685
EXIT PARAGRAPH statement 10, 623, 626
EXIT PERFORM statement 10, 623, 625
EXIT PROGRAM statement 10, 623, 625
EXIT PROGRAM Statement. 1199
EXIT SECTION statement 10, 623, 626
EXIT statement 548, 623
EXP function 854
EXP10 function 855
Expanded compilation group 44
EXPANDS phrase

REPOSITORY paragraph 251
Expected capacity

Exceeding 157
Expected capacity of a dynamic table

Definition 156
Explicit attributes 339
Explicit reference

Definition 145
Explicit scope terminators 535
Explicit transfer of control 539
Exponent 110
Exponentiation 176
Expression

Arithmetic 31, 175
Boolean 182, 187, 602, 618
Compile-time arithmetic 55
Compile-time boolean 56
Concatenation 185
Conditional 186, 1146
Constant conditional 57

EXTEND phrase
OPEN statement 675
PERFORM statement 682
USE statement 774

Extended calendar date format
Definition 799

Extended combined date and time format 804
Extended common time format

Definition 801
Extended common time format with fractional seconds

Definition 801
Extended common time format with integer seconds

representation
Definition 801

Extended letters 91, 980
Extended local time format 802
Extended offset time format 802
Extended ordinal date format

Definition 800
Extended relational operator 174
Extended UTC time format 802
Extended week date format

Definition 800
Extension language elements 23

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1214 ©ISO/IEC 2023

Extensions
Nonstandard 23
Standard 23

External 168
EXTERNAL clause 166, 400, 478, 500

Data description entry 363
File description entry 345

External data items 521
External items 168, 574, 592
EXTERNAL phrase

File description entry 342
External repository 216
Externalized names 99
External-locale-name 104
Externally provided functionality 24

F

FACTORIAL function 856
FACTORY clause

METHOD-ID paragraph 269
Factory data 250, 1107
Factory definition 266
Factory method 240, 1107
Factory object 240, 266, 1107

Life cycle for 252
FACTORY paragraph 266
FACTORY phrase 570

USAGE clause 503
Factory-definition 258
FactoryObject method 942
FALSE phrase

EVALUATE statement 618
SET statement, condition setting 730

FARTHEST-FROM-ZERO 743
FARTHEST-FROM-ZERO phrase

CLASS clause 194
SET statement 732

Fatal exception conditions 549
FD entry 342
Feature-name 104

FILE-CONTROL paragraph 314
RECORD DELIMITER clause 328
SPECIAL-NAMES paragraph 290

Figurative constant 113
INITIALIZE statement 640
Symbolic characters in 117

File
logical 217
Physical 217
Physical aspects 151

File attribute conflict condition 679
File attributes 219
File connector 218

OPEN statement 676
File control entry 311
File description entry 342

File operations 1010
File organization 219, 1005
FILE phrase

REWRITE statement 710
WRITE statement 785

File position indicator 222
File processing 1008
File section 341
File sharing 332, 1013
File sharing conflict condition 224, 567
FILE STATUS clause 324

FILE-CONTROL paragraph 312
FILE-CONTROL paragraph 311
File-name 98, 101

Scope of 148
Files 217, 1005

Indexed 220
Relative 220
Sequential 219

FILLER clause 398, 492
FILLER phrase

INITIALIZE statement 637
FINAL phrase

CLASS-ID paragraph 264
SUM clause 487
TYPE clause 494

FINALLY 206, 682
FIRST DETAIL phrase

PAGE clause 438
FIRST phrase

INSPECT statement 644
START statement 754

Fixed file attributes 219, 679
Fixed indicators 34
Fixed insertion editing 454
Fixed-capacity table

Comparing to dynamic-capacity table 544
Fixed-capacity tables

Definition 156
Fixed-length data item

Definition 159
Fixed-length group

Definition 160
Fixed-length records 1007
Fixed-point numeric data item

Definition 446
Fixed-point numeric literal 109
Fixed-point numeric-edited data item

Definition 446
FLAG-02 directive 70
FLAG-14 deirective 72
FLAG-85 directive 70, 72
Flagging and warning mechanisms

Archaic language elements 24
FLAG-02 directive 72
Nonstandard extensions 23
Obsolete language elements 24
Processor-dependent elements 22

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1215

Prototype versus repository 216
Syntax violations 21

FLAG-NATIVE-ARITHMETIC directive 74
FLOAT-BINARY clause 275
FLOAT-BINARY-128

Definition 508
FLOAT-BINARY-128 phrase

USAGE clause 503
FLOAT-BINARY-32

Definition 507
FLOAT-BINARY-32 phrase

USAGE clause 503
FLOAT-BINARY-64

Definition 508
FLOAT-BINARY-64 phrase

USAGE clause 503
FLOAT-DECIMAL clause 275
FLOAT-DECIMAL-16

Definition 508
FLOAT-DECIMAL-16 phrase

USAGE clause
FLOAT-DECIMAL-34 phrase

USAGE clause 503
FLOAT-DECIMAL-34

Definition 508
FLOAT-EXTENDED phrase

USAGE clause 503
FLOAT-INFINITY phrase

CLASS clause 194
SET statement 732

Floating indicators 34
Floating-point numeric data item

Definition 543
Floating-point numeric literal 109
Floating-point numeric-edited data item

Definition 446
FLOAT-LONG phrase

USAGE clause 503
FLOAT-NOT-A-NUMBER phrase

SET statement 732
FLOAT-NOT-A-NUMBER-QUIET phrase

CLASS clause 194
FLOAT-NOT-A-NUMBER-SIGNALING phrase

CLASS clause 194
SET statement 732

FLOAT-SHORT phrase
USAGE clause 503

FOOTING phrase
PAGE clause 438

FOR phrase
INSPECT statement 643
VALIDATE-STATUS clause 513

FOR REMOVAL phrase
CLOSE statement 597

FOREGROUND-COLOR clause 402
FOREVER phrase

DELETE statement 605
OPEN statement 675

READ statement 692
RETRY phrase 567
REWRITE statement 710
WRITE statement 785

Formal parameter 529, 568
FORMAT clause 481

File description entry 342
FORMAT phrase

VALIDATE-STATUS clause 513
Format validation 781

PICTURE clause 449
FORMATTED-CURRENT-DATE function 858
FORMATTED-DATE function 859
FORMATTED-DATETIME function 860
FORMATTED-TIME function 862
Forms of arithmetic

Concepts 1099
frac_digits 96
FRACTION-PART function 864
FREE statement 627
Free-form reference format 38
FROM clause 406
FROM phrase 576

ACCEPT statement 576
Constant entry 355
PERFORM statement 683
RELEASE statement 702, 704
REWRITE statement 710
SUBTRACT statement 762
VARYING clause 525
WRITE statement 785

FULL clause 407
Function activation

Failure 568
Function keys 236
FUNCTION phrase

EXIT statement 10
Function summary 806
Function-definition 257
FUNCTION-ID paragraph 267
Function-identifier 127
Function-pointer

Definition 511
Function-pointer category 162, 163
Function-pointer data item 163
FUNCTION-POINTER phrase

USAGE clause 503
Function-prototype 256
Function-prototype-name 98, 101
Functions

Intrinsic 213, 796
User-defined 252, 304

G

General formats 27
General rules 30

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1216 ©ISO/IEC 2023

GENERATE statement 497, 628, 766, 775
GIVING phrase

ADD statement 583
DIVIDE statement 614
MERGE statement 657
MULTIPLY statement 673
SORT statement 745
SUBTRACT statement 762

GLOBAL clause 408, 478
Constant entry 355
File description entry 342
Report description entry 358

Global names 147, 167
GLOBAL phrase 633

USE statement 774
GO TO statement 630
GOBACK statement 81, 548, 631, 685
Group

Strongly-typed 165
Group items 151
Group move 667
Grouping separator

Definition 301
GROUP-USAGE 410
GROUP-USAGE clause 410, 495, 780

H

HEADING phrase
PAGE clause 438

HIGHEST-ALGEBRAIC function 865
HIGHLIGHT clause 412
HIGHLIGHT phrase

SET statement, attribute setting 730
HIGH-ORDER-LEFT phrase

FLOAT-BINARY clause 275
FLOAT-DECIMAL clause 275
USAGE clause 504

HIGH-ORDER-RIGHT phrase
FLOAT-BINARY clause 275
FLOAT-DECIMAL clause 275
USAGE clause 504

HIGH-VALUE/HIGH-VALUES figurative constant 116
Hours subfield 801

I

Identification division 263
Identifier

Data-name 126
Identifiers 124
IF directive 75
IF statement 635
IGNORING LOCK phrase

READ statement 692
IMP directive 54, 55
Imperative statement 533

Implementation
Nonstandard extensions 23
Reserved words 23
Standard extensions 23

Implementor-defined
Language element list 943
Language elements 22
Native arithmetic 176
Record types 1008

IMPLEMENTS clause 266, 271
Implicit attributes 339
Implicit reference

Definition 145
Implicit scope terminators 535
Implicit transfer of control 539
IN phrase

COPY statement 46
With identifiers 124
With qualification 121

IN-ARITHMETIC-RANGE 744
IN-ARITHMETIC-RANGE phrase

CLASS clause 194
Incompatibility flagging 72
Incompatible data 558
Index

Definition 433
Index-name 123

Index category 162, 163, 506
Index class 162
Index data item 163, 505
Index functions 796
INDEX phrase

USAGE clause 503
INDEXED BY phrase 123, 737

OCCURS clause 430
Indexed files

Definition 220
Indexed organization 1007
INDEXED phrase 721

ORGANIZATION clause 327
Index-name 98, 101

Scope of 148, 149
Indicator area 36
Indicators 33

Comment 34
Compiler directive 34
Continuation 34
Fixed 34
Floating 34
Literal continuation 34
Source 34

Inheritance
Conforming 251

INHERITS clause
CLASS-ID paragraph 264
INTERFACE-ID paragraph 268

INITIAL clause
PROGRAM-ID paragraph 280

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1217

Initial data 168, 347, 537, 538
Initial items 168, 538
Initial program 170
initial program

Definition 281
Initial state 537, 538

CANCEL statement 538, 595
INITIALIZE 276
INITIALIZE clause 276, 537
INITIALIZE statement 521, 637
INITIALIZED 430
INITIALIZED phrase

ALLOCATE statement 586
INITIATE statement 642, 677, 775
Inline comment 38, 40
Inline method invocation 133
Input distribution 781
INPUT phrase

OPEN statement 675
PERFORM statement 682
USE statement 774

INPUT PROCEDURE phrase
SORT statement 745

Input-output section 310
Insertion character 454
INSPECT statement 643
INSPECT statement examples 1151
Instance data 250
Instance method 1105
Instance object 240, 271, 1105

Life cycle for 252
instance-definition 258
int_curr_symbol 95
int_frac_digits 96
Integer

In general formats and rules 31
Integer date form 805
INTEGER function 867
Integer functions 796
Integer literal 109
Integer-n 28
INTEGER-OF-BOOLEAN function 868
INTEGER-OF-DATE function 869
INTEGER-OF-DAY function 870
INTEGER-OF-FORMATTED-DATE function 871
INTEGER-PART function 872
Interface

Parameterized 252
Interface-definition 259
INTERFACE-ID paragraph 268
Interface-name 98, 101

Scope of 149
Interfaces 246
INTERMEDIATE ROUNDING clause 278
Internal items 168
International date and time 1166
INTO phrase

DIVIDE statement 614

READ statement 692
RETURN statement 708
STRING statement 759
UNSTRING statement 769

Intrinsic function summary 806
Intrinsic functions 796
Intrinsic-function-name 106
INVALID clause 413
INVALID KEY 222
Invalid key condition 230, 757

Definition 560
INVALID KEY phrase 230

DELETE statement 605
READ statement 692
REWRITE statement 710
START statement 754
WRITE statement 786

INVALID phrase
VALUE clause 516

Invocation operator 173
INVOKE statement 651
I-O phrase

OPEN statement 675
PERFORM statement 682
USE statement 774

I-O status 223, 230, 714, 1011
I-O-CONTROL paragraph 333
IO-STATUS-07 option

FLAG-02 directive 71
ISO 196
ISO 8601 1174
ISO 8601-1 2, 799, 801, 805, 1166
ISO/IEC 1001 2, 328
ISO/IEC 10646 2, 12, 88, 91, 153, 299, 998, 1073, 1176
ISO/IEC 14651 2, 302, 916, 947, 972, 973, 1081
ISO/IEC 1989 1203
ISO/IEC 1989:2002 72
ISO/IEC 60559 2, 177, 178, 179, 180, 181, 182, 196, 199,

507, 508, 509, 543, 743, 958, 1100, 1195
ISO/IEC 646 2, 88, 91, 107, 298, 1073, 1078, 1080
ISO/IEC 9945 2, 94
Item identification 540

J

Julian date form 806
JUSTIFIED clause 414, 518, 759

Data description entry 363

K

Key of reference 757
KEY phrase

READ statement 692
START statement 754

Keywords 27
Known errors in the standard 1201

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1218 ©ISO/IEC 2023

L

LAST DETAIL phrase
PAGE clause 438

LAST EXCEPTION phrase 631
EXIT statement 623

Last exception status 1092
Definition 547

LAST phrase
START statement 754

Last-used state 537, 538
LC_ALL 94

SET statement, locale 731
LC_COLLATE 94, 116, 541

SET statement, locale 731
LC_CTYPE 94, 541, 881, 934

SET statement, locale 731
LC_MESSAGES 94

SET statement, locale 731
LC_MONETARY 94, 541

SET statement, locale 731
LC_NUMERIC 94

SET statement, locale 731
LC_TIME 94, 542

SET statement, locale 731
LEADING phrase

INSPECT statement 643
SIGN clause 483

LEAP-SECOND directive 76
LEFT phrase

SYNCHRONIZED clause 491
LENGTH function 873
LENGTH phrase

Constant entry 355
START statement 754

Letter mapping 998
Level-number 98, 102, 152, 415

Data description entry 363
Screen description entry 368

Levels 151
Lexical elements 97
Library text 44
Library-name 46, 105
Life cycle

Data 167
Object 252

LIMIT phrase
DYNAMIC LENGTH clause 363, 397

LINAGE clause 417
File description entry 342

Linage concepts 1010
LINAGE-COUNTER 142, 148

Qualified 122
Line

Comment 38, 39
Continuation 38
Floating indicator 34
Slant (/) comment line 38

Source text 33
LINE (LINES) phrase

WRITE statement 785
LINE clause 420
LINE NUMBER phrase

ACCEPT statement 577
DISPLAY statement 610

line sequential files
Definition 219

LINE-COUNTER 143, 148, 358, 422
Qualified 122

LINES AT BOTTOM phrase
LINAGE clause 417

LINES AT clause
File description entry 342

LINES AT TOP phrase
LINAGE clause 417

Linkage section 349
LISTING 65
LISTING directive 78
Literal continuation indicator 34
Literal delimiter

Separator 118
Literal-phrase

SPECIAL-NAMES paragraph 291
Literals

Alphanumeric 107
Boolean 110
National 111
Numeric 109

little-endian 509
Local names 147, 167
Local time format 802
Locale 94

Category names 94
Field names 94, 95

LOCALE argument 920
LOCALE clause 166

SPECIAL-NAMES paragraph 290
Locale identification 541
LOCALE phrase 166, 541

PICTURE clause 441
SET statement, locale 731
SPECIAL-NAMES paragraph 291

LOCALE-COMPARE function 875
LOCALE-DATE function 876
Locale-name 98

Definition 102
OBJECT-COMPUTER paragraph 285
Scope of 146
SET statement, locale 731
SPECIAL-NAMES paragraph 290

Locale-names 289
LOCALE-TIME function 877
LOCALE-TIME-FROM-SECONDS function 878
Local-storage section 348
LOCATION 206, 682
LOCK MODE clause 325

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1219

FILE-CONTROL paragraph 312
LOCK ON MULTIPLE clause

LOCK MODE clause 325
LOCK phrase

READ statement 692
REWRITE statement 710
WRITE statement 786

LOG function 879
LOG10 function 880
Logical file 217
Logical operators 174

In complex conditions 200
Logical record 381, 1007
Logical unit of work

Definition 232
LOWER-CASE function 881, 920
Lowercase letters 90
LOWEST-ALGEBRAIC function 882
LOWLIGHT clause 426
LOWLIGHT phrase

SET statement, attribute setting 730
LOW-VALUE/LOW-VALUES figurative constant 116

M

MANUAL phrase
LOCK MODE clause 325

Mapping letters 998
Matching

Definition 161
Variable-length groups 161

MAX function 884
Maximum capacity

Exceeding 157
Maximum capacity of a dynamic table

Definition 156
MEAN function 885
MEDIAN function 886
Merge file 234
MERGE statement 657, 708
Merging 1011
message tag 702
MESSAGE-TAG 505
message-tag 727
Message-tag category 162, 164
Message-tag class 162
Meta-terms 30
Method 941

Invocation 242
Method definition 240
Method invocation

Failure 568
Method overloading 241
METHOD phrase

EXIT statement 623
Method prototypes 246, 260
Method resolution signature

Definition 241
Method-definition 259
METHOD-ID paragraph 269
Method-name 98, 102

METHOD-ID paragraph 269
Scope of 149

Methods 240
MIDRANGE function 887
MIN function 888
Minutes subfield 801
Mnemonic-name 98, 102, 289

ACCEPT statement 576
DISPLAY statement 610
Scope of 146
SET statement, switch setting 729
SPECIAL-NAMES paragraph 290
WRITE statement 785

MOD function 889
mon_decimal_point 95
mon_grouping 95
mon_thousands_sep 95
Month subfield 799
MOVE

Dynamic-capacity tables 544
MOVE statement 71, 512, 564, 612, 664, 771

CORRESPONDING phrase 564
Implicit 639

MOVE-TO-SAME-NAME option
FLAG-02 directive 71

Multilingual support 1082
MULTIPLY statement 564, 673

N

N PICTURE symbol 441
n_cs_precedes 96
Names 1047
NaN

Definition 196
NATIONAL 410
National category 162, 164, 411, 446
National character set 87, 1073
National class 162
National coded character set 87, 1073
National data item 164
National functions 796
National group item 410
National literal 111

Continuation of 37, 39
NATIONAL phrase

CODE-SET clause 384
COLLATING SEQUENCE clause 322
INITIALIZE statement 637
MERGE statement 657
SORT statement 745
SPECIAL-NAMES paragraph 290, 291

National-edited category 162, 164, 446

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1220 ©ISO/IEC 2023

National-edited data item 164
NATIONAL-EDITED phrase

INITIALIZE statement 637
NATIONAL-OF function 892
Native arithmetic 31, 175, 176, 565, 673, 764, 804
NATIVE phrase 272

ARITHMETIC clause 272
SPECIAL-NAMES paragraph 291

Natural language text 32
Natural logarithm 843, 879
NEAREST EVEN phrase

DEFAULT ROUNDED clause 273
NEAREST-AWAY-FROM-ZERO phrase

DEFAULT ROUNDED clause 273
INTERMEDIATE ROUNDING clause 278
ROUNDED phrase 560

NEAREST-EVEN phrase
DEFAULT ROUNDED clause 273
INTERMEDIATE ROUNDING clause 278
ROUNDED phrase 560

NEAREST-TOWARD-ZERO phrase
DEFAULT ROUNDED clause 273
ROUNDED phrase 560

NEAREST-TO-ZERO 743
NEAREST-TO-ZERO phrase

CLASS clause 194
SET statement 732

Negated conditions 200
negative_sign 96
NESTED phrase 589
Nested statement 536
New method 941
Next executable statement 540
NEXT GROUP clause 427
NEXT PAGE phrase 421

NEXT GROUP clause 427
NEXT phrase

READ statement 692
NEXT RECORD phrase

READ statement 692
NEXT SENTENCE phrase

IF statement 635
SEARCH statement 720

NEXT STATEMENT phrase
RESUME statement 706

NO ADVANCING phrase
DISPLAY statement 610

NO LOCK phrase
READ statement 692
REWRITE statement 710
WRITE statement 786

NO OTHER phrase
OPEN statement 675
SHARING clause 332

NO REWIND phrase
CLOSE statement 597
OPEN statement 675

Noncontiguous data items 152

Noncontiguous elementary items 357
Nonfatal exception conditions 550
Nonstandard extension flagging 23
NORMAL phrase

STOP statement 758
Normal run unit termination 545
NOT AT END phrase

READ statement 692
RETURN statement 708

NOT AT END-OF-PAGE phrase
WRITE statement 785

NOT AT EOP phrase
WRITE statement 785

NOT INVALID KEY phrase
DELETE statement 605
READ statement 692
REWRITE statement 710
START statement 754
WRITE statement 786

NOT ON EXCEPTION phrase
ACCEPT statement 577
CALL statement 588
DISPLAY statement 610
RECEIVE statement 703
SEND statement 727

NOT ON OVERFLOW phrase
STRING statement 759
UNSTRING statement 769

NOT ON SIZE ERROR phrase
ADD statement 583
COMPUTE statement 602
DIVIDE statement 614
MULTIPLY statement 673
SUBTRACT statement 762

NOT operator
In complex conditions 200
In negated conditions 200

NOT phrase
EVALUATE statement 618

NOT SIZE ERROR phrase 563
NULL

Predefined object 136
Predefined-address 139

NULL phrase
SET statement, pointer assignment 730

NULL predefined address 627
ALLOCATE statement 586
INITIALIZE statement 640

NULL predefined object reference
INITIALIZE statement 640

Numeric category 162, 164, 446
Numeric character 16
Numeric class 162
Numeric comparison 188
Numeric data item 164
Numeric functions 796
Numeric literal 109

Fixed-point 109

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1221

Floating-point 109
NUMERIC phrase

CLASS clause 194, 382
INITIALIZE statement 637

NUMERIC-EDITED
INITIALIZE statement 637

Numeric-edited category 165, 379, 446
Category of data

Numeric-edited 162
Numeric-edited data item 165
NUMVAL function 893
NUMVAL-C function 895
NUMVAL-F function 898

O

OBJECT 774
Object

Instance 252
Interface 246
Life cycle of 252
OBJECT paragraph 271

Object class 162
Object data item 1106
Object orientation 98, 102

Class 240
Class-name 101, 102
object-class-name 98

Object oriented concepts 1104
OBJECT paragraph 271
Object properties 137, 269
Object references 240

Initialization 521, 587
Object-class-name 98, 102

Scope of 149
OBJECT-COMPUTER paragraph 285
Object-reference category 162, 165, 509
Object-reference data item 165
OBJECT-REFERENCE phrase

INITIALIZE statement 637
Objects and classes 240
Object-view 134
Obsolete language element flagging 24
Obsolete language elements 24, 1199

ARITHMETIC IS STANDARD 1200
OCCURS … DEPENDING clause 71
OCCURS clause 123, 430, 473, 478, 492, 512, 519, 525,

721, 747, 781
Occurs-depending group item

Definition 435
Occurs-depending tables

Definition 156
OF phrase

COPY statement 46
With identifiers 124
With qualification 121

OFF phrase

SET statement, attribute setting 730
SET statement, switch setting 729
SPECIAL-NAMES paragraph 290

Offset subformat 802
Offset time format 802
Offset-hours subfield 802
Offset-minutes subfield 802
OMITTED phrase 128, 651

CALL statement 589
Omitted-argument condition 199
ON EXCEPTION 222
ON EXCEPTION phrase 593, 703

ACCEPT statement 577
CALL statement 588
DISPLAY statement 610
SEND statement 727

ON OVERFLOW phrase
CALL statement 588
STRING statement 759
UNSTRING statement 769

ON phrase
SET statement, attribute setting 730
SET statement, switch setting 729
SPECIAL-NAMES paragraph 290
VALIDATE-STATUS clause 513

ON SIZE ERROR phrase 561
ADD statement 583
COMPUTE statement 602
DIVIDE statement 614
MULTIPLY statement 673
SUBTRACT statement 762

ONLY phrase 570
USAGE clause 503

Open mode 218, 676, 1009
OPEN statement 675
Opening delimiter 118
Operands 28
Operational sign 153
Operators

Arithmetic 172
Boolean 172
Concatenation 173
Invocation 173
Logical 174
Relational 173

OPTIONAL phrase
FILE-CONTROL paragraph 312
Procedure division header 128, 528

Optional words 28, 106
OPTIONS paragraph 272
OR operator

In combined conditions 201
In complex conditions 200

OR PAGE phrase
TYPE clause 494

OR phrase
UNSTRING statement 769

ORD function 900

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1222 ©ISO/IEC 2023

ORDER keyword
SORT statement 745

Order of evaluation of conditions 204
ORDER TABLE 290, 916
Ordering table 916
Ordering-name 98, 102, 290

Scope of 146
Ordinal date format 799
ORD-MAX function 901
ORD-MIN function 902
Organization 219

Indexed 220
Relative 220
Sequential 219

ORGANIZATION clause 327
FILE-CONTROL paragraph 312

OTHER phrase
EVALUATE statement 618
SELECT WHEN clause 481

Out-of-line PERFORM statement 682
OUTPUT phrase

OPEN statement 675
PERFORM statement 682
USE statement 774

OUTPUT PROCEDURE phrase
MERGE statement 657
SORT statement 745

OVERFLOW phrase
STRING statement 759
UNSTRING statement 769

Overlapping operands 545, 641
STRING statement 761

OVERRIDE clause
METHOD-ID paragraph 269

P

P PICTURE symbol 441
p_cs_precedes 96
PACKED-DECIMAL phrase

USAGE clause 503
Page advance 629
PAGE clause 438
PAGE directive 79
Page fit processing 628
PAGE FOOTING phrase

TYPE clause 494
PAGE HEADING phrase

TYPE clause 494
PAGE LIMIT clause

Report description entry 358
PAGE phrase

WRITE statement 785
PAGE-COUNTER 143, 148, 358

Qualified 122
Paragraph header 263
PARAGRAPH phrase

EXIT statement 10, 623
Paragraph-name 98, 102, 532

Qualified 122
Paragraphs 263, 532
PARAMETER phrase 64
Parameterized classes 251
Parameterized interfaces 252
Parameter-name 98, 102

CLASS-ID paragraph 264
Parametric polymorphism 241
Parentheses

Function-identifier 128
In arithmetic expressions 175
Separator 117

Parenthesis
In Boolean expression 182
In logical conditions 201

PERFORM phrase
EXIT statement 10, 623

PERFORM statemen
Exception-checkingt 706

PERFORM statement 682
Exception checking 777
Exception-checking 605, 613, 623, 638, 657, 675, 682,

691
infinite loop 686

PERFORM statement examples 1155
Period

Separator 30, 117
PF phrase

TYPE clause 494
PH phrase

TYPE clause 494
PHYSICAL 823, 874
Physical file 217
Physical record 381
Physical-structure-name 105
PI function 903
Picture character-string 117, 759
PICTURE clause 441, 504, 512

Data description entry 363
Precedence rules 457

PICTURE SYMBOL phrase
SPECIAL-NAMES paragraph 290

Pointer 590
Initialization 521, 587

Pointer class 162
POINTER phrase

STRING statement 759
UNSTRING statement 769
USAGE clause 503

Polymorphism 240
Class 241
Parametric 241

POP directive 55, 80
positive_sign 95
Precedence of logical operators 201
Predefined object reference 779

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1223

Predefined-address 139
PREFIXED phrase

DYNAMIC LENGTH STRUCTURE clause 291
PRESENT WHEN clause 387, 409, 421, 461, 472, 781
PRESENT-VALUE function 904
Prime record key 329
PRINTING phrase

SUPPRESS statement 765
Procedure division 527

Declarative portion 532
Nondeclarative portion 532

PROCEDURE DIVISION header 527
Procedure-name 532
Procedures 532
Processor-dependent element flagging 22
Processor-dependent language elements 22

List of 969
PROGRAM COLLATING SEQUENCE clause

OBJECT-COMPUTER paragraph 285
PROGRAM phrase

EXIT statement 10, 623
Program prototype

CALL statement 589
CANCEL statement 595

Program-address-identifier 141
Program-definition 257
PROGRAM-ID paragraph 280
Program-name 98, 102

PROGRAM-ID paragraph 280
Scope of 149

Program-pointer
CANCEL statement 595
Definition 510

Program-pointer category 142, 162, 165
Program-pointer data item 165
PROGRAM-POINTER phrase

INITIALIZE statement 637
USAGE clause 503

Program-prototype 256
Program-prototype-name 98, 102
PROHIBITED phrase

DEFAULT ROUNDED clause 273
INTERMEDIATE ROUNDING clause 278
ROUNDED phrase 560

PROPAGATE directive 81
PROPERTY clause 137, 464

METHOD-ID paragraph 269
Property-name 98, 103
PROTOTYPE clause

FUNCTION-ID paragraph 267
PROGRAM-ID paragraph 280

Prototype versus repository flagging 216
Pseudo-text 44, 50
Pseudo-text delimiter 44

Separator 118
PUSH directive 55, 82

Q

Qualification 124
Implicit 120
LINAGE-COUNTER 122
LINE-COUNTER 122
Of condition-names 145
Of data-names 126
Of paragraph-names 122
OF phrase 121
PAGE-COUNTER 122
Subscripting 124
Uniqueness of reference 119

Qualified 126
Quiet NaN

Definition 196
Quotation mark 91
Quotation symbol 118
QUOTE/QUOTES figurative constant 117

R

RAISE statement 691
RAISING phrase 631, 728

EXIT statement 623
Procedure division header 527

Random access mode 221, 1009
RANDOM function 905
RANDOM phrase

ACCESS MODE clause 312, 319
RANGE function 906
Range of PERFORM statement 684
RANGE-EXCEPTION-FOR-INDEX option

FLAG-02 directive 71
RD entry 351
READ ONLY phrase

OPEN statement 675
SHARING clause 332

READ statement 692, 711
RECEIVE statement 727
Receiving operand 157, 542, 565, 589, 624, 653, 691, 731
receiving run unit 727
Record

Logical 381
Physical 381

RECORD clause 467, 755
RECORD CONTAINS clause

File description entry 342
RECORD DELIMITER clause 328

FILE-CONTROL paragraph 314
Record description entry 357
RECORD IS VARYING clause 790
Record key 320, 329
RECORD KEY clause 329
RECORD keyword

RETURN statement 708
REWRITE statement 710

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1224 ©ISO/IEC 2023

UNLOCK statement 768
Record locking 232, 325, 332, 768, 1014
Record locks 755, 768
Record operations 1008
RECORD phrase

DELETE statement 605
Record selection 481
RECORD-KEY clause

FILE-CONTROL paragraph 312
Record-key-name 98, 103

RECORD KEY clause 329
Record-name 98, 103

Scope of 148
RECORDS keyword

UNLOCK statement 768
RECORDS phrase

BLOCK CONTAINS clause 381
RECURSIVE clause

PROGRAM-ID paragraph 280
Recursive functions 252
Recursive methods 240
Recursive program 170
REDEFINES clause 471, 478, 491, 518, 639
Reel 221
REEL phrase

CLOSE statement 597
Reference format 33

Fixed-form 36
Free-form 38
Logical conversion 40

Reference format example 1159
REFERENCE phrase

INVOKE statement 651
Reference-modification 131

REF-MOD-ZERO-LENGTH directive 83
References 119
REF-MOD-ZERO-LENGTH directive 83
Relation condition

Alphanumeric operands 189
Arithmetic expression in 187
Boolean operands 190
Data-pointer operands 192
Index data item in 187
Index data items 192
Message tags 192
Mixed operands 189
National operands 190
Numeric operands 188
Object reference identifiers 192
Order of evaluation 204
Strongly-typed group items 191

RELATION phrase
VALIDATE-STATUS clause 513

Relation validation 781
Relational operator 173

START statement 754
Relative files

Definition 220

RELATIVE KEY clause 330
FILE-CONTROL paragraph 313
START statement 754

Relative organization 1006
RELATIVE phrase

ORGANIZATION clause 327
Relative record number 220, 330
RELEASE statement 704
REM function 907
REMAINDER phrase

DIVIDE statement 615
REMOVAL phrase

CLOSE statement 597
RENAMES clause 152, 473, 639
REPEATED phrase

VALUE clause 516
REPLACE statement 44, 50, 67, 75
REPLACING phrase

COPY statement 46
INITIALIZE statement 637
INSPECT statement 643

REPORT clause 475
Report description entry 351, 358
REPORT FOOTING phrase

TYPE clause 494
Report group description entry 359
REPORT HEADING phrase

TYPE clause 494
Report section 351
Report writer 1130
Report-name 98, 103, 475

Report description entry 358
Scope of 148

Repository 216
REPOSITORY paragraph 97, 304, 776
requestor 702
REQUIRED clause 476
Required word 105
RESERVE clause 331

FILE-CONTROL paragraph 312
Reserved words 97, 105

Compiler directives 213
Implementation 23
Source text 205

RESET phrase
NEXT GROUP clause 427
SUM clause 487

Restricted data pointer 140
Restricted data-pointer

Definition 510
Restricted pointer 510
RESUME statement 706
RETRY phrase 567, 607, 681, 1018

DELETE statement 605
OPEN statement 675
READ statement 692
REWRITE statement 710
WRITE statement 785

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1225

RETURN statement 708
Returned values, intrinsic functions 804
RETURNING phrase 633

ALLOCATE statement 586
CALL statement 588
INVOKE statement 651
Procedure division header 129, 527

REVERSE function 908
REVERSE-VIDEO clause 477
REVERSE-VIDEO phrase

SET statement, attribute setting 730
REWRITE statement 710
RF phrase

TYPE clause 494
RH phrase

TYPE clause 494
RIGHT phrase

JUSTIFIED clause 414
SYNCHRONIZED clause 491

rollback 1019
ROLLBACK statement 234, 334, 718

APPLY COMMIT clause 333
EC-FLOW-ROLLBACK Exception-name 553

ROUNDED MODE IS PROHIBITED phrase 1195
ROUNDED phrase 560

ADD statement 583
COMPUTE statement 602
DIVIDE statement 614
MULTIPLY statement 673
SOURCE clause 485
SUBTRACT statement 762
SUM clause 487

Rounding
Concepts 1095

Rounding rules 176
Rules 30
Run unit 18, 536
Run unit termination 545, 546, 758
Runtime element 255

S

S PICTURE symbol 441, 483
SAME AREA clause 335, 658, 747
SAME AS clause 478
SAME clause 335
SAME RECORD AREA clause 335, 704, 712, 788
SAME SORT AREA clause 335, 658, 747
SAME SORT-MERGE AREA clause 335, 658, 747
SBIDI

Definition 177
Scope of names 146
Scope of statements 535
Scope terminators 535
Screen description entry 368
Screen section 354
Screen-name 98, 103, 398

Screen-names
Scope of 148

Screens 236
SD entry 346
SDIDI

Definition 180
SEARCH statement 505, 720
SECONDS phrase

DELETE statement 605
OPEN statement 675
READ statement 692
RETRY phrase 567
REWRITE statement 710
WRITE statement 785

Seconds subfield 801
SECONDS-FROM-FORMATTED-TIME function 909
SECONDS-PAST-MIDNIGHT function 910
SECTION header 527
SECTION phrase

EXIT statement 10, 623
Section-name 98, 103, 532
Sections 532
SECURE clause 480
SELECT clause

FILE-CONTROL paragraph 312
SELECT WHEN clause 478, 481

SORT statement 749
SELF predefined object identifier 136
Semicolon 29

Interchangeable with comma 29, 117
Separator 117

SEND statement 702, 726
Sending operand 157, 542, 565, 589, 624, 653, 691, 731
Sentence 532

Definition 533
SEPARATE CHARACTER phrase

SIGN clause 483
Separators 30, 117

Colon 118
Comma 117
Literal delimiter 118
Parentheses 117
Period 30, 117
Pseudo-text delimiter 118
Semicolon 117
Space 117

separators
Definition 97

Sequential access mode 221, 1008
Sequential files

Definition 219
Sequential organization 1005
SEQUENTIAL phrase

ACCESS MODE clause 312, 319
ORGANIZATION clause 327

server run unit 727
SET statement 71, 505, 729

Dynamic-capacity tables 157

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1226 ©ISO/IEC 2023

Implicit 639
Shared files 230, 681
Shared memory area 1038
SHARING clause 325, 332, 660, 750

FILE-CONTROL paragraph 312
Sharing data 171
Sharing file connectors 219
Sharing mode 230, 1013
SHARING phrase 325

MERGE statement 660
OPEN statement 675
SORT statement 750

SHORT phrase
DYNAMIC LENGTH STRUCTURE clause 291

SIGN clause 153, 479, 483, 495
Sign condition 198
SIGN function 911
Signaling NaN

Definition 196
Signature 216

Method resolution 241
SIGNED phrase

DYNAMIC LENGTH STRUCTURE clause 291
USAGE clause 503

Simple insertion editing 453
Simple relational operator 174
SIN function 912
SIZE ERROR condition 562
Size error condition 178, 180, 561
SIZE ERROR phrase 561

ADD statement 583
COMPUTE statement 602
DIVIDE statement 614
MULTIPLY statement 673
SUBTRACT statement 762

SIZE phrase
PICTURE clause 441
STRING statement 759

Slant (/) comment line 38
SMALLEST-ALGEBRAIC function 913, 959
Sort file 234
SORT statement 704, 708, 745
Sorting 1010
Sorting tables 1034
Sort-merge file description entry 346
SOURCE clause 485
Source element 255
SOURCE FORMAT directive 84
Source indicator 34
SOURCE phrase

ALTERNATE RECORD KEY clause 320
RECORD KEY clause 329

Source unit 254
SOURCE-COMPUTER paragraph 284
Space

Separator 117
SPACE/SPACES figurative constant 116
Special character words 105

In formats 30
Special insertion editing 453
SPECIAL-NAMES paragraph 196, 197, 289, 736

ACCEPT statement 577
SQRT function 915
Standard arithmetic 175, 176, 565, 674, 804

Concepts 1100
Standard classes 941
Standard date form 806
Standard language element acceptance 21
Standard numeric time form 806
STANDARD phrase

ARITHMETIC clause 272
STANDARD-1

FILE-CONTROL paragraph 314
STANDARD-1 phrase

RECORD DELIMITER clause 328
STANDARD-1,2 phrase

SPECIAL-NAMES paragraph 291
Standard-binary

Arithmetic 176
Standard-binary arithmetic 176, 565, 804
Standard-binary intermediate data item 177
STANDARD-BINARY phrase 273

ARITHMETIC clause 272
STANDARD-COMPARE function 916
Standard-decimal

Arithmetic 179
Standard-decimal arithmetic 179, 565, 804
Standard-decimal intermediate data item 180
STANDARD-DECIMAL phrase 273

ARITHMETIC clause 272
STANDARD-DEVIATION function 918
START statement 754
State of

Function 537
Method 537
Object data 539
Program 537

Statement 532
Compiler-directing 44
Declarative 533
Procedural 532

Static data 168, 347
Static items 168
STOP 540
STOP statement 758
STOP statement, 633
STRING statement 759
STRONG phrase 166

TYPEDEF clause 500
Strongly-typed group items 165
Strongly-typed groups 165
Strongly-typed items 1061
Structured compilation group 43, 44, 254
Structured constant 391, 1140
Subfield 799
Subscripted

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1227

Data-name 123
Subscripted identifier 124
Subscripting 1030

Condition-name 123
Subscripts 122, 123

Dynamic-capacity tables 157
Substantive changes list 1172
SUBSTITUTE function 919
SUBTRACT statement 564, 762

CORRESPONDING phrase 564
SUM clause 272, 487
Sum counter 488
SUM function 921
Summary of functions 806
SUPER predefined object identifier 136
SUPPRESS 312, 320
SUPPRESS statement 765
SUPPRESS WHEN phrase 697, 716, 757, 1007
Surrogate pair 132

Definition 19
Switch status

Condition-name 145
Switch-name 105, 197

SPECIAL-NAMES paragraph 290
Switch-status condition 197
Symbolic-character 98, 103, 289

Figurative constant 117
Scope of 146

SYMBOLIC-CHARACTERS clause
SPECIAL-NAMES paragraph 292

SYNCHRONIZED clause 155, 491, 518
Syntax rules 30, 31, 33, 34
Syntax violation flagging 21
SYSTEM-DEFAULT phrase

SET statement 731
System-name 103
System-names 289

T

t_fmt 96
Table handling 1018
Table sort 746
Tables 152, 430
TALLYING phrase

INSPECT statement 643
UNSTRING statement 769

Terminal screen 236
TERMINATE statement 71, 766, 775
TERMINATE-WITH-VARYING option

FLAG-02 directive 71
TEST AFTER phrase

PERFORM statement 683
TEST BEFORE phrase

PERFORM statement 683
TEST phrase

PERFORM statement 683

TEST-FORMATTED-DATETIME function 925
TEST-NUMVAL function 926
Text manipulation 43
Text manipulation stage 42, 43
Text-name 47, 105
Text-word 45
THEN phrase

IF statement 635
INITIALIZE statement 637

THEN REPLACING phrase
INITIALIZE statement 637

THROUGH (THRU) phrase 566
EVALUATE directive 66
EVALUATE statement 618
MERGE statement 657
PERFORM statement 682
RENAMES clause 473
SORT statement 745
VALUE clause 516

Time format 800
TIME phrase

ACCEPT statement 576
TIMES phrase

DELETE statement 605
OPEN statement 675
PERFORM statement 683
READ statement 692
RETRY phrase 567
REWRITE statement 710
VALUE clause 516
WRITE statement 785

TO clause 493
TO END phrase

VALUE clause 516
TO phrase

ADD statement 583
INITIALIZE statement 637
INSPECT statement 643
MOVE statement 664
SET statement, condition setting 730
SET statement, index assignment 729
SET statement, object identifier assignment 730
SET statement, pointer assignment 730
SET statement, switch setting 729

TO VALUE clause
INITIALIZE statement 637

TOWARD-GREATER phrase
DEFAULT ROUNDED clause 273
ROUNDED phrase 560

TOWARD-LESSER phrase
DEFAULT ROUNDED clause 273
ROUNDED phrase 560

TRAILING phrase
SIGN clause 483

Transfer of control 539
EXIT FUNCTION statement 540
EXIT PROGRAM statement 540
EXIT statement 539

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

1228 ©ISO/IEC 2023

GOBACK statement 540, 631
MERGE statement 539
PERFORM statement 540
SORT statement 539
STOP statement 540

TRIM function 932
TRUE phrase

EVALUATE directive 66
EVALUATE statement 618
SET statement, condition setting 730

TRUNCATION phrase
DEFAULT ROUNDED clause 273
INTERMEDIATE ROUNDING clause 278
ROUNDED phrase 560

TURN directive 70, 85, 548, 561, 689
TYPE clause 478, 494
TYPEDEF clause 500

Data description entry 363
Type-name 98, 103

Scope of 148
TYPE clause 494

Types
Definition of 165

Types of functions 796

U

UCS 6, 19, 88, 108, 668, 1073, 1089
UCS-4 299
UCS-4 phrase

SPECIAL-NAMES paragraph 291
Undefined language element list 963
UNDERLINE clause 501
UNDERLINE phrase

SET statement, attribute setting 730
Underscore 97
Unicode 1089
Unicode 13.0.0 1201
Unicode version 13.0 998
Uniqueness of reference 119
Unit 221
UNIT phrase 71

CLOSE statement 597
Universal object reference 509
UNLOCK statement 768
UNSIGNED phrase

USAGE clause 503
UNSTRING statement 769
UNTIL phrase

PERFORM statement 683
UP phrase

SET statement, index arithmetic 729, 731
SET statement, pointer arithmetic 731

UPON phrase 64
DISPLAY statement 610
SUM clause 487

UPPER-CASE function 934

Uppercase letters 90
USAGE clause 479, 495, 502
USE EXCEPTION 596
USE EXCEPTION declarative 550
USE statement 532, 681, 774
User default locale 94
USER-DEFAULT phrase

SET statement 731
User-defined functions 252, 304
User-defined words 980

Definition 97
Notation 980

User-function-name 98, 103
USING clause 512

CLASS-ID paragraph 264
INTERFACE-ID paragraph 268

USING phrase
CALL statement 588
FILE-CONTROL paragraph 312
INVOKE statement 651
MERGE statement 657
Procedure division header 528
SORT statement 745

UTC time format 802
UTF-16 19, 153

SPECIAL-NAMES paragraph 291
UTF-8 108

SPECIAL-NAMES paragraph 291

V

V PICTURE symbol 441
VALID phrase

VALUE clause 516
Validate facility 1141
VALIDATE statement 413, 525, 780
VALIDATE-STATUS clause 513, 780
VALUE clause 471, 516, 587, 640
VALUE phrase

INITIALIZE statement 637
INVOKE statement 651

Variable-length data item
Contiguity of data items 159
Definition 159

Variable-length group
Comparison of 192

Variable-length groups
Compatibility 160
Definition 160

Variable-length records 1007
VARIANCE function 936
VARYING clause 525
VARYING phrase

PERFORM statement 683
RECORD clause 467
SEARCH statement 720

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023 (E)

©ISO/IEC 2023 1229

W

Weakly-typed items 166, 1061
Week date format 800
Week-of-year subfield 800
WHEN 682
WHEN phrase 222, 547, 548, 549, 550, 561, 582

EVALUATE directive 66
EVALUATE statement 618
INVALID clause 413
SEARCH statement 720

WHEN SET TO FALSE phrase
VALUE clause 516

WHEN-COMPILED function 937
WITH DUPLICATES phrase

SORT statement 745
WITH ERROR STATUS phrase

STOP statement 758
WITH FILLER phrase

INITIALIZE statement 637
WITH FOOTING phrase

LINAGE clause 417
WITH LENGTH phrase

START statement 754
WITH LOCK phrase

READ statement 692
REWRITE statement 710
WRITE statement 786

WITH NO ADVANCING phrase
DISPLAY statement 610

WITH NO LOCK phrase
READ statement 692
REWRITE statement 710
WRITE statement 786

WITH NO REWIND phrase 71
CLOSE statement 597
OPEN statement 675

WITH NORMAL STATUS phrase
STOP statement 758

WITH POINTER phrase
STRING statement 759
UNSTRING statement 769

WITH TEST phrase
PERFORM statement 683

Word 97
Working-storage section 347
WRITE statement 292, 785

X

X PICTURE symbol 441
XOR 174, 200, 204

Y

Year subfield 799

YEAR-TO-YYYY function 939
YYYYDDD phrase

ACCEPT statement 576
YYYYMMDD phrase

ACCEPT statement 576

Z

Z PICTURE symbol 441
ZERO/ZEROES/ZEROS figurative constant 116
Zero-length item 435, 470

Definition 167
Zero-length literal

Definition 107

BS ISO/IEC 1989:2023

BS ISO/IEC 1989:2023

ISO/IEC 1989:2023(E)

ICS 35.060Price based on 1229 pages
© ISO/IEC 2023 – All rights reserved

BS ISO/IEC 1989:2023

This page deliberately left blank

BSI is the national body responsible for preparing British Standards and other
standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization
products are published by BSI Standards Limited.

British Standards Institution (BSI)

About us
We bring together business, industry, government, consumers, innovators

and others to shape their combined experience and expertise into standards

-based solutions.

The knowledge embodied in our standards has been carefully assembled in

a dependable format and refined through our open consultation process.

Organizations of all sizes and across all sectors choose standards to help

them achieve their goals.

Information on standards
We can provide you with the knowledge that your organization needs

to succeed. Find out more about British Standards by visiting our website at

bsigroup.com/standards or contacting our Customer Services team or

Knowledge Centre.

Buying standards
You can buy and download PDF versions of BSI publications, including British and

adopted European and international standards, through our website at bsigroup.

com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development

Organizations, hard copies can be ordered from our Customer Services team.

Copyright in BSI publications
All the content in BSI publications, including British Standards, is the property

of and copyrighted by BSI or some person or entity that owns copyright in the

information used (such as the international standardization bodies) and has

formally licensed such information to BSI for commercial publication and use.

Save for the provisions below, you may not transfer, share or disseminate any

portion of the standard to any other person. You may not adapt, distribute,

commercially exploit or publicly display the standard or any portion thereof in any

manner whatsoever without BSI’s prior written consent.

Storing and using standards
Standards purchased in soft copy format:

• A British Standard purchased in soft copy format is licensed to a sole named

user for personal or internal company use only.

• The standard may be stored on more than one device provided that it is

accessible by the sole named user only and that only one copy is accessed at

any one time.

• A single paper copy may be printed for personal or internal company use only.

Standards purchased in hard copy format:

• A British Standard purchased in hard copy format is for personal or internal

company use only.

• It may not be further reproduced – in any format – to create an additional copy.

This includes scanning of the document.

If you need more than one copy of the document, or if you wish to share the

document on an internal network, you can save money by choosing a subscription

product (see ‘Subscriptions’).

Reproducing extracts
For permission to reproduce content from BSI publications contact the BSI

Copyright and Licensing team.

Subscriptions
Our range of subscription services are designed to make using standards

easier for you. For further information on our subscription products go to bsigroup.

com/subscriptions.

With British Standards Online (BSOL) you’ll have instant access to over 55,000

British and adopted European and international standards from your desktop.

It’s available 24/7 and is refreshed daily so you’ll always be up to date.

You can keep in touch with standards developments and receive substantial

discounts on the purchase price of standards, both in single copy and subscription

format, by becoming a BSI Subscribing Member.

PLUS is an updating service exclusive to BSI Subscribing Members. You will

automatically receive the latest hard copy of your standards when they’re

revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits

of membership, please visit bsigroup.com/shop.

With a Multi-User Network Licence (MUNL) you are able to host standards

publications on your intranet. Licences can cover as few or as many users as you

wish. With updates supplied as soon as they’re available, you can be sure your

documentation is current. For further information, email cservices@bsigroup.com.

Revisions
Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your

business. If you find an inaccuracy or ambiguity within a British Standard or other

BSI publication please inform the Knowledge Centre.

Useful Contacts

Customer Services

Tel: +44 345 086 9001

Email: cservices@bsigroup.com

Subscriptions

Tel: +44 345 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070

Email: copyright@bsigroup.com

BSI Group Headquarters
389 Chiswick High Road London W4 4AL UK

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

	undefined
	Contents
	Tables
	Figures
	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Conformance to this Working Draft International Standard
	4.1 General
	4.2 A conforming implementation
	4.2.1 General
	4.2.2 Acceptance of standard language elements
	4.2.3 Interaction with non-COBOL runtime modules
	4.2.4 Interaction between COBOL implementations
	4.2.5 Implementor-defined language elements
	4.2.6 Processor-dependent language elements
	4.2.7 Optional language elements
	4.2.8 Reserved words
	4.2.9 Standard extensions
	4.2.10 Nonstandard extensions
	4.2.11 Substitute or additional language elements
	4.2.12 Archaic language elements
	4.2.13 Obsolete language elements
	4.2.14 Externally-provided functionality
	4.2.15 Limits
	4.2.16 User documentation
	4.2.17 Character substitution

	4.3 A conforming compilation group
	4.4 A conforming run unit
	4.5 Relationship of a conforming compilation group to a conforming implementation
	4.6 Relationship of a conforming run unit to a conforming implementation

	5 Description techniques
	5.1 General
	5.2 General formats
	5.2.1 General
	5.2.2 Keywords
	5.2.3 Optional words
	5.2.4 Operands
	5.2.5 Level numbers
	5.2.6 Options
	5.2.6.1 General
	5.2.6.2 Brackets
	5.2.6.3 Braces
	5.2.6.4 Choice indicators

	5.2.7 Ellipses
	5.2.8 Punctuation
	5.2.9 Special characters
	5.2.10 Meta-terms

	5.3 Rules
	5.3.1 General
	5.3.2 Syntax rules
	5.3.3 General rules
	5.3.4 Argument rules
	5.3.5 Returned value rules

	5.4 Arithmetic expressions
	5.4.1 General
	5.4.2 Textually subscripted operands
	5.4.3 Ellipses

	5.5 Integer operands
	5.6 Informal description
	5.7 Hyphens in text

	6 Reference format
	6.1 General
	6.2 Indicators
	6.2.1 General
	6.2.2 Fixed indicators
	6.2.3 Floating indicators
	6.2.3.1 General
	6.2.3.2 Syntax rules

	6.3 Fixed-form reference format
	6.3.1 General
	6.3.2 Sequence number area
	6.3.3 Indicator area
	6.3.4 Program-text area
	6.3.5 Continuation of lines
	6.3.6 Blank lines
	6.3.7 Comments
	6.3.7.1 General
	6.3.7.2 Comment lines
	6.3.7.3 Inline comments

	6.4 Free-form reference format
	6.4.1 General
	6.4.2 Continuation of lines
	6.4.3 Blank lines
	6.4.4 Comments
	6.4.4.1 General
	6.4.4.2 Comment lines
	6.4.4.3 Inline comments

	6.5 Logical conversion

	7 Compiler directing facility
	7.1 General
	7.2 Text manipulation
	7.2.1 General
	7.2.2 Text manipulation elements
	7.2.2.1 General
	7.2.2.2 Compiler directing statements
	7.2.2.3 Source text and library text
	7.2.2.4 Pseudo-text
	7.2.2.5 Text-words

	7.2.3 COPY statement
	7.2.3.1 General
	7.2.3.2 General format
	7.2.3.3 Syntax rules
	7.2.3.4 General rules

	7.2.4 REPLACE statement
	7.2.4.1 General
	7.2.4.2 General format
	7.2.4.3 Syntax rules
	7.2.4.4 General rules

	7.3 Compiler directives
	7.3.1 General
	7.3.2 General format
	7.3.3 Syntax rules
	7.3.4 General rules
	7.3.5 Conditional compilation
	7.3.6 Compile-time arithmetic expressions
	7.3.6.1 General
	7.3.6.2 Syntax rules
	7.3.6.3 General rules

	7.3.7 Compile-time boolean expressions
	7.3.7.1 General
	7.3.7.2 Syntax rule
	7.3.7.3 General rule

	7.3.8 Constant conditional expression
	7.3.8.1 General
	7.3.8.2 Syntax rules
	7.3.8.3 General rules
	7.3.8.4 Defined condition
	7.3.8.4.1 General
	7.3.8.4.2 General format
	7.3.8.4.3 Syntax rule
	7.3.8.4.4 General rule

	7.3.9 CALL-CONVENTION directive
	7.3.9.1 General
	7.3.9.2 General format
	7.3.9.3 General rules

	7.3.10 COBOL-WORDS directive
	7.3.10.1 General
	7.3.10.2 General format
	7.3.10.3 Syntax rules
	7.3.10.4 General rules

	7.3.11 DEFINE directive
	7.3.11.1 General
	7.3.11.2 General format
	7.3.11.3 Syntax rules
	7.3.11.4 General rules

	7.3.12 DISPLAY directive
	7.3.12.1 General
	7.3.12.2 General format
	7.3.12.3 Syntax rules
	7.3.12.4 General rules

	7.3.13 EVALUATE directive
	7.3.13.1 General
	7.3.13.2 General format
	7.3.13.3 Syntax rules
	7.3.13.4 General rules

	7.3.14 FLAG-02 directive
	7.3.14.1 General
	7.3.14.2 General format
	7.3.14.3 Syntax rule
	7.3.14.4 General rules

	7.3.15 FLAG-14 directive
	7.3.15.1 General
	7.3.15.2 General format
	7.3.15.3 Syntax rule
	7.3.15.4 General rules

	7.3.16 IF directive
	7.3.16.1 General
	7.3.16.2 General format
	7.3.16.3 Syntax rules
	7.3.16.4 General rules

	7.3.17 LEAP-SECOND directive
	7.3.17.1 General
	7.3.17.2 General format
	7.3.17.3 Syntax rule
	7.3.17.4 General rules

	7.3.18 LISTING directive
	7.3.18.1 General
	7.3.18.2 General format
	7.3.18.3 General rules

	7.3.19 PAGE directive
	7.3.19.1 General
	7.3.19.2 General format
	7.3.19.3 Syntax rules
	7.3.19.4 General rules

	7.3.20 POP directive
	7.3.20.1 General
	7.3.20.2 General format
	7.3.20.3 Syntax rules
	7.3.20.4 General rules

	7.3.21 PROPAGATE directive
	7.3.21.1 General
	7.3.21.2 General format
	7.3.21.3 Syntax rule
	7.3.21.4 General rules

	7.3.22 PUSH directive
	7.3.22.1 General
	7.3.22.2 General format
	7.3.22.3 Syntax rules
	7.3.22.4 General rules

	7.3.23 REF-MOD-ZERO-LENGTH directive
	7.3.23.1 General
	7.3.23.2 General format.
	7.3.23.3 General rule

	7.3.24 SOURCE FORMAT directive
	7.3.24.1 General
	7.3.24.2 General format
	7.3.24.3 General rules

	7.3.25 TURN directive
	7.3.25.1 General
	7.3.25.2 General format
	7.3.25.3 Syntax rules
	7.3.25.4 General rules

	8 Language fundamentals
	8.1 Character sets
	8.1.1 General
	8.1.2 Computer's coded character set
	8.1.3 COBOL character repertoire
	8.1.3.1 General
	8.1.3.2 General rules

	8.1.4 Alphabets
	8.1.5 Collating sequences

	8.2 Locales
	8.2.1 General
	8.2.2 Locale field names

	8.3 Lexical elements
	8.3.1 General
	8.3.2 COBOL words
	8.3.2.1 General
	8.3.2.2 User-defined words
	8.3.2.2.1 Alphabet-name
	8.3.2.2.2 Class-name
	8.3.2.2.3 Compilation-variable-name
	8.3.2.2.4 Condition-name
	8.3.2.2.5 Constant-name
	8.3.2.2.6 Data-name
	8.3.2.2.7 Directive-name
	8.3.2.2.8 Dynamic-length-structure-name
	8.3.2.2.9 File-name
	8.3.2.2.10 Function-prototype-name
	8.3.2.2.11 Index-name
	8.3.2.2.12 Interface-name
	8.3.2.2.13 Level-number
	8.3.2.2.14 Locale-name
	8.3.2.2.15 Method-name
	8.3.2.2.16 Mnemonic-name
	8.3.2.2.17 Object-class-name
	8.3.2.2.18 Ordering-name
	8.3.2.2.19 Paragraph-name
	8.3.2.2.20 Parameter-name
	8.3.2.2.21 Program-name
	8.3.2.2.22 Program-prototype-name
	8.3.2.2.23 Property-name
	8.3.2.2.24 Record-key-name
	8.3.2.2.25 Record-name
	8.3.2.2.26 Report-name
	8.3.2.2.27 Screen-name
	8.3.2.2.28 Section-name
	8.3.2.2.29 Symbolic-character
	8.3.2.2.30 Type-name
	8.3.2.2.31 User-function-name

	8.3.2.3 System-names
	8.3.2.3.1 General
	8.3.2.3.2 Call-convention-name
	8.3.2.3.3 Code-name
	8.3.2.3.4 Computer-name
	8.3.2.3.5 Device-name
	8.3.2.3.6 Entry-convention-name
	8.3.2.3.7 External-locale-name
	8.3.2.3.8 Feature-name
	8.3.2.3.9 Library-name
	8.3.2.3.10 Physical-structure-name
	8.3.2.3.11 Switch-name
	8.3.2.3.12 Text-name

	8.3.2.4 Reserved words
	8.3.2.4.1 General
	8.3.2.4.2 Required words
	8.3.2.4.3 Optional words

	8.3.2.5 Context-sensitive words
	8.3.2.6 Intrinsic-function-names
	8.3.2.7 Exception-names

	8.3.3 Literals
	8.3.3.1 General
	8.3.3.2 Alphanumeric literals
	8.3.3.2.1 General
	8.3.3.2.2 General format
	8.3.3.2.3 Syntax rules
	8.3.3.2.4 General rules

	8.3.3.3 Numeric literals
	8.3.3.3.1 General
	8.3.3.3.2 Fixed-point numeric literals
	8.3.3.3.3 Floating-point numeric literals

	8.3.3.4 Boolean literals
	8.3.3.4.1 General
	8.3.3.4.2 General format
	8.3.3.4.3 Syntax rules
	8.3.3.4.4 General rules

	8.3.3.5 National literals
	8.3.3.5.1 General
	8.3.3.5.2 General format
	8.3.3.5.3 Syntax rules
	8.3.3.5.4 General rules

	8.3.3.6 Figurative constant values
	8.3.3.6.1 General
	8.3.3.6.2 General format
	8.3.3.6.3 Syntax rules
	8.3.3.6.4 General rules

	8.3.4 Picture character-strings
	8.3.5 Separators

	8.4 References
	8.4.1 General
	8.4.2 Uniqueness of reference
	8.4.2.1 General
	8.4.2.2 Qualification
	8.4.2.2.1 General
	8.4.2.2.2 General format
	8.4.2.2.3 Syntax rules

	8.4.2.3 Subscripts
	8.4.2.3.1 General
	8.4.2.3.2 General format
	8.4.2.3.3 Syntax rules
	8.4.2.3.4 General rules

	8.4.3 Identifiers
	8.4.3.1 Identifier
	8.4.3.1.1 General
	8.4.3.1.2 General format
	8.4.3.1.3 Syntax rules
	8.4.3.1.4 General rules

	8.4.3.2 Function-identifier
	8.4.3.2.1 General
	8.4.3.2.2 General format
	8.4.3.2.3 Syntax rules
	8.4.3.2.4 General rules

	8.4.3.3 Reference-modification
	8.4.3.3.1 General
	8.4.3.3.2 General format
	8.4.3.3.3 Syntax rules
	8.4.3.3.4 General rules

	8.4.3.4 Inline method invocation
	8.4.3.4.1 General
	8.4.3.4.2 General format
	8.4.3.4.3 Syntax rules
	8.4.3.4.4 General rules

	8.4.3.5 Object-view
	8.4.3.5.1 General
	8.4.3.5.2 General format
	8.4.3.5.3 Syntax rules
	8.4.3.5.4 General rules

	8.4.3.6 EXCEPTION-OBJECT
	8.4.3.6.1 General
	8.4.3.6.2 General format
	8.4.3.6.3 Syntax rules
	8.4.3.6.4 General rules

	8.4.3.7 NULL object reference
	8.4.3.7.1 General
	8.4.3.7.2 General format
	8.4.3.7.3 Syntax rules
	8.4.3.7.4 General rule

	8.4.3.8 SELF and SUPER
	8.4.3.8.1 General
	8.4.3.8.2 General format
	8.4.3.8.3 Syntax rules
	8.4.3.8.4 General rules

	8.4.3.9 Object property
	8.4.3.9.1 General
	8.4.3.9.2 General format
	8.4.3.9.3 Syntax rules
	8.4.3.9.4 General rules

	8.4.3.10 NULL address pointer and message tag content
	8.4.3.10.1 General
	8.4.3.10.2 General format
	8.4.3.10.3 Syntax rules
	8.4.3.10.4 General rules

	8.4.3.11 Data-address-identifier
	8.4.3.11.1 General
	8.4.3.11.2 General format
	8.4.3.11.3 Syntax rules
	8.4.3.11.4 General rules

	8.4.3.12 Function-address-identifier
	8.4.3.12.1 General
	8.4.3.12.2 General format
	8.4.3.12.3 Syntax rules
	8.4.3.12.4 General rules

	8.4.3.13 Program-address-identifier
	8.4.3.13.1 General
	8.4.3.13.2 General format
	8.4.3.13.3 Syntax rules
	8.4.3.13.4 General rules

	8.4.3.14 LINAGE-COUNTER
	8.4.3.14.1 General
	8.4.3.14.2 General format
	8.4.3.14.3 Syntax rules
	8.4.3.14.4 General rules

	8.4.3.15 Report counters
	8.4.3.15.1 General
	8.4.3.15.2 General format
	8.4.3.15.3 Syntax rules
	8.4.3.15.4 General rules

	8.4.4 Condition-name
	8.4.4.1 General
	8.4.4.2 General format
	8.4.4.3 Syntax rules

	8.4.5 Explicit and implicit data item references
	8.4.6 Scope of names
	8.4.6.1 General
	8.4.6.2 Local and global names
	8.4.6.2.1 General
	8.4.6.2.2 Scope of condition-names, constant-names, data-names, file-names, record-names, report-names, screen-names, and type-names
	8.4.6.2.3 Scope of index-names
	8.4.6.2.4 Scope of record-key-names
	8.4.6.2.5 Scope of PAGE-COUNTER AND LINE-COUNTER
	8.4.6.2.6 Scope of LINAGE-COUNTER

	8.4.6.3 Scope of program-names
	8.4.6.4 Scope of object-class-names and interface-names
	8.4.6.5 Scope of method-names
	8.4.6.6 Scope of function-prototype-names
	8.4.6.7 Scope of user-function-names
	8.4.6.8 Scope of program-prototype-names
	8.4.6.9 Scope of compilation-variable-names
	8.4.6.10 Scope of parameter-names
	8.4.6.11 Scope of property-names

	8.5 Data description and representation
	8.5.1 Computer independent data description
	8.5.1.1 General
	8.5.1.2 Files and records
	8.5.1.3 Levels
	8.5.1.3.1 General
	8.5.1.3.2 Level-numbers
	8.5.1.3.3 Tables

	8.5.1.4 Limitations of character handling
	8.5.1.5 Algebraic signs
	8.5.1.6 Alignment of data items in storage
	8.5.1.6.1 Alignment of alphanumeric groups and of data items of usage display
	8.5.1.6.2 Alignment of data items of usage national
	8.5.1.6.3 Alignment of data items of usage bit
	8.5.1.6.4 Item alignment for increased object-code efficiency
	8.5.1.6.5 Alignment of strongly-typed group items

	8.5.1.7 Fixed-capacity tables
	8.5.1.8 Occurs-depending tables
	8.5.1.9 Dynamic-capacity tables
	8.5.1.9.1 General
	8.5.1.9.2 Operations on a single element
	8.5.1.9.3 Implicit changes in capacity
	8.5.1.9.4 Explicit changes in capacity
	8.5.1.9.5 Implicit initialization
	8.5.1.9.6 Exceeding capacity

	8.5.1.10 Dynamic-length elementary items
	8.5.1.10.1 General
	8.5.1.10.2 Structure of a dynamic-length elementary item
	8.5.1.10.3 Location of dynamic-length elementary items
	8.5.1.10.4 Operations on dynamic-length elementary items

	8.5.1.11 Variable-length data items
	8.5.1.11.1 General
	8.5.1.11.2 Contiguity of data items
	8.5.1.11.3 Availability and persistence of variable-length data items

	8.5.1.12 Variable-length groups
	8.5.1.12.1 General
	8.5.1.12.2 Positional correspondence
	8.5.1.12.3 Matching

	8.5.2 Class and category of data items and literals
	8.5.2.1 General
	8.5.2.2 Alphabetic category
	8.5.2.3 Alphanumeric category
	8.5.2.4 Alphanumeric-edited category
	8.5.2.5 Boolean category
	8.5.2.6 Data-pointer category
	8.5.2.7 Function-pointer category
	8.5.2.8 Index category
	8.5.2.9 Message-tag category
	8.5.2.10 National category
	8.5.2.11 National-edited category
	8.5.2.12 Numeric category
	8.5.2.13 Numeric-edited category
	8.5.2.14 Object-reference category
	8.5.2.15 Program-pointer category

	8.5.3 Types
	8.5.3.1 General
	8.5.3.2 Weakly-typed items
	8.5.3.3 Strongly-typed group items

	8.5.4 Zero-length items

	8.6 Scope and life cycle of data
	8.6.1 General
	8.6.2 Global names and local names
	8.6.3 External and internal items
	8.6.4 Automatic, initial, and static internal items
	8.6.5 Based entries and based data items
	8.6.6 Common, initial, and recursive attributes
	8.6.7 Sharing data items

	8.7 Operators
	8.7.1 Arithmetic operators
	8.7.2 Boolean operators
	8.7.3 Concatenation operator
	8.7.4 Invocation operator
	8.7.5 Relational operators
	8.7.5.1 General format
	8.7.5.2 Syntax rules

	8.7.6 Logical operators

	8.8 Expressions
	8.8.1 Arithmetic expressions
	8.8.1.1 General
	8.8.1.2 Native, standard-binary, and standard-decimal arithmetic
	8.8.1.3 Native arithmetic
	8.8.1.4 Standard-binary arithmetic
	8.8.1.4.1 General
	8.8.1.4.2 Standard-binary intermediate data item
	8.8.1.4.3 Basic arithmetic operations in standard-binary arithmetic
	8.8.1.4.4 Exponentiation in standard-binary arithmetic

	8.8.1.5 Standard-decimal arithmetic
	8.8.1.5.1 General
	8.8.1.5.2 Standard-decimal intermediate data item
	8.8.1.5.3 Basic arithmetic operations in standard-decimal arithmetic
	8.8.1.5.4 Exponentiation in standard-decimal arithmetic

	8.8.2 Boolean expressions
	8.8.3 Concatenation expressions
	8.8.3.1 General format
	8.8.3.2 Syntax rules
	8.8.3.3 General rules

	8.8.4 Conditional expressions
	8.8.4.1 General
	8.8.4.2 Simple relation conditions
	8.8.4.2.1 General
	8.8.4.2.2 General format
	8.8.4.2.3 Syntax rules
	8.8.4.2.4 Comparison of numeric operands
	8.8.4.2.5 Comparison of a numeric integer operand with an operand of class alphanumeric or national
	8.8.4.2.6 Comparison of alphanumeric and national operands
	8.8.4.2.7 Comparison of alphanumeric operands
	8.8.4.2.8 Comparison of boolean operands
	8.8.4.2.9 Comparison of national operands
	8.8.4.2.10 Standard comparison
	8.8.4.2.11 Locale-based comparison
	8.8.4.2.12 Comparison of strongly-typed group items
	8.8.4.2.13 Comparisons involving index-names or index data items
	8.8.4.2.14 Comparisons of operands of class message-tag
	8.8.4.2.15 Comparisons of operands of class object
	8.8.4.2.16 Comparison of pointer operands
	8.8.4.2.17 Comparison of a variable-length group with a compatible group

	8.8.4.3 Simple boolean condition
	8.8.4.3.1 General
	8.8.4.3.2 General format
	8.8.4.3.3 Syntax rule
	8.8.4.3.4 General rules

	8.8.4.4 Simple class condition
	8.8.4.4.1 General
	8.8.4.4.2 General format
	8.8.4.4.3 Syntax rules
	8.8.4.4.4 General rules

	8.8.4.5 Simple condition-name condition (conditional variable)
	8.8.4.5.1 General
	8.8.4.5.2 General format
	8.8.4.5.3 General rules

	8.8.4.6 Simple switch-status condition
	8.8.4.6.1 General
	8.8.4.6.2 General format
	8.8.4.6.3 General rule

	8.8.4.7 Simple sign condition
	8.8.4.7.1 General
	8.8.4.7.2 General format
	8.8.4.7.3 Syntax rules
	8.8.4.7.4 General rules

	8.8.4.8 Simple omitted argument condition
	8.8.4.8.1 General
	8.8.4.8.2 General format
	8.8.4.8.3 Syntax rule
	8.8.4.8.4 General rules

	8.8.4.9 Complex conditions
	8.8.4.10 Complex negated conditions
	8.8.4.10.1 General
	8.8.4.10.2 General format

	8.8.4.11 Complex Combined conditions
	8.8.4.11.1 General
	8.8.4.11.2 General format
	8.8.4.11.3 Precedence of logical operators and the use of parentheses

	8.8.4.12 Abbreviated combined relation conditions
	8.8.4.12.1 General
	8.8.4.12.2 General format
	8.8.4.12.3 Syntax rules
	8.8.4.12.4 General rule

	8.8.4.13 Order of evaluation of conditions

	8.9 Reserved words
	8.10 Context-sensitive words
	8.11 Intrinsic function names
	8.12 Compiler-directive words
	8.13 External repository

	9 I-O, objects, and user-defined functions
	9.1 Files
	9.1.1 Physical and logical files
	9.1.2 Record area
	9.1.3 File connector
	9.1.4 Open mode
	9.1.5 Sharing file connectors
	9.1.6 Fixed file attributes
	9.1.7 Organization
	9.1.7.1 General
	9.1.7.2 Sequential
	9.1.7.3 Relative
	9.1.7.4 Indexed

	9.1.8 Access modes
	9.1.8.1 General
	9.1.8.2 Sequential access mode
	9.1.8.3 Random access mode
	9.1.8.4 Dynamic access mode

	9.1.9 Reel and unit
	9.1.10 Current volume pointer
	9.1.11 File position indicator
	9.1.12 Input-output exception processing
	9.1.13 I-O status
	9.1.13.1 General
	9.1.13.2 Successful completion
	9.1.13.3 Implementor-defined successful completion
	9.1.13.4 At end condition with unsuccessful completion
	9.1.13.5 Invalid key condition with unsuccessful completion
	9.1.13.6 Permanent error condition with unsuccessful completion
	9.1.13.7 Logic error condition with unsuccessful completion
	9.1.13.8 Record operation conflict condition with unsuccessful completion
	9.1.13.9 File sharing conflict condition with unsuccessful completion
	9.1.13.10 Record with invalid content with unsuccessful completion
	9.1.13.11 Implementor-defined condition with unsuccessful completion

	9.1.14 Invalid key condition
	9.1.15 Sharing mode
	9.1.16 Record locking
	9.1.17 Logical unit of work
	9.1.18 Commit and Rollback
	9.1.18.1 General
	9.1.18.2 Files and data items to be included
	9.1.18.3 Committing changes to files
	9.1.18.4 Rolling back changes to files and data items
	9.1.18.5 Run unit termination
	9.1.18.6 Object orientation
	9.1.18.7 Exception conditions

	9.1.19 Sort file
	9.1.20 Merge file
	9.1.21 Dynamic file assignment
	9.1.22 Report file

	9.2 Screens
	9.2.1 Terminal screen
	9.2.2 Function keys
	9.2.3 CRT status
	9.2.4 Cursor
	9.2.5 Cursor locator
	9.2.6 Current screen item
	9.2.7 Color number

	9.3 Objects
	9.3.1 Objects and classes
	9.3.2 Object references
	9.3.3 Predefined object references
	9.3.4 Methods
	9.3.5 Polymorphism
	9.3.5.1 General
	9.3.5.2 Class polymorphism
	9.3.5.3 Parametric polymorphism

	9.3.6 Method invocation
	9.3.7 Method prototypes
	9.3.8 Conformance and interfaces
	9.3.8.1 General
	9.3.8.2 Conformance for object orientation
	9.3.8.2.1 General
	9.3.8.2.2 Interfaces
	9.3.8.2.3 Conformance between interfaces
	9.3.8.2.4 Conformance for parameterized classes and parameterized interfaces

	9.3.9 Class inheritance
	9.3.10 Interface inheritance
	9.3.11 Interface implementation
	9.3.12 Parameterized classes
	9.3.13 Parameterized interfaces
	9.3.14 Object life cycle
	9.3.14.1 General
	9.3.14.2 Life cycle for factory objects
	9.3.14.3 Life cycle for instance objects

	9.4 User-defined functions

	10 Structured compilation group
	10.1 General
	10.2 Compilation units
	10.3 Source units
	10.4 Contained source units
	10.5 Source elements and runtime elements
	10.6 COBOL compilation group
	10.6.1 General format
	10.6.2 Syntax rules
	10.6.3 General rule

	10.7 End markers
	10.7.1 General
	10.7.2 General format
	10.7.3 Syntax rules
	10.7.4 General rule

	11 Identification division
	11.1 General
	11.2 Identification division structure
	11.3 CLASS-ID paragraph
	11.3.1 General
	11.3.2 General format
	11.3.3 Syntax rules
	11.3.4 General rules

	11.4 FACTORY paragraph
	11.4.1 General
	11.4.2 General format
	11.4.3 Syntax rules
	11.4.4 General rules

	11.5 FUNCTION-ID paragraph
	11.5.1 General
	11.5.2 General format
	11.5.3 Syntax rule
	11.5.4 General rules

	11.6 INTERFACE-ID paragraph
	11.6.1 General
	11.6.2 General format
	11.6.3 Syntax rules
	11.6.4 General rules

	11.7 METHOD-ID paragraph
	11.7.1 General
	11.7.2 General format
	11.7.3 Syntax rules
	11.7.4 General rules

	11.8 OBJECT paragraph
	11.8.1 General
	11.8.2 General format
	11.8.3 Syntax rules
	11.8.4 General rules

	11.9 OPTIONS paragraph
	11.9.1 General
	11.9.2 General format
	11.9.3 Syntax rule
	11.9.4 General rule
	11.9.5 ARITHMETIC clause
	11.9.5.1 General format
	11.9.5.2 General rules

	11.9.6 DEFAULT ROUNDED clause
	11.9.6.1 General
	11.9.6.2 General format
	11.9.6.3 General rules

	11.9.7 ENTRY-CONVENTION clause
	11.9.7.1 General
	11.9.7.2 General format
	11.9.7.3 Syntax rule
	11.9.7.4 General rules

	11.9.8 FLOAT-BINARY clause
	11.9.8.1 General
	11.9.8.2 General format
	11.9.8.3 Syntax rules

	11.9.9 FLOAT-DECIMAL clause
	11.9.9.1 General
	11.9.9.2 General format
	11.9.9.3 Syntax rules

	11.9.10 INITIALIZE clause
	11.9.10.1 General
	11.9.10.2 General format
	11.9.10.3 Syntax rule
	11.9.10.4 General rules

	11.9.11 INTERMEDIATE ROUNDING clause
	11.9.11.1 General format
	11.9.11.2 General rules

	11.10 PROGRAM-ID paragraph
	11.10.1 General
	11.10.2 General format
	11.10.3 Syntax rules
	11.10.4 General rules

	12 Environment division
	12.1 General
	12.2 Environment division structure
	12.3 Configuration section
	12.3.1 General
	12.3.2 General format
	12.3.3 Syntax rules
	12.3.4 General rule
	12.3.5 SOURCE-COMPUTER paragraph
	12.3.5.1 General
	12.3.5.2 General format
	12.3.5.3 Syntax rule
	12.3.5.4 General rules

	12.3.6 OBJECT-COMPUTER paragraph
	12.3.6.1 General
	12.3.6.2 General format
	12.3.6.3 Syntax rules
	12.3.6.4 General rules

	12.3.7 SPECIAL-NAMES paragraph
	12.3.7.1 General
	12.3.7.2 General format
	12.3.7.3 Syntax rules
	12.3.7.4 General rules

	12.3.8 REPOSITORY paragraph
	12.3.8.1 General
	12.3.8.2 General format
	12.3.8.3 Syntax rules
	12.3.8.4 General rules

	12.4 Input-output section
	12.4.1 General
	12.4.2 General format
	12.4.3 Syntax rule
	12.4.4 FILE-CONTROL paragraph
	12.4.4.1 General
	12.4.4.2 General format

	12.4.5 File control entry
	12.4.5.1 General formats
	12.4.5.2 Syntax rules
	12.4.5.3 General rules
	12.4.5.4 ACCESS MODE clause
	12.4.5.5 General
	12.4.5.5.1 General format
	12.4.5.5.2 Syntax rules
	12.4.5.5.3 General rules

	12.4.5.6 ALTERNATE RECORD KEY clause
	12.4.5.6.1 General
	12.4.5.6.2 General format
	12.4.5.6.3 Syntax rules
	12.4.5.6.4 General rules

	12.4.5.7 COLLATING SEQUENCE clause
	12.4.5.7.1 General
	12.4.5.7.2 General formats
	12.4.5.7.3 Syntax rules
	12.4.5.7.4 General rules

	12.4.5.8 FILE STATUS clause
	12.4.5.8.1 General
	12.4.5.8.2 General format
	12.4.5.8.3 Syntax rules
	12.4.5.8.4 General rule

	12.4.5.9 LOCK MODE clause
	12.4.5.9.1 General
	12.4.5.9.2 General format
	12.4.5.9.3 Syntax rules
	12.4.5.9.4 General rules

	12.4.5.10 ORGANIZATION clause
	12.4.5.10.1 General
	12.4.5.10.2 General format
	12.4.5.10.3 General rules

	12.4.5.11 RECORD DELIMITER clause
	12.4.5.11.1 General
	12.4.5.11.2 General format
	12.4.5.11.3 Syntax rules
	12.4.5.11.4 General rules

	12.4.5.12 RECORD KEY clause
	12.4.5.12.1 General
	12.4.5.12.2 General format
	12.4.5.12.3 Syntax rules
	12.4.5.12.4 General rules

	12.4.5.13 RELATIVE KEY clause
	12.4.5.13.1 General
	12.4.5.13.2 General format
	12.4.5.13.3 Syntax rules
	12.4.5.13.4 General rules

	12.4.5.14 RESERVE clause
	12.4.5.14.1 General
	12.4.5.14.2 General format
	12.4.5.14.3 General rule

	12.4.5.15 SHARING clause
	12.4.5.15.1 General
	12.4.5.15.2 General format
	12.4.5.15.3 General rule

	12.4.6 I-O-CONTROL paragraph
	12.4.6.1 General
	12.4.6.2 General format
	12.4.6.3 APPLY COMMIT clause
	12.4.6.3.1 General
	12.4.6.3.2 General format
	12.4.6.3.3 Syntax rules
	12.4.6.3.4 General rules

	12.4.6.4 SAME clause
	12.4.6.4.1 General
	12.4.6.4.2 General formats
	12.4.6.4.3 Syntax rules
	12.4.6.4.4 General rules

	13 Data division
	13.1 General
	13.2 Data division structure
	13.2.1 General format

	13.3 Explicit and implicit attributes
	13.4 File section
	13.4.1 General
	13.4.2 General format
	13.4.3 Syntax rule
	13.4.4 General rule
	13.4.5 File description entry
	13.4.5.1 General
	13.4.5.2 General formats
	13.4.5.3 Syntax rules
	13.4.5.4 General rules

	13.4.6 Sort-merge file description entry
	13.4.6.1 General
	13.4.6.2 General format
	13.4.6.3 Syntax rules
	13.4.6.4 General rule

	13.5 Working-storage section
	13.5.1 General
	13.5.2 General format
	13.5.3 Syntax rule
	13.5.4 General rules

	13.6 Local-storage section
	13.6.1 General
	13.6.2 General format
	13.6.3 Syntax rule
	13.6.4 General rules

	13.7 Linkage section
	13.7.1 General
	13.7.2 General format
	13.7.3 Syntax rules
	13.7.4 General rules

	13.8 Report section
	13.8.1 General
	13.8.2 General format
	13.8.3 Syntax rule
	13.8.4 Report description entry
	13.8.5 Report group description entry
	13.8.6 Report subdivisions
	13.8.6.1 General
	13.8.6.2 Physical subdivisions of a report
	13.8.6.2.1 Pages
	13.8.6.2.2 Lines
	13.8.6.2.3 Report Items

	13.8.6.3 Logical Subdivisions of a Report

	13.9 Screen section
	13.9.1 General
	13.9.2 General format
	13.9.3 Syntax rule
	13.9.4 General rule

	13.10 Constant entry
	13.10.1 General
	13.10.2 General format
	13.10.3 Syntax rules
	13.10.4 General rules

	13.11 Record description entry
	13.11.1 General

	13.12 Type declaration entry
	13.13 77-level data description entry
	13.14 Report description entry
	13.14.1 General
	13.14.2 General format
	13.14.3 Syntax rules
	13.14.4 General rule

	13.15 Report group description entry
	13.15.1 General
	13.15.2 General format
	13.15.3 Syntax rules
	13.15.4 General rules

	13.16 Data description entry
	13.16.1 General
	13.16.2 General formats
	13.16.3 Syntax rules
	13.16.4 General rules

	13.17 Screen description entry
	13.17.1 General
	13.17.2 General formats
	13.17.3 Syntax rules
	13.17.4 General rules

	13.18 Data division clauses
	13.18.1 ALIGNED clause
	13.18.1.1 General
	13.18.1.2 General format
	13.18.1.3 Syntax rule
	13.18.1.4 General rules

	13.18.2 ANY LENGTH clause
	13.18.2.1 General
	13.18.2.2 General format
	13.18.2.3 Syntax rules
	13.18.2.4 General rule

	13.18.3 AUTO clause
	13.18.3.1 General
	13.18.3.2 General format
	13.18.3.3 General rules

	13.18.4 BACKGROUND-COLOR clause
	13.18.4.1 General
	13.18.4.2 General format
	13.18.4.3 Syntax rules
	13.18.4.4 General rules

	13.18.5 BASED clause
	13.18.5.1 General
	13.18.5.2 General format
	13.18.5.3 Syntax rules
	13.18.5.4 General rules

	13.18.6 BELL clause
	13.18.6.1 General
	13.18.6.2 General format
	13.18.6.3 General rules

	13.18.7 BLANK clause
	13.18.7.1 General
	13.18.7.2 General format
	13.18.7.3 General rules

	13.18.8 BLANK WHEN ZERO clause
	13.18.8.1 General
	13.18.8.2 General format
	13.18.8.3 Syntax rules
	13.18.8.4 General rules

	13.18.9 BLINK clause
	13.18.9.1 General
	13.18.9.2 General format
	13.18.9.3 General rules

	13.18.10 BLOCK CONTAINS clause
	13.18.10.1 General
	13.18.10.2 General format
	13.18.10.3 Syntax rule
	13.18.10.4 General rules

	13.18.11 CLASS clause
	13.18.11.1 General
	13.18.11.2 General format
	13.18.11.3 Syntax rule
	13.18.11.4 General rules

	13.18.12 CODE clause
	13.18.12.1 General
	13.18.12.2 General format
	13.18.12.3 Syntax rules
	13.18.12.4 General rules

	13.18.13 CODE-SET clause
	13.18.13.1 General
	13.18.13.2 General format
	13.18.13.4 General rules

	13.18.14 COLUMN clause
	13.18.14.1 General
	13.18.14.2 General formats
	13.18.14.3 Syntax rules
	13.18.14.4 General rules

	13.18.15 CONSTANT RECORD clause
	13.18.15.1 General
	13.18.15.2 General format
	13.18.15.3 Syntax rules
	13.18.15.4 General rule

	13.18.16 CONTROL clause
	13.18.16.1 General
	13.18.16.2 General format
	13.18.16.3 Syntax rules
	13.18.16.4 General rules

	13.18.17 DEFAULT clause
	13.18.17.1 General
	13.18.17.2 General format
	13.18.17.3 Syntax rules
	13.18.17.4 General rules

	13.18.18 DESTINATION clause
	13.18.18.1 General
	13.18.18.2 General format
	13.18.18.3 Syntax rules
	13.18.18.4 General rules

	13.18.19 DYNAMIC LENGTH clause
	13.18.19.1 General
	13.18.19.2 General format
	13.18.19.3 Syntax rules
	13.18.19.4 General rules

	13.18.20 Entry-name clause
	13.18.20.1 General
	13.18.20.2 General formats
	13.18.20.3 Syntax rules
	13.18.20.4 General rule

	13.18.21 ERASE clause
	13.18.21.1 General
	13.18.21.2 General format
	13.18.21.3 Syntax rules
	13.18.21.4 General rules

	13.18.22 EXTERNAL clause
	13.18.22.1 General
	13.18.22.2 General format
	13.18.22.3 Syntax rules
	13.18.22.4 General rules

	13.18.23 FOREGROUND-COLOR clause
	13.18.23.1 General
	13.18.23.2 General format
	13.18.23.3 Syntax rules
	13.18.23.4 General rules

	13.18.24 FORMAT clause
	13.18.24.1 General
	13.18.24.2 General format
	13.18.24.3 Syntax rules
	13.18.24.4 General rules

	13.18.25 FROM clause
	13.18.25.1 General
	13.18.25.2 General format
	13.18.25.3 Syntax rules
	13.18.25.4 General rule

	13.18.26 FULL clause
	13.18.26.1 General
	13.18.26.2 General format
	13.18.26.3 General rules

	13.18.27 GLOBAL clause
	13.18.27.1 General
	13.18.27.2 General format
	13.18.27.3 Syntax rules
	13.18.27.4 General rules

	13.18.28 GROUP INDICATE clause
	13.18.28.1 General
	13.18.28.2 General format
	13.18.28.3 Syntax rule
	13.18.28.4 General rule

	13.18.29 GROUP-USAGE clause
	13.18.29.1 General
	13.18.29.2 General format
	13.18.29.3 Syntax rules
	13.18.29.4 General rules

	13.18.30 HIGHLIGHT clause
	13.18.30.1 General
	13.18.30.2 General format
	13.18.30.3 General rules

	13.18.31 INVALID clause
	13.18.31.1 General
	13.18.31.2 General format
	13.18.31.3 Syntax rule
	13.18.31.4 General rules

	13.18.32 JUSTIFIED clause
	13.18.32.1 General
	13.18.32.2 General format
	13.18.32.3 Syntax rules
	13.18.32.4 General rules

	13.18.33 Level-number
	13.18.33.1 General
	13.18.33.2 General format
	13.18.33.3 Syntax rules
	13.18.33.4 General rules

	13.18.34 LINAGE clause
	13.18.34.1 General
	13.18.34.2 General format
	13.18.34.3 Syntax rules
	13.18.34.4 General rules

	13.18.35 LINE clause
	13.18.35.1 General
	13.18.35.2 General formats
	13.18.35.3 Syntax rules
	13.18.35.4 General rules

	13.18.36 LOWLIGHT clause
	13.18.36.1 General
	13.18.36.2 General format
	13.18.36.3 General rules

	13.18.37 NEXT GROUP clause
	13.18.37.1 General
	13.18.37.2 General format
	13.18.37.3 Syntax rules
	13.18.37.4 General rules

	13.18.38 OCCURS clause
	13.18.38.1 General
	13.18.38.2 General formats
	13.18.38.3 Syntax rules
	13.18.38.4 General rules

	13.18.39 PAGE clause
	13.18.39.1 General
	13.18.39.2 General format
	13.18.39.3 Syntax rules
	13.18.39.4 General rules

	13.18.40 PICTURE clause
	13.18.40.1 General
	13.18.40.2 General formats
	13.18.40.3 Syntax rules
	13.18.40.4 General rules
	13.18.40.5 Editing rules
	13.18.40.6 Precedence rules

	13.18.41 PRESENT WHEN clause
	13.18.41.1 General
	13.18.41.2 General formats
	13.18.41.3 Syntax rule
	13.18.41.4 General rules

	13.18.42 PROPERTY clause
	13.18.42.1 General
	13.18.42.2 General format
	13.18.42.3 Syntax rules
	13.18.42.4 General rules

	13.18.43 RECORD clause
	13.18.43.1 General
	13.18.43.2 General formats
	13.18.43.3 Syntax rules
	13.18.43.4 General rules

	13.18.44 REDEFINES clause
	13.18.44.1 General
	13.18.44.2 General format
	13.18.44.3 Syntax rules
	13.18.44.4 General rules

	13.18.45 RENAMES clause
	13.18.45.1 General
	13.18.45.2 General format
	13.18.45.3 Syntax rules
	13.18.45.4 General rules

	13.18.46 REPORT clause
	13.18.46.1 General
	13.18.46.2 General format
	13.18.46.3 Syntax rules
	13.18.46.4 General rules

	13.18.47 REQUIRED clause
	13.18.47.1 General
	13.18.47.2 General format

	13.18.48 REVERSE-VIDEO clause
	13.18.48.1 General
	13.18.48.2 General format
	13.18.48.3 General rules

	13.18.49 SAME AS clause
	13.18.49.1 General
	13.18.49.2 General format
	13.18.49.3 Syntax rules
	13.18.49.4 General rules

	13.18.50 SECURE clause
	13.18.50.1 General
	13.18.50.2 General format
	13.18.50.3 General rules

	13.18.51 SELECT WHEN clause
	13.18.51.1 General
	13.18.51.2 General format
	13.18.51.3 Syntax rules
	13.18.51.4 General rules

	13.18.52 SIGN clause
	13.18.52.1 General
	13.18.52.2 General format
	13.18.52.3 Syntax rules
	13.18.52.4 General rules

	13.18.53 SOURCE clause
	13.18.53.1 General
	13.18.53.2 General format
	13.18.53.3 Syntax rules

	13.18.54 SUM clause
	13.18.54.1 General
	13.18.54.2 General format
	13.18.54.3 Syntax rules
	13.18.54.4 General rules

	13.18.55 SYNCHRONIZED clause
	13.18.55.1 General
	13.18.55.2 General format
	13.18.55.3 Syntax rules
	13.18.55.4 General rules

	13.18.56 TO clause
	13.18.56.1 General
	13.18.56.2 General format
	13.18.56.3 Syntax rules
	13.18.56.4 General rules

	13.18.57 TYPE clause
	13.18.57.1 General
	13.18.57.2 General formats
	13.18.57.3 Syntax rules
	13.18.57.4 General rules

	13.18.58 TYPEDEF clause
	13.18.58.1 General
	13.18.58.2 General format
	13.18.58.3 Syntax rules
	13.18.58.4 General rules

	13.18.59 UNDERLINE clause
	13.18.59.1 General
	13.18.59.2 General format
	13.18.59.3 General rules

	13.18.60 USAGE clause
	13.18.60.1 General
	13.18.60.2 General format
	13.18.60.3 Syntax rules
	13.18.60.4 General rules

	13.18.61 USING clause
	13.18.61.1 General
	13.18.61.2 General format
	13.18.61.3 Syntax rules
	13.18.61.4 General rules

	13.18.62 VALIDATE-STATUS clause
	13.18.62.1 General
	13.18.62.2 General format
	13.18.62.3 Syntax rules
	13.18.62.4 General rules

	13.18.63 VALUE clause
	13.18.63.1 General
	13.18.63.2 General formats
	13.18.63.3 Syntax rules
	13.18.63.4 General rules

	13.18.64 VARYING clause
	13.18.64.1 General
	13.18.64.2 General format
	13.18.64.3 Syntax rules
	13.18.64.4 General rules

	14 Procedure division
	14.1 General
	14.2 Procedure division structure
	14.2.1 General formats
	14.2.2 Syntax rules
	14.2.3 General rules

	14.3 Declaratives
	14.4 Procedures
	14.4.1 General
	14.4.2 Sections
	14.4.3 Paragraphs

	14.5 Procedural statements and sentences
	14.5.1 General
	14.5.2 Conditional phrase
	14.5.3 Scope of statements
	14.5.3.1 General
	14.5.3.2 Explicit scope termination
	14.5.3.3 Implicit scope termination

	14.6 Execution
	14.6.1 Run unit organization
	14.6.2 State of a function, method, object, or program
	14.6.2.1 General
	14.6.2.2 Active state
	14.6.2.3 Initial and last-used states of data
	14.6.2.3.1 General
	14.6.2.3.2 Initial state
	14.6.2.3.3 Last-used state

	14.6.2.4 Initial state of object data

	14.6.3 Explicit and implicit transfers of control
	14.6.4 Item identification
	14.6.5 Results of runtime element execution
	14.6.6 Locale identification
	14.6.7 Sending and receiving operands
	14.6.8 Alignment and transfer of data into data items
	14.6.8.1 General
	14.6.8.2 Fixed-point numeric and fixed-point numeric-edited receiving data items
	14.6.8.3 Floating-point numeric receiving data items
	14.6.8.4 Floating-point numeric-edited receiving data items
	14.6.8.5 Receiving data items of categories alphabetic, alphanumeric, alphanumeric- edited, national, and national edited
	14.6.8.6 Receiving data items of category boolean

	14.6.9 Operations on dynamic-capacity tables
	14.6.9.1 General
	14.6.9.2 Moving a table
	14.6.9.3 Comparing two tables
	14.6.9.4 Space filling a dynamic table

	14.6.10 Overlapping operands
	14.6.11 Normal run unit termination
	14.6.12 Abnormal run unit termination
	14.6.13 Exception condition handling
	14.6.13.1 Exception conditions
	14.6.13.1.1 General
	14.6.13.1.2 Normal completion of a declarative procedure
	14.6.13.1.3 Fatal exception conditions
	14.6.13.1.4 Nonfatal exception conditions
	14.6.13.1.5 Exception objects
	14.6.13.1.6 Exception-names and exception conditions

	14.6.13.2 Incompatible data
	14.6.13.3 Runtime entity activation is not successful

	14.7 Common phrases and features for statements
	14.7.1 General
	14.7.2 At end condition
	14.7.3 Invalid key condition
	14.7.4 ROUNDED phrase
	14.7.4.1 General
	14.7.4.2 General format
	14.7.4.3 General rules

	14.7.5 SIZE ERROR phrase and size error condition
	14.7.6 CORRESPONDING phrase
	14.7.7 Arithmetic statements
	14.7.8 THROUGH phrase
	14.7.9 RETRY phrase
	14.7.9.1 General
	14.7.9.2 General format
	14.7.9.3 General rules

	14.8 Conformance for parameters, returning items and external items
	14.8.1 General
	14.8.2 Parameters
	14.8.2.1 General
	14.8.2.2 Group items
	14.8.2.3 Elementary items
	14.8.2.3.1 General
	14.8.2.3.2 Elementary items passed by reference
	14.8.2.3.3 Elementary items passed by content or by value

	14.8.3 Returning items
	14.8.3.1 General
	14.8.3.2 Group items
	14.8.3.3 Elementary items

	14.8.4 External items
	14.8.4.1 General
	14.8.4.2 Correspondence of external data items used in external files
	14.8.4.3 Correspondence of external data item formats
	14.8.4.4 Correspondence of external file control entries

	14.9 Statements
	14.9.1 ACCEPT statement
	14.9.1.1 General
	14.9.1.2 General formats
	14.9.1.3 Syntax rules
	14.9.1.4 General rules

	14.9.2 ADD statement
	14.9.2.1 General
	14.9.2.2 General formats
	14.9.2.3 Syntax rules
	14.9.2.4 General rules

	14.9.3 ALLOCATE statement
	14.9.3.1 General
	14.9.3.2 General format
	14.9.3.3 Syntax rules
	14.9.3.4 General rules

	14.9.4 CALL statement
	14.9.4.1 General
	14.9.4.2 General formats
	14.9.4.3 Syntax rules
	14.9.4.4 General rules

	14.9.5 CANCEL statement
	14.9.5.1 General
	14.9.5.2 General format
	14.9.5.3 Syntax rules
	14.9.5.4 General rules

	14.9.6 CLOSE statement
	14.9.6.1 General
	14.9.6.2 General format
	14.9.6.3 Syntax rules
	14.9.6.4 General rules

	14.9.7 COMMIT statement
	14.9.7.1 General
	14.9.7.2 General forms
	14.9.7.3 Syntax rules
	14.9.7.4 General rules

	14.9.8 COMPUTE statement
	14.9.8.1 General
	14.9.8.2 General formats
	14.9.8.3 Syntax rules
	14.9.8.4 General rules

	14.9.9 CONTINUE statement
	14.9.9.1 General
	14.9.9.2 General format
	14.9.9.3 Syntax rules
	14.9.9.4 General rules

	14.9.10 DELETE statement
	14.9.10.1 General
	14.9.10.2 General formats
	14.9.10.3 Syntax rules
	14.9.10.4 General rules

	14.9.11 DISPLAY statement
	14.9.11.1 General
	14.9.11.2 General formats
	14.9.11.3 Syntax rules
	14.9.11.4 General rules

	14.9.12 DIVIDE statement
	14.9.12.1 General
	14.9.12.2 General formats
	14.9.12.3 Syntax rules
	14.9.12.4 General rules

	14.9.13 EVALUATE statement
	14.9.13.1 General
	14.9.13.2 General format
	14.9.13.3 Syntax rules
	14.9.13.4 General rules

	14.9.14 EXIT statement
	14.9.14.1 General
	14.9.14.2 General formats
	14.9.14.3 Syntax rules
	14.9.14.4 General rules

	14.9.15 FREE statement
	14.9.15.1 General
	14.9.15.2 General format
	14.9.15.3 Syntax rule
	14.9.15.4 General rules

	14.9.16 GENERATE statement
	14.9.16.1 General
	14.9.16.2 General format
	14.9.16.3 Syntax rules
	14.9.16.4 General rules

	14.9.17 GO TO statement
	14.9.17.1 General
	14.9.17.2 General formats
	14.9.17.3 Syntax rules
	14.9.17.4 General rules

	14.9.18 GOBACK statement
	14.9.18.1 General
	14.9.18.2 General format
	14.9.18.3 Syntax rules
	14.9.18.4 General rules

	14.9.19 IF statement
	14.9.19.1 General
	14.9.19.2 General formats
	14.9.19.3 Syntax rules
	14.9.19.4 General rules

	14.9.20 INITIALIZE statement
	14.9.20.1 General
	14.9.20.2 General format
	14.9.20.3 Syntax rules
	14.9.20.4 General rules

	14.9.21 INITIATE statement
	14.9.21.1 General
	14.9.21.2 General format
	14.9.21.3 Syntax rules
	14.9.21.4 General rules

	14.9.22 INSPECT statement
	14.9.22.1 General
	14.9.22.2 General formats
	14.9.22.3 Syntax rules
	14.9.22.4 General rules

	14.9.23 INVOKE statement
	14.9.23.1 General
	14.9.23.2 General format
	14.9.23.3 Syntax rules
	14.9.23.4 General rules

	14.9.24 MERGE statement
	14.9.24.1 General
	14.9.24.2 General format
	14.9.24.3 Syntax rules
	14.9.24.4 General rules

	14.9.25 MOVE statement
	14.9.25.1 General
	14.9.25.2 General formats
	14.9.25.3 Syntax rules
	14.9.25.4 General rules

	14.9.26 MULTIPLY statement
	14.9.26.1 General
	14.9.26.2 General formats
	14.9.26.3 Syntax rules
	14.9.26.4 General rules

	14.9.27 OPEN statement
	14.9.27.1 General
	14.9.27.2 General format
	14.9.27.3 Syntax rules
	14.9.27.4 General rules

	14.9.28 PERFORM statement
	14.9.28.1 General
	14.9.28.2 General formats
	14.9.28.3 Syntax rules
	14.9.28.4 General rules

	14.9.29 RAISE statement
	14.9.29.1 General
	14.9.29.2 General format
	14.9.29.3 Syntax rules
	14.9.29.4 General rules

	14.9.30 READ statement
	14.9.30.1 General
	14.9.30.2 General formats
	14.9.30.3 Syntax rules
	14.9.30.4 General rules

	14.9.31 RECEIVE statement
	14.9.31.1 General
	14.9.31.2 General format
	14.9.31.3 Syntax rules
	14.9.31.4 General rules

	14.9.32 RELEASE statement
	14.9.32.1 General
	14.9.32.2 General format
	14.9.32.3 Syntax rules
	14.9.32.4 General rules

	14.9.33 RESUME statement
	14.9.33.1 General
	14.9.33.2 General format
	14.9.33.3 Syntax rules
	14.9.33.4 General rules

	14.9.34 RETURN statement
	14.9.34.1 General
	14.9.34.2 General format
	14.9.34.3 Syntax rules
	14.9.34.4 General rules

	14.9.35 REWRITE statement
	14.9.35.1 General
	14.9.35.2 General format
	14.9.35.3 Syntax rules
	14.9.35.4 General rules

	14.9.36 ROLLBACK statement
	14.9.36.1 General
	14.9.36.2 General format
	14.9.36.3 Syntax rules
	14.9.36.4 General rules

	14.9.37 SEARCH statement
	14.9.37.1 General
	14.9.37.2 General formats
	14.9.37.3 Syntax rules
	14.9.37.4 General rules

	14.9.38 SEND statement
	14.9.38.1 General
	14.9.38.2 General formats
	14.9.38.3 Syntax rules
	14.9.38.4 General rules

	14.9.39 SET statement
	14.9.39.1 General
	14.9.39.2 General formats
	14.9.39.3 Syntax rules
	14.9.39.4 General rules

	14.9.40 SORT statement
	14.9.40.1 General
	14.9.40.2 General formats
	14.9.40.3 Syntax rules
	14.9.40.4 General rules

	14.9.41 START statement
	14.9.41.1 General
	14.9.41.2 General format
	14.9.41.3 Syntax rules
	14.9.41.4 General rules

	14.9.42 STOP statement
	14.9.42.1 General
	14.9.42.2 General format
	14.9.42.3 Syntax rules
	14.9.42.4 General rules

	14.9.43 STRING statement
	14.9.43.1 General
	14.9.43.2 General format
	14.9.43.3 Syntax rules
	14.9.43.4 General rules

	14.9.44 SUBTRACT statement
	14.9.44.1 General
	14.9.44.2 General formats
	14.9.44.3 Syntax rules
	14.9.44.4 General rules

	14.9.45 SUPPRESS statement
	14.9.45.1 General
	14.9.45.2 General format
	14.9.45.3 Syntax rule
	14.9.45.4 General rules

	14.9.46 TERMINATE statement
	14.9.46.1 General
	14.9.46.2 General format
	14.9.46.3 Syntax rules
	14.9.46.4 General rules

	14.9.47 UNLOCK statement
	14.9.47.1 General
	14.9.47.2 General format
	14.9.47.3 Syntax rules
	14.9.47.4 General rules

	14.9.48 UNSTRING statement
	14.9.48.1 General
	14.9.48.2 General format
	14.9.48.3 Syntax rules
	14.9.48.4 General rules

	14.9.49 USE statement
	14.9.49.1 General
	14.9.49.2 General formats
	14.9.49.3 Syntax rules
	14.9.49.4 General rules

	14.9.50 VALIDATE statement
	14.9.50.1 General
	14.9.50.2 General format
	14.9.50.3 Syntax rules
	14.9.50.4 General rules

	14.9.51 WRITE statement
	14.9.51.1 General
	14.9.51.2 General formats
	14.9.51.3 Syntax rules
	14.9.51.4 General rules

	15 Intrinsic functions
	15.1 General
	15.2 Types of functions
	15.3 Arguments
	15.3.1 Format arguments to international date and time functions
	15.3.1.1 General
	15.3.1.2 Calendar date formats
	15.3.1.3 Permissible values for data associated with calendar date formats
	15.3.1.4 Ordinal date formats
	15.3.1.5 Permissible values for data associated with ordinal date formats
	15.3.1.6 Week date formats
	15.3.1.7 Permissible values for data associated with week date formats

	15.3.2 Time formats
	15.3.3 Common time formats
	15.3.3.1 Common time formats with integer seconds representation
	15.3.3.2 Common time formats with fractional seconds representation
	15.3.3.3 Permissible values for data associated with common time formats
	15.3.3.4 Local time formats
	15.3.3.5 UTC time formats
	15.3.3.6 Offset time formats
	15.3.3.6.1 Offset subformats
	15.3.3.6.2 Permissible values for data associated with offset time formats

	15.3.3.7 Combined date and time formats

	15.4 Returned values
	15.4.1 Numeric and integer functions

	15.5 Date and time conversion functions
	15.5.1 General
	15.5.2 Integer date form
	15.5.3 Standard date form
	15.5.4 Julian date form
	15.5.5 Standard numeric time form

	15.6 Summary of functions
	15.7 ABS function
	15.8 ACOS function
	15.9 ANNUITY function
	15.10 ASIN function
	15.11 ATAN function
	15.12 BASECONVERT function
	15.12.2 General format

	15.13 BOOLEAN-OF-INTEGER function
	15.14 BYTE-LENGTH function
	15.15 CHAR function
	15.16 CHAR-NATIONAL function
	15.17 COMBINED-DATETIME function
	15.18 CONCAT function
	15.19 CONVERT function
	15.20 COS function
	15.21 CURRENT-DATE function
	15.22 DATE-OF-INTEGER function
	15.23 DATE-TO-YYYYMMDD function
	15.24 DAY-OF-INTEGER function
	15.25 DAY-TO-YYYYDDD function
	15.26 DISPLAY-OF function
	15.27 E function
	15.28 EXCEPTION-FILE function
	15.29 EXCEPTION-FILE-N function
	15.30 EXCEPTION-LOCATION function
	15.31 EXCEPTION-LOCATION-N function
	15.32 EXCEPTION-STATEMENT function
	15.33 EXCEPTION-STATUS function
	15.34 EXP function
	15.35 EXP10 function
	15.36 FACTORIAL function
	15.37 FIND-STRING function
	15.38 FORMATTED-CURRENT-DATE function
	15.39 FORMATTED-DATE function
	15.40 FORMATTED-DATETIME function
	15.41 FORMATTED-TIME function
	15.42 FRACTION-PART function
	15.43 HIGHEST-ALGEBRAIC function
	15.44 INTEGER function
	15.45 INTEGER-OF-BOOLEAN function
	15.46 INTEGER-OF-DATE function
	15.47 INTEGER-OF-DAY function
	15.48 INTEGER-OF-FORMATTED-DATE function
	15.49 INTEGER-PART function
	15.50 LENGTH function
	15.51 LOCALE-COMPARE function
	15.52 LOCALE-DATE function
	15.53 LOCALE-TIME function
	15.54 LOCALE-TIME-FROM-SECONDS function
	15.55 LOG function
	15.56 LOG10 function
	15.57 LOWER-CASE function
	15.58 LOWEST-ALGEBRAIC function
	15.59 MAX function
	15.60 MEAN function
	15.61 MEDIAN function
	15.62 MIDRANGE function
	15.63 MIN function
	15.64 MOD function
	15.65 MODULE-NAME function
	15.66 NATIONAL-OF function
	15.67 NUMVAL function
	15.68 NUMVAL-C function
	15.69 NUMVAL-F function
	15.70 ORD function
	15.71 ORD-MAX function
	15.72 ORD-MIN function
	15.73 PI function
	15.74 PRESENT-VALUE function
	15.75 RANDOM function
	15.75.2 General format

	15.76 RANGE function
	15.77 REM function
	15.78 REVERSE function
	15.79 SECONDS-FROM-FORMATTED-TIME function
	15.80 SECONDS-PAST-MIDNIGHT function
	15.81 SIGN function
	15.82 SIN function
	15.83 SMALLEST-ALGEBRAIC function
	15.84 SQRT function
	15.85 STANDARD-COMPARE function
	15.86 STANDARD-DEVIATION function
	15.87 SUBSTITUTE function
	15.88 SUM function
	15.89 TAN function
	15.90 TEST-DATE-YYYYMMDD function
	15.91 TEST-DAY-YYYYDDD function
	15.92 TEST-FORMATTED-DATETIME function
	15.93 TEST-NUMVAL function
	15.94 TEST-NUMVAL-C function
	15.95 TEST-NUMVAL-F function
	15.96 TRIM function
	15.97 UPPER-CASE function
	15.98 VARIANCE function
	15.99 WHEN-COMPILED function
	15.100 YEAR-TO-YYYY function

	16 Standard classes
	16.1 General
	16.2 BASE class
	16.2.1 New method
	16.2.2 FactoryObject method

	Annex A
	Language element lists
	A.1 Implementor-defined language element list
	A.2 Undefined language element list
	A.3 Processor-dependent language element list
	A.4 Optional language element list
	A.4.1 General
	A.4.2 ACCEPT and DISPLAY screen handling
	A.4.3 Commit and Rollback
	A.4.4 Dynamic capacity tables
	A.4.5 DYNAMIC LENGTH elementary items
	A.4.6 Extended letters
	A.4.7 File sharing and record locking
	A.4.8 FORMAT and SELECT WHEN file handling
	A.4.9 Locale support and related functions
	A.4.10 Object orientation
	A.4.11 Report Writer
	A.4.12 RESUME statement
	A.4.13 REWRITE FILE and WRITE FILE
	A.4.14 VALIDATE

	Annex B
	Characters permitted in user-defined words
	B.1 General
	B.2 Notation
	B.3 Repertoire of characters permitted in user-defined words

	Annex C
	Mapping of uppercase letters to lowercase letters in the COBOL character repertoire
	C.1 Notations
	C.2 General case mappings

	Annex D
	Concepts
	D.1 General
	D.2 Files
	D.2.1 General
	D.2.2 File organization
	D.2.2.1 Sequential organization
	D.2.2.2 Relative organization
	D.2.2.3 Indexed organization
	D.2.2.4 Logical records
	D.2.2.5 General
	D.2.2.5.1 Fixed-length records
	D.2.2.5.2 Variable-length records
	D.2.2.5.3 Implementor-defined record types

	D.2.3 File processing
	D.2.3.1 General
	D.2.3.2 Record operations
	D.2.3.2.1 General
	D.2.3.2.2 Sequential access mode
	D.2.3.2.3 Random access mode
	D.2.3.2.4 Dynamic access mode
	D.2.3.2.5 Open mode
	D.2.3.2.6 Current volume pointer
	D.2.3.2.7 File position indicator
	D.2.3.2.8 Linage concepts

	D.2.3.3 File operations
	D.2.3.3.1 General
	D.2.3.3.2 Sorting
	D.2.3.3.3 Merging

	D.2.3.4 Exception handling
	D.2.3.4.1 General
	D.2.3.4.2 I-O status
	D.2.3.4.3 Exception checking PERFORM statements
	D.2.3.4.4 Exception declaratives
	D.2.3.4.5 Exception functions
	D.2.3.4.6 Optional phrases

	D.2.4 File sharing and record locking
	D.2.4.1 General
	D.2.4.2 File sharing
	D.2.4.3 Record locking
	D.2.4.3.1 Automatic locking
	D.2.4.3.2 Manual locking

	D.2.4.4 Retry

	D.2.5 Commit and rollback

	D.3 Tables and dynamic-length elementary items
	D.3.1 General
	D.3.2 Table definition
	D.3.3 Values of tables
	D.3.4 References to table items
	D.3.5 Subscripting
	D.3.5.1 General
	D.3.5.2 Subscripting using index-names
	D.3.5.3 Subscripting example
	D.3.5.4 SEARCH example

	D.3.6 Sorting tables
	D.3.6.1 EXAMPLE 1
	D.3.6.2 EXAMPLE 2
	D.3.6.3 EXAMPLE 3
	D.3.6.4 EXAMPLE 4

	D.3.7 Dynamic-capacity tables
	D.3.8 Dynamic-length elementary items

	D.4 Shared memory area
	D.5 Sharing of storage among data items
	D.6 Compilation group and run unit organization and communication
	D.6.1 Compilation group and run unit organization
	D.6.1.1 Source level organization
	D.6.1.2 Runtime level organization
	D.6.1.3 EXAMPLE

	D.6.2 Recursive and initial programs
	D.6.3 Accessing data and files
	D.6.3.1 General
	D.6.3.2 Names
	D.6.3.3 Items overview
	D.6.3.4 Item types
	D.6.3.4.1 Working-storage records
	D.6.3.4.2 File connectors
	D.6.3.4.3 Record areas for files
	D.6.3.4.4 Screen records
	D.6.3.4.5 Other items

	D.6.3.5 Item attributes
	D.6.3.5.1 General
	D.6.3.5.2 Working-storage records
	D.6.3.5.3 File connectors
	D.6.3.5.4 Other items

	D.6.3.6 Name resolution

	D.6.4 Program attributes
	D.6.4.1 General
	D.6.4.2 Common programs
	D.6.4.3 Initial programs
	D.6.4.4 Recursive programs

	D.6.5 Inter-program communication
	D.6.5.1 General
	D.6.5.2 Transfer of control
	D.6.5.3 Transfer of control to a program
	D.6.5.3.1 Names of programs
	D.6.5.3.2 Scope of the CALL statement
	D.6.5.3.3 Scope of names of programs

	D.6.5.4 Transfer of control to a function
	D.6.5.4.1 General
	D.6.5.4.2 Names of functions
	D.6.5.4.3 Scope of a function-identifier

	D.6.5.5 Transfer of control to a method
	D.6.5.6 Passing arguments
	D.6.5.6.1 General
	D.6.5.6.2 Identifying arguments
	D.6.5.6.3 Argument passing mechanisms
	D.6.5.6.4 Passing addresses
	D.6.5.6.5 Returning items
	D.6.5.6.6 Prototypes
	D.6.5.6.7 Defaults when no prototype is used
	D.6.5.6.8 Defaults when a prototype is used

	D.6.5.7 Sharing data
	D.6.5.8 Sharing files

	D.6.6 Run unit communication with other run units

	D.7 Intrinsic function facility
	D.8 Types
	D.8.1 General
	D.8.2 Weakly-typed items
	D.8.3 Strongly-typed group items

	D.9 Addresses and pointers
	D.9.1 General
	D.9.2 Data-addresses and data-pointers
	D.9.2.1 General
	D.9.2.2 Restricted data-pointers
	D.9.2.3 Examples

	D.9.3 Program-addresses, function-addresses, program-pointers and function-pointers
	D.9.3.1 General
	D.9.3.2 Restricted program-pointers and function-pointers

	D.10 Boolean support and bit manipulation
	D.11 Character sets
	D.11.1 General
	D.11.2 Character set representations
	D.11.3 Programming to use alphanumeric and national character data
	D.11.4 Source code portability

	D.12 COBOL-WORDS directive
	D.12.1 General
	D.12.2 EQUATE
	D.12.3 UNDEFINE
	D.12.4 SUBSTITUTE
	D.12.5 RESERVE

	D.13 Collating sequences
	D.13.1 General
	D.13.2 Methods of defining collating sequences
	D.13.3 Methods of selecting a collating sequence
	D.13.3.1 Using the defaults
	D.13.3.2 Using a specific collating sequence
	D.13.3.3 Using a locale
	D.13.3.4 Selecting a collating sequence for indexed files

	D.13.4 Compile-time collating sequences
	D.13.5 Intrinsic functions for comparisons

	D.14 Culturally-specific, culturally-adaptable, and multilingual applications
	D.14.1 General
	D.14.2 Culturally-specific applications
	D.14.2.1 General
	D.14.2.2 Currency string and currency symbol
	D.14.2.3 Class test for characters in a particular alphabet.

	D.14.3 Culturally-adaptable applications
	D.14.3.1 General
	D.14.3.2 Locale selection
	D.14.3.2.1 General
	D.14.3.2.2 Switching locales in a COBOL runtime module
	D.14.3.2.3 Switching locales outside of COBOL

	D.14.3.3 Locale-based monetary and numeric formatting
	D.14.3.4 Locale-based collating sequences
	D.14.3.5 Locale-based case classification of letters
	D.14.3.6 Date and time formatting

	D.14.4 Multilingual applications

	D.15 External switches
	D.16 Common exception processing
	D.16.1 General
	D.16.2 Exception processing methods
	D.16.3 Predefined, user-defined, or implementor-defined exception processing
	D.16.4 Raising and checking for exceptions
	D.16.5 Inline exception processing

	D.17 Rounding
	D.17.1 General
	D.17.2 Intermediate rounding
	D.17.3 Final rounding (the ROUNDED clause)

	D.18 Forms of arithmetic
	D.18.1 General
	D.18.2 Standard-decimal arithmetic
	D.18.2.1 General
	D.18.2.2 Specification
	D.18.2.3 Examples

	D.18.3 Standard-binary arithmetic
	D.18.3.1 General
	D.18.3.2 Specification
	D.18.3.3 Examples

	D.19 Object oriented concepts
	D.19.1 General
	D.19.2 Classes
	D.19.3 Objects
	D.19.3.1 General
	D.19.3.2 Object instantiations
	D.19.3.3 Object data definitions
	D.19.3.4 Object references
	D.19.3.5 Factory objects

	D.19.4 Methods
	D.19.4.1 General
	D.19.4.2 Method invocation
	D.19.4.3 Method prototypes

	D.19.5 Other object oriented programming features
	D.19.5.1 Inheritance
	D.19.5.2 Restricting inheritance and modification with the FINAL clause
	D.19.5.3 Conformance
	D.19.5.4 Polymorphism
	D.19.5.4.1 General
	D.19.5.4.2 Class polymorphism
	D.19.5.4.3 Parametric polymorphism

	D.19.6 Object management
	D.19.6.1 Objects

	D.19.7 Class library
	D.19.8 Parameterized classes
	D.19.9 Files in object orientation
	D.19.9.1 General
	D.19.9.2 Files in instance objects
	D.19.9.3 Files in factory objects

	D.19.10 Exception objects
	D.19.11 Sample application
	D.19.11.1 General
	D.19.11.2 Main program
	D.19.11.3 Account class

	D.20 Report writer
	D.20.1 General
	D.20.2 Reports and report files
	D.20.3 RD entry
	D.20.3.1 General
	D.20.3.2 PAGE
	D.20.3.3 CONTROL
	D.20.3.4 CODE
	D.20.3.5 EXAMPLE

	D.20.4 Basic report group description
	D.20.4.1 TYPE
	D.20.4.2 LINE and NEXT GROUP
	D.20.4.3 COLUMN
	D.20.4.4 SOURCE, VALUE, and PICTURE
	D.20.4.5 EXAMPLE

	D.20.5 Modifying the report group layout
	D.20.5.1 PRESENT WHEN
	D.20.5.2 GROUP INDICATE

	D.20.6 Repetition
	D.20.6.1 OCCURS
	D.20.6.2 Multiple form of LINE, COLUMN, SOURCE, VALUE
	D.20.6.3 VARYING

	D.20.7 Totaling
	D.20.8 Procedure division statements
	D.20.9 Report counters

	D.21 Structured constant
	D.22 Validate facility
	D.22.1 General
	D.22.2 Format validation
	D.22.3 Input distribution
	D.22.4 Content validation
	D.22.5 Relation validation
	D.22.6 Error indication
	D.22.7 Validation of more complex formats
	D.22.8 Examples of validation
	D.22.8.1 General
	D.22.8.2 Example of validation of USAGE DISPLAY items
	D.22.8.3 Example of validation of non-display items

	D.23 Conditional expressions
	D.24 Examples of the use of the EDITING phrase
	D.25 Examples of the execution of the INSPECT statement
	D.26 Examples of the execution of the PERFORM statement with the VARYING phrase specified
	D.27 Example of free-form reference format
	D.28 Conditional compilation
	D.29 CALL-CONVENTION directive
	D.30 ENTRY-CONVENTION clause
	D.31 Date and time handling
	D.31.1 General
	D.31.2 Temporal format ACCEPT statement
	D.31.2.1 General
	D.31.2.2 ACCEPT FROM DATE
	D.31.2.3 ACCEPT FROM DATE YYYYMMDD
	D.31.2.4 ACCEPT FROM DAY
	D.31.2.5 ACCEPT FROM DAY YYYYDDD
	D.31.2.6 ACCEPT FROM DAY-OF-WEEK
	D.31.2.7 ACCEPT FROM TIME

	D.31.3 Basic date and time intrinsic functions
	D.31.3.1 General
	D.31.3.2 CURRENT-DATE function
	D.31.3.3 WHEN-COMPILED function
	D.31.3.4 INTEGER-OF-DATE function
	D.31.3.5 INTEGER-OF-DAY function
	D.31.3.6 DATE-OF-INTEGER function
	D.31.3.7 DAY-OF-INTEGER function
	D.31.3.8 TEST-DATE-YYYYMMDD function
	D.31.3.9 TEST-DAY-YYYYDDD function

	D.31.4 Locale date and time intrinsic functions
	D.31.4.1 General
	D.31.4.2 LOCALE-DATE function
	D.31.4.3 LOCALE-DAY function
	D.31.4.4 LOCALE-TIME function
	D.31.4.5 LOCALE-TIME-FROM-SECONDS function

	D.31.5 International date and time format handling
	D.31.5.1 General
	D.31.5.2 Examples of time and date formats
	D.31.5.3 FORMATTED-CURRENT-DATE function
	D.31.5.4 SECONDS-PAST-MIDNIGHT function
	D.31.5.5 FORMATTED-DATE function
	D.31.5.6 FORMATTED-TIME function
	D.31.5.7 FORMATTED-DATETIME function
	D.31.5.8 INTEGER-OF-FORMATTED-DATE function
	D.31.5.9 SECONDS-FROM-FORMATTED-TIME function
	D.31.5.10 TEST-FORMATTED-DATETIME function
	D.31.5.11 COMBINED-DATETIME function

	D.32 Alternatives to HIGHEST-ALGEBRAIC, LOWEST-ALGEBRAIC and SMALLEST-ALGEBRAIC FUNCTIONS

	Annex E
	Substantive changes list
	E.1 General
	E.2 Substantive changes potentially affecting existing programs
	E.3 Substantive changes probably not affecting existing programs
	E.3.1 General
	E.3.2 Possibly affecting because of the addition of new words or names
	E.3.3 Not affecting

	Annex F
	Archaic and obsolete language element lists
	F.1 Archaic language elements
	F.2 Obsolete language elements

	Annex G
	Known errors
	G.1 Rationale
	G.2 List of errors

	BIBLIOGRAPHY
	Index
	Blank Page

